1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
|
const std = @import("std");
const unicode = std.unicode;
const CodePoint = @import("code_point").CodePoint;
const CodePointIterator = @import("code_point").Iterator;
const gbp = @import("gbp");
/// `Grapheme` represents a Unicode grapheme cluster by its length and offset in the source bytes.
pub const Grapheme = struct {
len: u8,
offset: u32,
/// `bytes` returns the slice of bytes that correspond to
/// this grapheme cluster in `src`.
pub fn bytes(self: Grapheme, src: []const u8) []const u8 {
return src[self.offset..][0..self.len];
}
};
/// `Iterator` iterates a sting of UTF-8 encoded bytes one grapheme cluster at-a-time.
pub const Iterator = struct {
buf: [2]?CodePoint = .{ null, null },
cp_iter: CodePointIterator,
const Self = @This();
/// Assumes `src` is valid UTF-8.
pub fn init(str: []const u8) Self {
var self = Self{ .cp_iter = CodePointIterator{ .bytes = str } };
self.advance();
return self;
}
fn advance(self: *Self) void {
self.buf[0] = self.buf[1];
self.buf[1] = self.cp_iter.next();
}
pub fn next(self: *Self) ?Grapheme {
self.advance();
// If no more
if (self.buf[0] == null) return null;
// If last one
if (self.buf[1] == null) return Grapheme{ .len = self.buf[0].?.len, .offset = self.buf[0].?.offset };
// If ASCII
if (self.buf[0].?.code != '\r' and self.buf[0].?.code < 128 and self.buf[1].?.code < 128) {
return Grapheme{ .len = self.buf[0].?.len, .offset = self.buf[0].?.offset };
}
const gc_start = self.buf[0].?.offset;
var gc_len: u8 = self.buf[0].?.len;
var state = State{};
if (graphemeBreak(
self.buf[0].?.code,
self.buf[1].?.code,
&state,
)) return Grapheme{ .len = gc_len, .offset = gc_start };
while (true) {
self.advance();
if (self.buf[0] == null) break;
gc_len += self.buf[0].?.len;
if (graphemeBreak(
self.buf[0].?.code,
if (self.buf[1]) |ncp| ncp.code else 0,
&state,
)) break;
}
return Grapheme{ .len = gc_len, .offset = gc_start };
}
};
// Predicates
fn isBreaker(cp: u21) bool {
// Extract relevant properties.
const cp_props_byte = gbp.stage_3[gbp.stage_2[gbp.stage_1[cp >> 8] + (cp & 0xff)]];
const cp_gbp_prop: gbp.Gbp = @enumFromInt(cp_props_byte >> 4);
return cp == '\x0d' or cp == '\x0a' or cp_gbp_prop == .Control;
}
fn isIgnorable(cp: u21) bool {
const cp_gbp_prop = gbp.stage_3[gbp.stage_2[gbp.stage_1[cp >> 8] + (cp & 0xff)]];
return cp_gbp_prop == .extend or cp_gbp_prop == .spacing or cp == '\u{200d}';
}
// Grapheme break state.
const State = struct {
bits: u3 = 0,
// Extended Pictographic (emoji)
fn hasXpic(self: State) bool {
return self.bits & 1 == 1;
}
fn setXpic(self: *State) void {
self.bits |= 1;
}
fn unsetXpic(self: *State) void {
self.bits ^= 1;
}
// Regional Indicatior (flags)
fn hasRegional(self: State) bool {
return self.bits & 2 == 2;
}
fn setRegional(self: *State) void {
self.bits |= 2;
}
fn unsetRegional(self: *State) void {
self.bits ^= 2;
}
// Indic Conjunct
fn hasIndic(self: State) bool {
return self.bits & 4 == 4;
}
fn setIndic(self: *State) void {
self.bits |= 4;
}
fn unsetIndic(self: *State) void {
self.bits ^= 4;
}
};
/// `graphemeBreak` returns true only if a grapheme break point is required
/// between `cp1` and `cp2`. `state` should start out as 0. If calling
/// iteratively over a sequence of code points, this function must be called
/// IN ORDER on ALL potential breaks in a string.
/// Modeled after the API of utf8proc's `utf8proc_grapheme_break_stateful`.
/// https://github.com/JuliaStrings/utf8proc/blob/2bbb1ba932f727aad1fab14fafdbc89ff9dc4604/utf8proc.h#L599-L617
pub fn graphemeBreak(
cp1: u21,
cp2: u21,
state: *State,
) bool {
// Extract relevant properties.
