summaryrefslogtreecommitdiff
path: root/src/Words.zig
blob: 617c34d3fc0435a4abe8ee3cbc55f146518f0b4f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
//! Word Breaking Algorithm.
//!
//! https://www.unicode.org/reports/tr29/#Word_Boundaries
//!

const WordBreakProperty = enum(u5) {
    none,
    Double_Quote,
    Single_Quote,
    Hebrew_Letter,
    CR,
    LF,
    Newline,
    Extend,
    Regional_Indicator,
    Format,
    Katakana,
    ALetter,
    MidLetter,
    MidNum,
    MidNumLet,
    Numeric,
    ExtendNumLet,
    ZWJ,
    WSegSpace,
};

s1: []u16 = undefined,
s2: []u5 = undefined,

const Words = @This();

pub fn init(allocator: Allocator) Allocator.Error!Words {
    var wb: Words = undefined;
    try wb.setup(allocator);
    return wb;
}

pub fn setup(wb: *Words, allocator: Allocator) Allocator.Error!void {
    wb.setupImpl(allocator) catch |err| {
        switch (err) {
            error.OutOfMemory => |e| return e,
            else => unreachable,
        }
    };
}

pub fn deinit(words: *const Words, allocator: mem.Allocator) void {
    allocator.free(words.s1);
    allocator.free(words.s2);
}

/// Represents a Unicode word span, as an offset into the source string
/// and the length of the word.
pub const Word = struct {
    offset: uoffset,
    len: uoffset,

    /// Returns a slice of the word given the source string.
    pub fn bytes(word: Word, src: []const u8) []const u8 {
        return src[word.offset..][0..word.len];
    }
};

/// Returns the word break property type for `cp`.
pub fn breakProperty(words: *const Words, cp: u21) WordBreakProperty {
    return @enumFromInt(words.s2[words.s1[cp >> 8] + (cp & 0xff)]);
}

/// Convenience function for working with CodePoints
fn breakProp(words: *const Words, point: CodePoint) WordBreakProperty {
    return @enumFromInt(words.s2[words.s1[point.code >> 8] + (point.code & 0xff)]);
}

/// Returns the Word at the given index.  Asserts that the index is less than
/// `string.len`, and that the string is not empty. Always returns a word.
/// The index does not have to be the start of a codepoint in the word.
pub fn wordAtIndex(words: *const Words, string: []const u8, index: usize) Word {
    assert(index < string.len and string.len > 0);
    var iter_back: ReverseIterator = reverseFromIndex(words, string, index);
    const first_back = iter_back.prev();
    if (first_back) |back| {
        if (back.offset == 0) {
            var iter_fwd = words.iterator(string);
            while (iter_fwd.next()) |word| {
                if (word.offset <= index and index < word.offset + word.len)
                    return word;
            }
        }
    } else {
        var iter_fwd = words.iterator(string);
        while (iter_fwd.next()) |word| {
            if (word.offset <= index and index < word.offset + word.len)
                return word;
        }
    }
    _ = iter_back.prev();
    // There's sometimes flags:
    if (iter_back.flags > 0) {
        while (iter_back.flags > 0) {
            if (iter_back.prev()) |_| {
                continue;
            } else {
                break;
            }
        }
    }
    var iter_fwd = iter_back.forwardIterator();
    while (iter_fwd.next()) |word| {
        if (word.offset <= index and index < word.offset + word.len)
            return word;
    }
    unreachable;
}

/// Returns an iterator over words in `slice`.
pub fn iterator(words: *const Words, slice: []const u8) Iterator {
    return Iterator.init(words, slice);
}

/// Returns a reverse iterator over the words in `slice`.
pub fn reverseIterator(words: *const Words, slice: []const u8) ReverseIterator {
    return ReverseIterator.init(words, slice);
}

/// Returns an iterator after the `word` in `slice`.
pub fn iterateAfterWord(words: *const Words, slice: []const u8, word: Word) Iterator {
    return forwardFromIndex(words, slice, word.offset + word.len);
}

/// Returns a reverse iterator before the `word` in `slice`.
pub fn iterateBeforeWord(words: *const Words, slice: []const u8, word: Word) ReverseIterator {
    return reverseFromIndex(words, slice, word.offset);
}

