1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
|
//! Unicode Code Point module
//!
//! Provides a decoder and iterator over a UTF-8 encoded string.
//! Represents invalid data according to the Replacement of Maximal
//! Subparts algorithm.
pub const uoffset = if (@import("config").fat_offset) u64 else u32;
/// `CodePoint` represents a Unicode code point by its code,
/// length, and offset in the source bytes.
pub const CodePoint = struct {
code: u21,
len: u3,
offset: uoffset,
/// Return the slice of this codepoint, given the original string.
pub inline fn bytes(cp: CodePoint, str: []const u8) []const u8 {
return str[cp.offset..][0..cp.len];
}
pub fn format(cp: CodePoint, _: []const u8, _: std.fmt.FormatOptions, writer: anytype) !void {
try writer.print("CodePoint '{u}' .{{ ", .{cp.code});
try writer.print(
".code = 0x{x}, .offset = {d}, .len = {d} }}",
.{ cp.code, cp.offset, cp.len },
);
}
};
/// This function is deprecated and will be removed in a later release.
/// Use `decodeAtIndex` or `decodeAtCursor`.
pub fn decode(bytes: []const u8, offset: uoffset) ?CodePoint {
var off: uoffset = 0;
var maybe_code = decodeAtCursor(bytes, &off);
if (maybe_code) |*code| {
code.offset = offset;
return code.*;
}
return null;
}
/// Return the codepoint at `index`, even if `index` is in the middle
/// of that codepoint.
pub fn codepointAtIndex(bytes: []const u8, index: uoffset) ?CodePoint {
var idx = index;
while (idx > 0 and 0x80 <= bytes[idx] and bytes[idx] <= 0xbf) : (idx -= 1) {}
return decodeAtIndex(bytes, idx);
}
/// Decode the CodePoint, if any, at `bytes[idx]`.
pub fn decodeAtIndex(bytes: []const u8, index: uoffset) ?CodePoint {
var off = index;
return decodeAtCursor(bytes, &off);
}
/// Decode the CodePoint, if any, at `bytes[cursor.*]`. After, the
/// cursor will point at the next potential codepoint index.
pub fn decodeAtCursor(bytes: []const u8, cursor: *uoffset) ?CodePoint {
// EOS
if (cursor.* >= bytes.len) return null;
const this_off = cursor.*;
cursor.* += 1; // +1
// ASCII
var byte = bytes[this_off];
if (byte < 0x80) return .{
.code = byte,
.offset = this_off,
.len = 1,
};
// Multibyte
// Second:
var class: u4 = @intCast(u8dfa[byte]);
var st: u32 = state_dfa[class];
if (st == RUNE_REJECT or cursor.* == bytes.len) {
@branchHint(.cold);
// First one is never a truncation
return .{
.code = 0xfffd,
.len = 1,
.offset = this_off,
};
}
var rune: u32 = byte & class_mask[class];
byte = bytes[cursor.*];
class = @intCast(u8dfa[byte]);
st = state_dfa[st + class];
rune = (byte & 0x3f) | (rune << 6);
cursor.* += 1; // +2
if (st == RUNE_ACCEPT) {
return .{
.code = @intCast(rune),
.len = 2,
.offset = this_off,
};
}
if (st == RUNE_REJECT or cursor.* == bytes.len) {
@branchHint(.cold);
// Truncation and other bad bytes the same here:
cursor.* -= 1; // + 1
return .{
.code = 0xfffd,
.len = 1,
.offset = this_off,
};
}
// Third
byte = bytes[cursor.*];
class = @intCast(u8dfa[byte]);
st = state_dfa[st + class];
rune = (byte & 0x3f) | (rune << 6);
cursor.* += 1; // +3
if (st == RUNE_ACCEPT) {
return .{
.code = @intCast(rune),
.len = 3,
.offset = this_off,
};
}
if (st == RUNE_REJECT or cursor.* == bytes.len) {
@branchHint(.cold);
// This, and the branch below, detect truncation, the
// only invalid state handled differently by the Maximal
// Subparts algorithm.