const cp1_props_byte = gbp.stage_3[gbp.stage_2[gbp.stage_1[cp1 >> 8] + (cp1 & 0xff)]];
const cp1_gbp_prop: gbp.Gbp = @enumFromInt(cp1_props_byte >> 4);
const cp1_indic_prop: gbp.Indic = @enumFromInt((cp1_props_byte >> 1) & 0x7);
const cp1_is_emoji = cp1_props_byte & 1 == 1;
const cp2_props_byte = gbp.stage_3[gbp.stage_2[gbp.stage_1[cp2 >> 8] + (cp2 & 0xff)]];
const cp2_gbp_prop: gbp.Gbp = @enumFromInt(cp2_props_byte >> 4);
const cp2_indic_prop: gbp.Indic = @enumFromInt((cp2_props_byte >> 1) & 0x7);
const cp2_is_emoji = cp2_props_byte & 1 == 1;
// GB11: Emoji Extend* ZWJ x Emoji
if (!state.hasXpic() and cp1_is_emoji) state.setXpic();
// GB9c: Indic Conjunct Break
if (!state.hasIndic() and cp1_indic_prop == .Consonant) state.setIndic();
// GB3: CR x LF
if (cp1 == '\r' and cp2 == '\n') return false;
// GB4: Control
if (isBreaker(cp1)) return true;
// GB11: Emoji Extend* ZWJ x Emoji
if (state.hasXpic() and
cp1_gbp_prop == .ZWJ and
cp2_is_emoji)
{
state.unsetXpic();
return false;
}
// GB9b: x (Extend | ZWJ)
if (cp2_gbp_prop == .Extend or cp2_gbp_prop == .ZWJ) return false;
// GB9a: x Spacing
if (cp2_gbp_prop == .SpacingMark) return false;
// GB9b: Prepend x
if (cp1_gbp_prop == .Prepend and !isBreaker(cp2)) return false;
// GB12, GB13: RI x RI
if (cp1_gbp_prop == .Regional_Indicator and cp2_gbp_prop == .Regional_Indicator) {
if (state.hasRegional()) {
state.unsetRegional();
return true;
} else {
state.setRegional();
return false;
}
}
// GB6: Hangul L x (L|V|LV|VT)
if (cp1_gbp_prop == .L) {
if (cp2_gbp_prop == .L or
cp2_gbp_prop == .V or
cp2_gbp_prop == .LV or
cp2_gbp_prop == .LVT) return false;
}
// GB7: Hangul (LV | V) x (V | T)
if (cp1_gbp_prop == .LV or cp1_gbp_prop == .V) {
if (cp2_gbp_prop == .V or
cp2_gbp_prop == .T) return false;
}
// GB8: Hangul (LVT | T) x T
if (cp1_gbp_prop == .LVT or cp1_gbp_prop == .T) {
if (cp2_gbp_prop == .T) return false;
}
// GB9c: Indic Conjunct Break
if (state.hasIndic() and
cp1_indic_prop == .Consonant and
(cp2_indic_prop == .Extend or cp2_indic_prop == .Linker))
{
return false;
}
if (state.hasIndic() and
cp1_indic_prop == .Extend and
cp2_indic_prop == .Linker)
{
return false;
}
if (state.hasIndic() and
(cp1_indic_prop == .Linker or cp1_gbp_prop == .ZWJ) and
cp2_indic_prop == .Consonant)
{
state.unsetIndic();
return false;
}
return true;
}
test "Segmentation GraphemeIterator" {
const allocator = std.testing.allocator;
var file = try std.fs.cwd().openFile("GraphemeBreakTest.txt", .{});
defer file.close();
var buf_reader = std.io.bufferedReader(file.reader());
var input_stream = buf_reader.reader();
var buf: [4096]u8 = undefined;
var line_no: usize = 1;
while (try input_stream.readUntilDelimiterOrEof(&buf, '\n')) |raw| : (line_no += 1) {
// Skip comments or empty lines.
if (raw.len == 0 or raw[0] == '#' or raw[0] == '@') continue;
// Clean up.
var line = std.mem.trimLeft(u8, raw, "÷ ");
if (std.mem.indexOf(u8, line, " ÷\t#")) |octo| {
line = line[0..octo];
}
// Iterate over fields.
var want = std.ArrayList(Grapheme).init(allocator);
defer want.deinit();
var all_bytes = std.ArrayList(u8).init(allocator);
defer all_bytes.deinit();
var graphemes = std.mem.split(u8, line, " ÷ ");
var bytes_index: u32 = 0;
while (graphemes.next()) |field| {
var code_points = std.mem.split(u8, field, " ");
var cp_buf: [4]u8 = undefined;
var cp_index: u32 = 0;
var gc_len: u8 = 0;
while (code_points.next()) |code_point| {
if (std.mem.eql(u8, code_point, "×")) continue;
const cp: u21 = try std.fmt.parseInt(u21, code_point, 16);
const len = try unicode.utf8Encode(cp, &cp_buf);
try all_bytes.appendSlice(cp_buf[0..len]);
cp_index += len;
gc_len += len;
}
try want.append(Grapheme{ .len = gc_len, .offset = bytes_index });
bytes_index += cp_index;
}
// std.debug.print("\nline {}: {s}\n", .{ line_no, all_bytes.items });
var iter = Iterator.init(all_bytes.items);
// Chaeck.
for (want.items) |want_gc| {
const got_gc = (iter.next()).?;
try std.testing.expectEqualStrings(
want_gc.bytes(all_bytes.items),
got_gc.bytes(all_bytes.items),
);
}
}
}
test "Segmentation comptime GraphemeIterator" {
const want = [_][]const u8{ "H", "é", "l", "l", "o" };
comptime {
const src = "Héllo";
var ct_iter = Iterator.init(src);
var i = 0;
while (ct_iter.next()) |grapheme| : (i += 1) {
try std.testing.expectEqualStrings(grapheme.bytes(src), want[i]);
}
}
}
test "Segmentation ZWJ and ZWSP emoji sequences" {
const seq_1 = "\u{1F43B}\u{200D}\u{2744}\u{FE0F}";
const seq_2 = "\u{1F43B}\u{200D}\u{2744}\u{FE0F}";
const with_zwj = seq_1 ++ "\u{200D}" ++ seq_2;
const with_zwsp = seq_1 ++ "\u{200B}" ++ seq_2;
const no_joiner = seq_1 ++ seq_2;
var ct_iter = Iterator.init(with_zwj);
var i: usize = 0;
while (ct_iter.next()) |_| : (i += 1) {}
try std.testing.expectEqual(@as(usize, 1), i);
ct_iter = Iterator.init(with_zwsp);
i = 0;
while (ct_iter.next()) |_| : (i += 1) {}
try std.testing.expectEqual(@as(usize, 3), i);
ct_iter = Iterator.init(no_joiner);
i = 0;
while (ct_iter.next()) |_| : (i += 1) {}
try std.testing.expectEqual(@as(usize, 2), i);
}
|