/// An iterator, forward, over all words in a provided string.
pub const Iterator = struct {
    this: ?CodePoint = null,
    that: ?CodePoint = null,
    cp_iter: CodepointIterator,
    wb: *const Words,

    /// Assumes `str` is valid UTF-8.
    pub fn init(words: *const Words, str: []const u8) Iterator {
        var wb_iter: Iterator = .{ .cp_iter = .init(str), .wb = words };
        wb_iter.advance();
        return wb_iter;
    }

    /// Returns the next word segment, without advancing.
    pub fn peek(iter: *Iterator) ?Word {
        const cache = .{ iter.this, iter.that, iter.cp_iter };
        defer {
            iter.this, iter.that, iter.cp_iter = cache;
        }
        return iter.next();
    }

    /// Returns a reverse iterator from the point this iterator is paused
    /// at.  Usually, and always when using the API to create iterators,
    /// calling `prev()` will return the word just seen.
    pub fn reverseIterator(iter: *Iterator) ReverseIterator {
        var cp_it = iter.cp_iter.reverseIterator();
        if (iter.that) |_|
            _ = cp_it.prev();
        if (iter.cp_iter.peek()) |_|
            _ = cp_it.prev();
        return .{
            .wb = iter.wb,
            .before = cp_it.prev(),
            .after = iter.that,
            .cp_iter = cp_it,
        };
    }

    /// Returns the next word segment, if any.
    pub fn next(iter: *Iterator) ?Word {
        iter.advance();

        // Done?
        if (iter.this == null) return null;
        // Last?
        if (iter.that == null) return Word{ .len = iter.this.?.len, .offset = iter.this.?.offset };

        const word_start = iter.this.?.offset;
        var word_len: uoffset = 0;

        // State variables.
        var last_p: WordBreakProperty = .none;
        var last_last_p: WordBreakProperty = .none;
        var ri_count: usize = 0;