if (state_dfa[@intCast(u8dfa[byte])] == RUNE_REJECT) {
cursor.* -= 2; // +1
return .{
.code = 0xfffd,
.len = 1,
.offset = this_off,
};
} else {
cursor.* -= 1; // +2
return .{
.code = 0xfffd,
.len = 2,
.offset = this_off,
};
}
}
byte = bytes[cursor.*];
class = @intCast(u8dfa[byte]);
st = state_dfa[st + class];
rune = (byte & 0x3f) | (rune << 6);
cursor.* += 1; // +4
if (st == RUNE_REJECT) {
@branchHint(.cold);
if (state_dfa[@intCast(u8dfa[byte])] == RUNE_REJECT) {
cursor.* -= 3; // +1
return .{
.code = 0xfffd,
.len = 1,
.offset = this_off,
};
} else {
cursor.* -= 1; // +3
return .{
.code = 0xfffd,
.len = 3,
.offset = this_off,
};
}
}
assert(st == RUNE_ACCEPT);
return .{
.code = @intCast(rune),
.len = 4,
.offset = this_off,
};
}
/// `Iterator` iterates a string one `CodePoint` at-a-time.
pub const Iterator = struct {
bytes: []const u8,
i: uoffset = 0,
pub fn init(bytes: []const u8) Iterator {
return .{ .bytes = bytes, .i = 0 };
}
pub fn next(self: *Iterator) ?CodePoint {
return decodeAtCursor(self.bytes, &self.i);
}
pub fn peek(iter: *Iterator) ?CodePoint {
const saved_i = iter.i;
defer iter.i = saved_i;
return iter.next();
}
/// Create a backward iterator at this point. It will repeat
/// the last CodePoint seen.
pub fn reverseIterator(iter: *const Iterator) ReverseIterator {
if (iter.i == iter.bytes.len) {
return .init(iter.bytes);
}
return .{ .i = iter.i, .bytes = iter.bytes };
}
};
// A fast DFA decoder for UTF-8
//
// The algorithm used aims to be optimal, without involving SIMD, this
// strikes a balance between portability and efficiency. That is done
// by using a DFA, represented as a few lookup tables, to track state,
// encoding valid transitions between bytes, arriving at 0 each time a
// codepoint is decoded. In the process it builds up the value of the
// codepoint in question.
//
// The virtue of such an approach is low branching factor, achieved at
// a modest cost of storing the tables. An embedded system might want
// to use a more familiar decision graph based on switches, but modern
// hosted environments can well afford the space, and may appreciate a
// speed increase in exchange.
//
// Credit for the algorithm goes to Bjรถrn Hรถhrmann, who wrote it up at
// https://bjoern.hoehrmann.de/utf-8/decoder/dfa/ . The original
// license may be found in the ./credits folder.
//
/// Successful codepoint parse
const RUNE_ACCEPT = 0;
/// Error state
const RUNE_REJECT = 12;
/// Byte transitions: value to class
const u8dfa: [256]u8 = .{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00..1f
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20..3f
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40..5f
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60..7f
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, // 80..9f
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, // a0..bf
8, 8, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // c0..df
0xa, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x4, 0x3, 0x3, // e0..ef
0xb, 0x6, 0x6, 0x6, 0x5, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, // f0..ff
};
/// State transition: state + class = new state
const state_dfa: [108]u8 = .{
0, 12, 24, 36, 60, 96, 84, 12, 12, 12, 48, 72, // 0 (RUNE_ACCEPT)
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, // 12 (RUNE_REJECT)
12, 0, 12, 12, 12, 12, 12, 0, 12, 0, 12, 12, // 24
12, 24, 12, 12, 12, 12, 12, 24, 12, 24, 12, 12, // 32
12, 12, 12, 12, 12, 12, 12, 24, 12, 12, 12, 12, // 48
12, 24, 12, 12, 12, 12, 12, 12, 12, 24, 12, 12, // 60
12, 12, 12, 12, 12, 12, 12, 36, 12, 36, 12, 12, // 72
12, 36, 12, 12, 12, 12, 12, 36, 12, 36, 12, 12, // 84
12, 36, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, // 96
};
/// State masks
const class_mask: [12]u8 = .{
0xff,
0,
0b0011_1111,
0b0001_1111,
0b0000_1111,
0b0000_0111,
0b0000_0011,
0,
0,
0,
0,
0,
};
pub const ReverseIterator = struct {
bytes: []const u8,
i: ?uoffset,
pub fn init(str: []const u8) ReverseIterator {
var r_iter: ReverseIterator = undefined;
r_iter.bytes = str;
r_iter.i = if (str.len == 0) 0 else @intCast(str.len - 1);
return r_iter;
}
pub fn prev(iter: *ReverseIterator) ?CodePoint {
if (iter.i == null) return null;
var i_prev = iter.i.?;
while (i_prev > 0) : (i_prev -= 1) {
if (!followbyte(iter.bytes[i_prev])) break;
}
if (i_prev > 0)
iter.i = i_prev - 1
else
iter.i = null;
return decode(iter.bytes[i_prev..], i_prev);
}
pub fn peek(iter: *ReverseIterator) ?CodePoint {
const saved_i = iter.i;
defer iter.i = saved_i;
return iter.prev();
}
/// Create a forward iterator at this point. It will repeat the
/// last CodePoint seen.
