1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
|
const std = @import("std");
const mem = std.mem;
const unicode = std.unicode;
const CodePoint = @import("code_point").CodePoint;
const CodePointIterator = @import("code_point").Iterator;
pub const GraphemeData = @import("GraphemeData");
/// `Grapheme` represents a Unicode grapheme cluster by its length and offset in the source bytes.
pub const Grapheme = struct {
len: u8,
offset: u32,
/// `bytes` returns the slice of bytes that correspond to
/// this grapheme cluster in `src`.
pub fn bytes(self: Grapheme, src: []const u8) []const u8 {
return src[self.offset..][0..self.len];
}
};
/// `Iterator` iterates a sting of UTF-8 encoded bytes one grapheme cluster at-a-time.
pub const Iterator = struct {
buf: [2]?CodePoint = .{ null, null },
cp_iter: CodePointIterator,
data: *const GraphemeData,
const Self = @This();
/// Assumes `src` is valid UTF-8.
pub fn init(str: []const u8, data: *const GraphemeData) Self {
var self = Self{ .cp_iter = .{ .bytes = str }, .data = data };
self.advance();
return self;
}
fn advance(self: *Self) void {
self.buf[0] = self.buf[1];
self.buf[1] = self.cp_iter.next();
}
pub fn next(self: *Self) ?Grapheme {
self.advance();
// If no more
if (self.buf[0] == null) return null;
// If last one
if (self.buf[1] == null) return Grapheme{ .len = self.buf[0].?.len, .offset = self.buf[0].?.offset };
// If ASCII
if (self.buf[0].?.code != '\r' and self.buf[0].?.code < 128 and self.buf[1].?.code < 128) {
return Grapheme{ .len = self.buf[0].?.len, .offset = self.buf[0].?.offset };
}
const gc_start = self.buf[0].?.offset;
var gc_len: u8 = self.buf[0].?.len;
var state = State{};
if (graphemeBreak(
self.buf[0].?.code,
self.buf[1].?.code,
self.data,
&state,
)) return Grapheme{ .len = gc_len, .offset = gc_start };
while (true) {
self.advance();
if (self.buf[0] == null) break;
gc_len += self.buf[0].?.len;
if (graphemeBreak(
self.buf[0].?.code,
if (self.buf[1]) |ncp| ncp.code else 0,
self.data,
&state,
)) break;
}
return Grapheme{ .len = gc_len, .offset = gc_start };
}
};
// Predicates
fn isBreaker(cp: u21, data: *const GraphemeData) bool {
// Extract relevant properties.
const cp_gbp_prop = data.gbp(cp);
return cp == '\x0d' or cp == '\x0a' or cp_gbp_prop == .Control;
}
// Grapheme break state.
pub const State = struct {
bits: u3 = 0,
// Extended Pictographic (emoji)
fn hasXpic(self: State) bool {
return self.bits & 1 == 1;
}
fn setXpic(self: *State) void {
self.bits |= 1;
}
fn unsetXpic(self: *State) void {
self.bits ^= 1;
}
// Regional Indicatior (flags)
fn hasRegional(self: State) bool {
return self.bits & 2 == 2;
}
fn setRegional(self: *State) void {
self.bits |= 2;
}
fn unsetRegional(self: *State) void {
self.bits ^= 2;
}
// Indic Conjunct
fn hasIndic(self: State) bool {
return self.bits & 4 == 4;
}
fn setIndic(self: *State) void {
self.bits |= 4;
}
fn unsetIndic(self: *State) void {
self.bits ^= 4;
}
};
/// `graphemeBreak` returns true only if a grapheme break point is required
/// between `cp1` and `cp2`. `state` should start out as 0. If calling
/// iteratively over a sequence of code points, this function must be called
/// IN ORDER on ALL potential breaks in a string.
/// Modeled after the API of utf8proc's `utf8proc_grapheme_break_stateful`.