        scan: while (true) : (iter.advance()) {
            const this = iter.this.?;
            word_len += this.len;
            if (iter.that) |that| {
                const this_p = iter.wb.breakProp(this);
                const that_p = iter.wb.breakProp(that);
                if (!isIgnorable(this_p)) {
                    last_last_p = last_p;
                    last_p = this_p;
                }
                // WB3  CR × LF
                if (this_p == .CR and that_p == .LF) continue :scan;
                // WB3a  (Newline | CR | LF) ÷
                if (isNewline(this_p)) break :scan;
                // WB3b  ÷ (Newline | CR | LF)
                if (isNewline(that_p)) break :scan;
                // WB3c  ZWJ × \p{Extended_Pictographic}
                if (this_p == .ZWJ and ext_pict.isMatch(that.bytes(iter.cp_iter.bytes))) {
                    continue :scan;
                }
                // WB3d  WSegSpace × WSegSpace
                if (this_p == .WSegSpace and that_p == .WSegSpace) continue :scan;
                // WB4  X (Extend | Format | ZWJ)* → X
                if (isIgnorable(that_p)) {
                    continue :scan;
                } // Now we use last_p instead of this_p for ignorable's sake
                if (isAHLetter(last_p)) {
                    // WB5  AHLetter × AHLetter
                    if (isAHLetter(that_p)) continue :scan;
                    // WB6  AHLetter × (MidLetter | MidNumLetQ) AHLetter
                    if (isMidVal(that_p)) {
                        const next_val = iter.peekPast();
                        if (next_val) |next_cp| {
                            const next_p = iter.wb.breakProp(next_cp);
                            if (isAHLetter(next_p)) {
                                continue :scan;
                            }
                        }
                    }
                }
                // WB7 AHLetter (MidLetter | MidNumLetQ) × AHLetter
                if (isAHLetter(last_last_p) and isMidVal(last_p) and isAHLetter(that_p)) {
                    continue :scan;
                }
                if (last_p == .Hebrew_Letter) {
                    // WB7a  Hebrew_Letter × Single_Quote
                    if (that_p == .Single_Quote) continue :scan;
                    // WB7b  Hebrew_Letter × Double_Quote Hebrew_Letter
                    if (that_p == .Double_Quote) {
                        const next_val = iter.peekPast();
                        if (next_val) |next_cp| {
                            const next_p = iter.wb.breakProp(next_cp);
                            if (next_p == .Hebrew_Letter) {
                                continue :scan;
                            }
                        }
                    }
                }
                // WB7c  Hebrew_Letter Double_Quote × Hebrew_Letter
                if (last_last_p == .Hebrew_Letter and last_p == .Double_Quote and that_p == .Hebrew_Letter)
                    continue :scan;
                // WB8  Numeric × Numeric
                if (last_p == .Numeric and that_p == .Numeric) continue :scan;
                // WB9  AHLetter × Numeric
                if (isAHLetter(last_p) and that_p == .Numeric) continue :scan;
                // WB10  Numeric ×  AHLetter
                if (last_p == .Numeric and isAHLetter(that_p)) continue :scan;
                // WB11  Numeric (MidNum | MidNumLetQ) × Numeric
                if (last_last_p == .Numeric and isMidNum(last_p) and that_p == .Numeric)
                    continue :scan;
                // WB12  Numeric × (MidNum | MidNumLetQ) Numeric
                if (last_p == .Numeric and isMidNum(that_p)) {
                    const next_val = iter.peekPast();
                    if (next_val) |next_cp| {
                        const next_p = iter.wb.breakProp(next_cp);
                        if (next_p == .Numeric) {
                            continue :scan;
                        }
                    }
                }
                // WB13  Katakana × Katakana
                if (last_p == .Katakana and that_p == .Katakana) continue :scan;
                // WB13a  (AHLetter | Numeric | Katakana | ExtendNumLet) × ExtendNumLet
                if (isExtensible(last_p) and that_p == .ExtendNumLet) continue :scan;
                // WB13b  ExtendNumLet × (AHLetter | Numeric | Katakana)
                if (last_p == .ExtendNumLet and isExtensible(that_p)) continue :scan;
                // WB15, WB16  ([^RI] | sot) (RI RI)* RI × RI
                const maybe_flag = that_p == .Regional_Indicator and last_p == .Regional_Indicator;
                if (maybe_flag) {
                    ri_count += 1;
                    if (ri_count % 2 == 1) continue :scan;
                }
                // WB999  Any ÷ Any
                break :scan;
            } else { // iter.that == null
                break :scan;
            }
        }

        return Word{ .len = word_len, .offset = word_start };
    }

    pub fn format(iter: Iterator, _: []const u8, _: std.fmt.FormatOptions, writer: anytype) !void {
        try writer.print(
            "Iterator {{ .this = {any}, .that = {any} }}",
            .{ iter.this, iter.that },
        );
    }

    fn advance(iter: *Iterator) void {
        iter.this = iter.that;
        iter.that = iter.cp_iter.next();
    }

    fn peekPast(iter: *Iterator) ?CodePoint {
        const save_cp = iter.cp_iter;
        defer iter.cp_iter = save_cp;
        while (iter.cp_iter.peek()) |peeked| {
            if (!isIgnorable(iter.wb.breakProp(peeked))) return peeked;
            _ = iter.cp_iter.next();
        }
        return null;
    }
};

/// An iterator, backward, over all words in a provided string.
pub const ReverseIterator = struct {
    after: ?CodePoint = null,
    before: ?CodePoint = null,
    cp_iter: ReverseCodepointIterator,
    wb: *const Words,
    flags: usize = 0,

    /// Assumes `str` is valid UTF-8.
    pub fn init(words: *const Words, str: []const u8) ReverseIterator {
        var wb_iter: ReverseIterator = .{ .cp_iter = .init(str), .wb = words };
        wb_iter.advance();
        return wb_iter;
    }

    /// Returns the previous word segment, if any, without advancing.
    pub fn peek(iter: *ReverseIterator) ?Word {
        const cache = .{ iter.before, iter.after, iter.cp_iter, iter.flags };
        defer {
            iter.before, iter.after, iter.cp_iter, iter.flags = cache;
        }
        return iter.prev();
    }