pub fn forwardIterator(iter: *const ReverseIterator) Iterator {
if (iter.i) |i| {
var fwd: Iterator = .{ .i = i, .bytes = iter.bytes };
_ = fwd.next();
return fwd;
}
return .{ .i = 0, .bytes = iter.bytes };
}
};
inline fn followbyte(b: u8) bool {
return 0x80 <= b and b <= 0xbf;
}
test "decode" {
const bytes = "๐ฉ๏ธ";
const res = decode(bytes, 0);
if (res) |cp| {
try std.testing.expectEqual(@as(u21, 0x1F329), cp.code);
try std.testing.expectEqual(4, cp.len);
} else {
// shouldn't have failed to return
try std.testing.expect(false);
}
}
test Iterator {
var iter = Iterator{ .bytes = "Hi" };
try expectEqual(@as(u21, 'H'), iter.next().?.code);
try expectEqual(@as(u21, 'i'), iter.peek().?.code);
try expectEqual(@as(u21, 'i'), iter.next().?.code);
try expectEqual(@as(?CodePoint, null), iter.peek());
try expectEqual(@as(?CodePoint, null), iter.next());
}
const code_point = @This();
// Keep this in sync with the README
test "Code point iterator" {
const str = "Hi ๐";
var iter: code_point.Iterator = .init(str);
var i: usize = 0;
while (iter.next()) |cp| : (i += 1) {
// The `code` field is the actual code point scalar as a `u21`.
if (i == 0) try expect(cp.code == 'H');
if (i == 1) try expect(cp.code == 'i');
if (i == 2) try expect(cp.code == ' ');
if (i == 3) {
try expect(cp.code == '๐');
// The `offset` field is the byte offset in the
// source string.
try expect(cp.offset == 3);
try expectEqual(cp, code_point.decodeAtIndex(str, cp.offset).?);
// The `len` field is the length in bytes of the
// code point in the source string.
try expect(cp.len == 4);
// There is also a 'cursor' decode, like so:
{
var cursor = cp.offset;
try expectEqual(cp, code_point.decodeAtCursor(str, &cursor).?);
// Which advances the cursor variable to the next possible
// offset, in this case, `str.len`. Don't forget to account
// for this possibility!
try expectEqual(cp.offset + cp.len, cursor);
}
// There's also this, for when you aren't sure if you have the
// correct start for a code point:
try expectEqual(cp, code_point.codepointAtIndex(str, cp.offset + 1).?);
}
// Reverse iteration is also an option:
var r_iter: code_point.ReverseIterator = .init(str);
// Both iterators can be peeked:
try expectEqual('๐', r_iter.peek().?.code);
try expectEqual('๐', r_iter.prev().?.code);
// Both kinds of iterators can be reversed:
var fwd_iter = r_iter.forwardIterator(); // or iter.reverseIterator();
// This will always return the last codepoint from
// the prior iterator, _if_ it yielded one:
try expectEqual('๐', fwd_iter.next().?.code);
}
}
test "overlongs" {
// None of these should equal `/`, all should be byte-for-byte
// handled as replacement characters.
{
const bytes = "\xc0\xaf";
var iter: Iterator = .init(bytes);
const first = iter.next().?;
try expect('/' != first.code);
try expectEqual(0xfffd, first.code);
try testing.expectEqual(1, first.len);
const second = iter.next().?;
try expectEqual(0xfffd, second.code);
try testing.expectEqual(1, second.len);
}
{
const bytes = "\xe0\x80\xaf";
var iter: Iterator = .init(bytes);
const first = iter.next().?;
try expect('/' != first.code);
try expectEqual(0xfffd, first.code);
try testing.expectEqual(1, first.len);
const second = iter.next().?;
try expectEqual(0xfffd, second.code);
try testing.expectEqual(1, second.len);
const third = iter.next().?;
try expectEqual(0xfffd, third.code);
try testing.expectEqual(1, third.len);
}
{
const bytes = "\xf0\x80\x80\xaf";
var iter: Iterator = .init(bytes);
const first = iter.next().?;
try expect('/' != first.code);
try expectEqual(0xfffd, first.code);
try testing.expectEqual(1, first.len);
const second = iter.next().?;
try expectEqual(0xfffd, second.code);
try testing.expectEqual(1, second.len);
const third = iter.next().?;
try expectEqual(0xfffd, third.code);
try testing.expectEqual(1, third.len);
const fourth = iter.next().?;
try expectEqual(0xfffd, fourth.code);
try testing.expectEqual(1, fourth.len);
}
}
test "surrogates" {
// Substitution of Maximal Subparts dictates a
// replacement character for each byte of a surrogate.