/// https://github.com/JuliaStrings/utf8proc/blob/2bbb1ba932f727aad1fab14fafdbc89ff9dc4604/utf8proc.h#L599-L617
pub fn graphemeBreak(
cp1: u21,
cp2: u21,
data: *const GraphemeData,
state: *State,
) bool {
// Extract relevant properties.
const cp1_gbp_prop = data.gbp(cp1);
const cp1_indic_prop = data.indic(cp1);
const cp1_is_emoji = data.isEmoji(cp1);
const cp2_gbp_prop = data.gbp(cp2);
const cp2_indic_prop = data.indic(cp2);
const cp2_is_emoji = data.isEmoji(cp2);
// GB11: Emoji Extend* ZWJ x Emoji
if (!state.hasXpic() and cp1_is_emoji) state.setXpic();
// GB9c: Indic Conjunct Break
if (!state.hasIndic() and cp1_indic_prop == .Consonant) state.setIndic();
// GB3: CR x LF
if (cp1 == '\r' and cp2 == '\n') return false;
// GB4: Control
if (isBreaker(cp1, data)) return true;
// GB11: Emoji Extend* ZWJ x Emoji
if (state.hasXpic() and
cp1_gbp_prop == .ZWJ and
cp2_is_emoji)
{
state.unsetXpic();
return false;
}
// GB9b: x (Extend | ZWJ)
if (cp2_gbp_prop == .Extend or cp2_gbp_prop == .ZWJ) return false;
// GB9a: x Spacing
if (cp2_gbp_prop == .SpacingMark) return false;
// GB9b: Prepend x
if (cp1_gbp_prop == .Prepend and !isBreaker(cp2, data)) return false;
// GB12, GB13: RI x RI
if (cp1_gbp_prop == .Regional_Indicator and cp2_gbp_prop == .Regional_Indicator) {
if (state.hasRegional()) {
state.unsetRegional();
return true;
} else {
state.setRegional();
return false;
}
}
// GB6: Hangul L x (L|V|LV|VT)
if (cp1_gbp_prop == .L) {
if (cp2_gbp_prop == .L or
cp2_gbp_prop == .V or
cp2_gbp_prop == .LV or
cp2_gbp_prop == .LVT) return false;
}
// GB7: Hangul (LV | V) x (V | T)
if (cp1_gbp_prop == .LV or cp1_gbp_prop == .V) {
if (cp2_gbp_prop == .V or
cp2_gbp_prop == .T) return false;
}
// GB8: Hangul (LVT | T) x T
if (cp1_gbp_prop == .LVT or cp1_gbp_prop == .T) {
if (cp2_gbp_prop == .T) return false;
}
// GB9c: Indic Conjunct Break
if (state.hasIndic() and
cp1_indic_prop == .Consonant and
(cp2_indic_prop == .Extend or cp2_indic_prop == .Linker))
{
return false;
}
if (state.hasIndic() and
cp1_indic_prop == .Extend and
cp2_indic_prop == .Linker)
{
return false;
}
if (state.hasIndic() and
(cp1_indic_prop == .Linker or cp1_gbp_prop == .ZWJ) and
cp2_indic_prop == .Consonant)
{
state.unsetIndic();
return false;
}
return true;
}
test "Segmentation ZWJ and ZWSP emoji sequences" {
const seq_1 = "\u{1F43B}\u{200D}\u{2744}\u{FE0F}";
const seq_2 = "\u{1F43B}\u{200D}\u{2744}\u{FE0F}";
const with_zwj = seq_1 ++ "\u{200D}" ++ seq_2;
const with_zwsp = seq_1 ++ "\u{200B}" ++ seq_2;
const no_joiner = seq_1 ++ seq_2;
const data = try GraphemeData.init(std.testing.allocator);
defer data.deinit();
var iter = Iterator.init(with_zwj, &data);
var i: usize = 0;
while (iter.next()) |_| : (i += 1) {}
try std.testing.expectEqual(@as(usize, 1), i);
iter = Iterator.init(with_zwsp, &data);
i = 0;
while (iter.next()) |_| : (i += 1) {}
try std.testing.expectEqual(@as(usize, 3), i);
iter = Iterator.init(no_joiner, &data);
i = 0;
while (iter.next()) |_| : (i += 1) {}
try std.testing.expectEqual(@as(usize, 2), i);
}
|