    /// Return a forward iterator from where this iterator paused.  Usually,
    /// and always when using the API to create iterators, calling `next()`
    /// will return the word just seen.
    pub fn forwardIterator(iter: *ReverseIterator) Iterator {
        var cp_it = iter.cp_iter.forwardIterator();
        if (iter.before) |_|
            _ = cp_it.next();
        return .{
            .wb = iter.wb,
            .this = cp_it.next(),
            .that = iter.after,
            .cp_iter = cp_it,
        };
    }

    /// Return the previous word, if any.
    pub fn prev(iter: *ReverseIterator) ?Word {
        iter.advance();

        // Done?
        if (iter.after == null) return null;
        // Last?
        if (iter.before == null) return Word{ .len = iter.after.?.len, .offset = 0 };

        const word_end = iter.after.?.offset + iter.after.?.len;
        var word_len: uoffset = 0;

        // State variables.
        var last_p: WordBreakProperty = .none;
        var last_last_p: WordBreakProperty = .none;

        scan: while (true) : (iter.advance()) {
            const after = iter.after.?;
            word_len += after.len;
            if (iter.before) |before| {
                var sneak = sneaky(iter); // 'sneaks' past ignorables
                const after_p = iter.wb.breakProp(after);
                var before_p = iter.wb.breakProp(before);
                if (!isIgnorable(after_p)) {
                    last_last_p = last_p;
                    last_p = after_p;
                }
                // WB3  CR × LF
                if (before_p == .CR and after_p == .LF) continue :scan;
                // WB3a  (Newline | CR | LF) ÷
                if (isNewline(before_p)) break :scan;
                // WB3b  ÷ (Newline | CR | LF)
                if (isNewline(after_p)) break :scan;
                // WB3c  ZWJ × \p{Extended_Pictographic}
                if (before_p == .ZWJ and ext_pict.isMatch(after.bytes(iter.cp_iter.bytes))) {
                    continue :scan;
                }
                // WB3d  WSegSpace × WSegSpace
                if (before_p == .WSegSpace and after_p == .WSegSpace) continue :scan;
                // WB4  X (Extend | Format | ZWJ)* → X
                if (isIgnorable(before_p)) {
                    const maybe_before = sneak.prev();
                    if (maybe_before) |valid_before| {
                        before_p = iter.wb.breakProp(valid_before);
                    } else if (!isIgnorable(after_p)) {
                        // We're done
                        break :scan;
                    }
                }
                if (isIgnorable(after_p)) continue :scan;
                // WB5  AHLetter × AHLetter
                if (isAHLetter(last_p) and isAHLetter(before_p)) {
                    continue :scan;
                }
                // WB6  AHLetter × (MidLetter | MidNumLetQ) AHLetter
                if (isAHLetter(before_p) and isMidVal(last_p) and isAHLetter(last_last_p)) {
                    continue :scan;
                }
                // WB7 AHLetter (MidLetter | MidNumLetQ) × AHLetter
                if (isMidVal(before_p) and isAHLetter(last_p)) {
                    const prev_val = sneak.peek();
                    if (prev_val) |prev_cp| {
                        const prev_p = iter.wb.breakProp(prev_cp);
                        if (isAHLetter(prev_p)) {
                            continue :scan;
                        }
                    }
                }
                // WB7a  Hebrew_Letter × Single_Quote
                if (before_p == .Hebrew_Letter and last_p == .Single_Quote) continue :scan;
                // WB7b  Hebrew_Letter × Double_Quote Hebrew_Letter
                if (before_p == .Hebrew_Letter and last_p == .Double_Quote and last_last_p == .Hebrew_Letter) {
                    continue :scan;
                }
                // WB7c  Hebrew_Letter Double_Quote × Hebrew_Letter
                if (before_p == .Double_Quote and last_p == .Hebrew_Letter) {
                    const prev_val = sneak.peek();
                    if (prev_val) |prev_cp| {
                        const prev_p = iter.wb.breakProp(prev_cp);
                        if (prev_p == .Hebrew_Letter) {
                            continue :scan;
                        }
                    }
                }
                // WB8  Numeric × Numeric
                if (before_p == .Numeric and last_p == .Numeric) continue :scan;
                // WB9  AHLetter × Numeric
                if (isAHLetter(before_p) and last_p == .Numeric) continue :scan;
                // WB10  Numeric ×  AHLetter
                if (before_p == .Numeric and isAHLetter(last_p)) continue :scan;
                // WB11  Numeric (MidNum | MidNumLetQ) × Numeric
                if (isMidNum(before_p) and last_p == .Numeric) {
                    const prev_val = sneak.peek();
                    if (prev_val) |prev_cp| {
                        const prev_p = iter.wb.breakProp(prev_cp);
                        if (prev_p == .Numeric) {
                            continue :scan;
                        }
                    }
                }
                // WB12  Numeric × (MidNum | MidNumLetQ) Numeric
                if (before_p == .Numeric and isMidNum(last_p) and last_last_p == .Numeric) {
                    continue :scan;
                }
                // WB13  Katakana × Katakana
                if (before_p == .Katakana and last_p == .Katakana) continue :scan;
                // WB13a  (AHLetter | Numeric | Katakana | ExtendNumLet) × ExtendNumLet
                if (isExtensible(before_p) and last_p == .ExtendNumLet) continue :scan;
                // WB13b  ExtendNumLet × (AHLetter | Numeric | Katakana)
                if (before_p == .ExtendNumLet and isExtensible(last_p)) continue :scan;
                // WB15, WB16  ([^RI] | sot) (RI RI)* RI × RI
                // NOTE:
                // So here we simply have to know whether a run of flags is even or odd.
                // The whole run.  To avoid quadratic behavior (and long flag runs are
                // actually a thing in the wild), we have to count them once, store that
                // on the iterator, and decrement each time we see two, possibly breaking
                // once extra at the beginning. They break up one per flag, once we hit
                // zero, that's all the flags.  If we see another flag we do it again.
                if (before_p == .Regional_Indicator and last_p == .Regional_Indicator) {
                    defer {
                        if (iter.flags > 0) iter.flags -= 1;
                    }
                    if (iter.flags == 0) {
                        iter.flags = sneak.countFlags();
                    }
                    if (iter.flags % 2 == 0) {
                        continue :scan;
                    }
                }
                // WB999  Any ÷ Any
                break :scan;
            }
            break :scan;
        }
        return Word{ .len = word_len, .offset = word_end - word_len };
    }