{
const bytes = "\xed\xad\xbf";
var iter: Iterator = .init(bytes);
const first = iter.next().?;
try expectEqual(0xfffd, first.code);
try testing.expectEqual(1, first.len);
const second = iter.next().?;
try expectEqual(0xfffd, second.code);
try testing.expectEqual(1, second.len);
const third = iter.next().?;
try expectEqual(0xfffd, third.code);
try testing.expectEqual(1, third.len);
}
}
test "truncation" {
// Truncation must return one (1) replacement
// character for each stem of a valid UTF-8 codepoint
// Sample from Table 3-11 of the Unicode Standard 16.0.0
{
const bytes = "\xe1\x80\xe2\xf0\x91\x92\xf1\xbf\x41";
var iter: Iterator = .init(bytes);
const first = iter.next().?;
try expectEqual(0xfffd, first.code);
try testing.expectEqual(2, first.len);
const second = iter.next().?;
try expectEqual(0xfffd, second.code);
try testing.expectEqual(1, second.len);
const third = iter.next().?;
try expectEqual(0xfffd, third.code);
try testing.expectEqual(3, third.len);
const fourth = iter.next().?;
try expectEqual(0xfffd, fourth.code);
try testing.expectEqual(2, fourth.len);
const fifth = iter.next().?;
try expectEqual(0x41, fifth.code);
try testing.expectEqual(1, fifth.len);
}
}
test ReverseIterator {
{
var r_iter: ReverseIterator = .init("ABC");
try testing.expectEqual(@as(u21, 'C'), r_iter.prev().?.code);
try testing.expectEqual(@as(u21, 'B'), r_iter.peek().?.code);
try testing.expectEqual(@as(u21, 'B'), r_iter.prev().?.code);
try testing.expectEqual(@as(u21, 'A'), r_iter.prev().?.code);
try testing.expectEqual(@as(?CodePoint, null), r_iter.peek());
try testing.expectEqual(@as(?CodePoint, null), r_iter.prev());
try testing.expectEqual(@as(?CodePoint, null), r_iter.prev());
}
{
var r_iter: ReverseIterator = .init("โ
ฮดq๐ฆพฤ");
try testing.expectEqual(@as(u21, 'ฤ'), r_iter.prev().?.code);
try testing.expectEqual(@as(u21, '๐ฆพ'), r_iter.prev().?.code);
try testing.expectEqual(@as(u21, 'q'), r_iter.prev().?.code);
try testing.expectEqual(@as(u21, 'ฮด'), r_iter.peek().?.code);
try testing.expectEqual(@as(u21, 'ฮด'), r_iter.prev().?.code);
try testing.expectEqual(@as(u21, 'โ
'), r_iter.peek().?.code);
try testing.expectEqual(@as(u21, 'โ
'), r_iter.peek().?.code);
try testing.expectEqual(@as(u21, 'โ
'), r_iter.prev().?.code);
try testing.expectEqual(@as(?CodePoint, null), r_iter.peek());
try testing.expectEqual(@as(?CodePoint, null), r_iter.prev());
try testing.expectEqual(@as(?CodePoint, null), r_iter.prev());
}
{
var r_iter: ReverseIterator = .init("123");
try testing.expectEqual(@as(u21, '3'), r_iter.prev().?.code);
try testing.expectEqual(@as(u21, '2'), r_iter.prev().?.code);
try testing.expectEqual(@as(u21, '1'), r_iter.prev().?.code);
var iter = r_iter.forwardIterator();
try testing.expectEqual(@as(u21, '1'), iter.next().?.code);
try testing.expectEqual(@as(u21, '2'), iter.next().?.code);
try testing.expectEqual(@as(u21, '3'), iter.next().?.code);
r_iter = iter.reverseIterator();
try testing.expectEqual(@as(u21, '3'), r_iter.prev().?.code);
try testing.expectEqual(@as(u21, '2'), r_iter.prev().?.code);
iter = r_iter.forwardIterator();
r_iter = iter.reverseIterator();
try testing.expectEqual(@as(u21, '2'), iter.next().?.code);
try testing.expectEqual(@as(u21, '2'), r_iter.prev().?.code);
}
}
const std = @import("std");
const testing = std.testing;
const expect = testing.expect;
const expectEqual = testing.expectEqual;
const assert = std.debug.assert;
|