    pub fn format(iter: ReverseIterator, _: []const u8, _: std.fmt.FormatOptions, writer: anytype) !void {
        try writer.print(
            "ReverseIterator {{ .before = {any}, .after = {any}, .flags = {d} }}",
            .{ iter.before, iter.after, iter.flags },
        );
    }

    fn peekPast(iter: *ReverseIterator) ?CodePoint {
        const save_cp = iter.cp_iter;
        defer iter.cp_iter = save_cp;
        while (iter.cp_iter.peek()) |peeked| {
            if (!isIgnorable(iter.wb.breakProp(peeked))) return peeked;
            _ = iter.cp_iter.prev();
        }
        return null;
    }

    fn advance(iter: *ReverseIterator) void {
        iter.after = iter.before;
        iter.before = iter.cp_iter.prev();
    }
};

//| Implementation Details

/// Initialize a ReverseIterator at the provided index. Used in `wordAtIndex`.
fn reverseFromIndex(words: *const Words, string: []const u8, index: usize) ReverseIterator {
    var idx: uoffset = @intCast(index);
    // Find the next lead byte:
    while (idx < string.len and 0x80 <= string[idx] and string[idx] <= 0xBf) : (idx += 1) {}
    if (idx == string.len) return words.reverseIterator(string);
    var iter: ReverseIterator = undefined;
    iter.wb = words;
    iter.flags = 0;
    // We need to populate the CodePoints, and the codepoint iterator.
    // Consider "abc| def" with the cursor as |.
    // We need `before` to be `c` and `after` to be ' ',
    // and `cp_iter.prev()` to be `b`.
    var cp_iter: ReverseCodepointIterator = .{ .bytes = string, .i = idx };
    iter.after = cp_iter.prev();
    iter.before = cp_iter.prev();
    iter.cp_iter = cp_iter;
    return iter;
}

fn forwardFromIndex(words: *const Words, string: []const u8, index: usize) Iterator {
    var idx: uoffset = @intCast(index);
    if (idx == string.len) {
        return .{
            .cp_iter = .{ .bytes = string, .i = idx },
            .this = null,
            .that = null,
            .wb = words,
        };
    }
    while (idx > 0 and 0x80 <= string[idx] and string[idx] <= 0xBf) : (idx -= 1) {}
    if (idx == 0) return words.iterator(string);
    var iter: Iterator = undefined;
    iter.wb = words;
    // We need to populate the CodePoints, and the codepoint iterator.
    // Consider "abc |def" with the cursor as |.
    // We need `this` to be ` ` and `that` to be 'd',
    // and `cp_iter.next()` to be `d`.
    idx -= 1;
    while (idx > 0 and 0x80 <= string[idx] and string[idx] <= 0xBf) : (idx -= 1) {}
    // "abc| def"
    var cp_iter: CodepointIterator = .{ .bytes = string, .i = idx };
    iter.this = cp_iter.next();
    iter.that = cp_iter.next();
    iter.cp_iter = cp_iter;
    return iter;
}

fn sneaky(iter: *const ReverseIterator) SneakIterator {
    return .{ .cp_iter = iter.cp_iter, .wb = iter.wb };
}

const SneakIterator = struct {
    cp_iter: ReverseCodepointIterator,
    wb: *const Words,

    fn peek(iter: *SneakIterator) ?CodePoint {
        const save_cp = iter.cp_iter;
        defer iter.cp_iter = save_cp;
        while (iter.cp_iter.peek()) |peeked| {
            if (!isIgnorable(iter.wb.breakProp(peeked))) return peeked;
            _ = iter.cp_iter.prev();
        }
        return null;
    }

    fn countFlags(iter: *SneakIterator) usize {
        var flags: usize = 0;
        const save_cp = iter.cp_iter;
        defer iter.cp_iter = save_cp;
        while (iter.cp_iter.prev()) |cp| {
            const prop = iter.wb.breakProp(cp);
            if (isIgnorable(prop)) continue;
            if (prop == .Regional_Indicator) {
                flags += 1;
            } else break;
        }
        return flags;
    }

    fn prev(iter: *SneakIterator) ?CodePoint {
        while (iter.cp_iter.prev()) |peeked| {
            if (!isIgnorable(iter.wb.breakProp(peeked))) return peeked;
        }
        return null;
    }
};

inline fn setupImpl(wb: *Words, allocator: Allocator) !void {
    const decompressor = compress.flate.inflate.decompressor;
    const in_bytes = @embedFile("wbp");
    var in_fbs = std.io.fixedBufferStream(in_bytes);
    var in_decomp = decompressor(.raw, in_fbs.reader());
    var reader = in_decomp.reader();

    const endian = builtin.cpu.arch.endian();

    const stage_1_len: u16 = try reader.readInt(u16, endian);
    wb.s1 = try allocator.alloc(u16, stage_1_len);
    errdefer allocator.free(wb.s1);
    for (0..stage_1_len) |i| wb.s1[i] = try reader.readInt(u16, endian);

    const stage_2_len: u16 = try reader.readInt(u16, endian);
    wb.s2 = try allocator.alloc(u5, stage_2_len);
    errdefer allocator.free(wb.s2);
    for (0..stage_2_len) |i| wb.s2[i] = @intCast(try reader.readInt(u8, endian));
    var count_0: usize = 0;
    for (wb.s2) |nyb| {
        if (nyb == 0) count_0 += 1;
    }
}

//| Predicates

inline fn isNewline(wbp: WordBreakProperty) bool {
    return wbp == .CR or wbp == .LF or wbp == .Newline;
}

inline fn isIgnorable(wbp: WordBreakProperty) bool {
    return switch (wbp) {
        .Format, .Extend, .ZWJ => true,
        else => false,
    };
}

inline fn isAHLetter(wbp: WordBreakProperty) bool {
    return wbp == .ALetter or wbp == .Hebrew_Letter;
}

inline fn isMidVal(wbp: WordBreakProperty) bool {
    return wbp == .MidLetter or wbp == .MidNumLet or wbp == .Single_Quote;
}

inline fn isMidNum(wbp: WordBreakProperty) bool {
    return wbp == .MidNum or wbp == .MidNumLet or wbp == .Single_Quote;
}

inline fn isExtensible(wbp: WordBreakProperty) bool {
    return switch (wbp) {
        .ALetter, .Hebrew_Letter, .Katakana, .Numeric, .ExtendNumLet => true,
        else => false,
    };
}

test "Word Break Properties" {
    const wb = try Words.init(testing.allocator);
    defer wb.deinit(testing.allocator);
    try testing.expectEqual(.CR, wb.breakProperty('\r'));
    try testing.expectEqual(.LF, wb.breakProperty('\n'));
    try testing.expectEqual(.Hebrew_Letter, wb.breakProperty('ש'));
    try testing.expectEqual(.Katakana, wb.breakProperty('\u{30ff}'));
}

test "ext_pict" {
    try testing.expect(ext_pict.isMatch("👇"));
    try testing.expect(ext_pict.isMatch("\u{2701}"));
}

test "Words" {
    const wb = try Words.init(testing.allocator);
    defer wb.deinit(testing.allocator);
    const word_str = "Metonym   Μετωνύμιο メトニム";
    var w_iter = wb.iterator(word_str);
    try testing.expectEqualStrings("Metonym", w_iter.next().?.bytes(word_str));
    // Spaces are "words" too!
    try testing.expectEqualStrings("   ", w_iter.next().?.bytes(word_str));
    const in_greek = w_iter.next().?;
    for (in_greek.offset..in_greek.offset + in_greek.len) |i| {
        const at_index = wb.wordAtIndex(word_str, i).bytes(word_str);
        try testing.expectEqualStrings("Μετωνύμιο", at_index);
    }
    _ = w_iter.next();
    try testing.expectEqualStrings("メトニム", w_iter.next().?.bytes(word_str));
}

test wordAtIndex {
    const wb = try Words.init(testing.allocator);
    defer wb.deinit(testing.allocator);
    const t_string = "first second third";
    const second = wb.wordAtIndex(t_string, 8);
    try testing.expectEqualStrings("second", second.bytes(t_string));
    const third = wb.wordAtIndex(t_string, 14);
    try testing.expectEqualStrings("third", third.bytes(t_string));
    {
        const first = wb.wordAtIndex(t_string, 3);
        try testing.expectEqualStrings("first", first.bytes(t_string));
    }
    {
        const first = wb.wordAtIndex(t_string, 0);
        try testing.expectEqualStrings("first", first.bytes(t_string));
    }
    const last = wb.wordAtIndex(t_string, 14);
    try testing.expectEqualStrings("third", last.bytes(t_string));
}

const testr = "don't a:ka fin!";

test "reversal" {
    const wb = try Words.init(testing.allocator);
    defer wb.deinit(testing.allocator);
    {
        var fwd = wb.iterator(testr);
        var this_word: ?Word = fwd.next();

        while (this_word) |this| : (this_word = fwd.next()) {
            var back = fwd.reverseIterator();
            const that_word = back.prev();
            if (that_word) |that| {
                try testing.expectEqualStrings(this.bytes(testr), that.bytes(testr));
            } else {
                try testing.expect(false);
            }
        }
    }
    {
        var back = wb.reverseIterator(testr);
        var this_word: ?Word = back.prev();

        while (this_word) |this| : (this_word = back.prev()) {
            var fwd = back.forwardIterator();
            const that_word = fwd.next();
            if (that_word) |that| {
                try testing.expectEqualStrings(this.bytes(testr), that.bytes(testr));
            } else {
                try testing.expect(false);
            }
        }
    }
}

fn testAllocations(allocator: Allocator) !void {
    const wb = try Words.init(allocator);
    wb.deinit(allocator);
}

test "allocation safety" {
    try testing.checkAllAllocationFailures(testing.allocator, testAllocations, .{});
}

const std = @import("std");
const builtin = @import("builtin");
const compress = std.compress;
const mem = std.mem;
const Allocator = mem.Allocator;
const assert = std.debug.assert;
const testing = std.testing;

const uoffset = code_point.uoffset;

const code_point = @import("code_point");
const CodepointIterator = code_point.Iterator;
const ReverseCodepointIterator = code_point.ReverseIterator;
const CodePoint = code_point.CodePoint;

const ext_pict = @import("micro_runeset.zig").Extended_Pictographic;