1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
|
# zg
zg provides Unicode text processing for Zig projects.
## Unicode Version
The Unicode version supported by zg is `16.0.0`.
## Zig Version
The minimum Zig version required is `0.15.2`.
## Integrating zg into your Zig Project
You first need to add zg as a dependency in your `build.zig.zon` file. In your
Zig project's root directory, run:
```plain
zig fetch --save https://codeberg.org/atman/zg/archive/v0.15.3.tar.gz
```
Then instantiate the dependency in your `build.zig`:
```zig
const zg = b.dependency("zg", .{});
```
## A Modular Approach
zg is a modular library. This approach minimizes binary file size and memory
requirements by only including the Unicode data required for the specified module.
The following sections describe the various modules and their specific use case.
### Init and Setup
The code examples will show the use of `Module.init(allocator)` to create the
various modules. All of the allocating modules have a `setup` variant, which
takes a pointer and allocates in-place.
Example use:
```zig
test "Setup form" {
var graphemes = try allocator.create(Graphemes);
defer allocator.destroy(graphemes);
try graphemes.setup(allocator);
defer graphemes.deinit(allocator);
}
```
## Code Points
In the `code_point` module, you'll find a data structure representing a single code
point, `CodePoint`, and an `Iterator` to iterate over the code points in a string.
In your `build.zig`:
```zig
exe.root_module.addImport("code_point", zg.module("code_point"));
```
In your code:
```zig
const code_point = @import("code_point");
test "Code point iterator" {
const str = "Hi 😊";
var iter: code_point.Iterator = .init(str);
var i: usize = 0;
while (iter.next()) |cp| : (i += 1) {
// The `code` field is the actual code point scalar as a `u21`.
if (i == 0) try expect(cp.code == 'H');
if (i == 1) try expect(cp.code == 'i');
if (i == 2) try expect(cp.code == ' ');
if (i == 3) {
try expect(cp.code == '😊');
// The `offset` field is the byte offset in the
// source string.
try expect(cp.offset == 3);
try expectEqual(cp, code_point.decodeAtIndex(str, cp.offset).?);
// The `len` field is the length in bytes of the
// code point in the source string.
try expect(cp.len == 4);
// There is also a 'cursor' decode, like so:
{
var cursor = cp.offset;
try expectEqual(cp, code_point.decodeAtCursor(str, &cursor).?);
// Which advances the cursor variable to the next possible
// offset, in this case, `str.len`. Don't forget to account
// for this possibility!
try expectEqual(cp.offset + cp.len, cursor);
}
// There's also this, for when you aren't sure if you have the
// correct start for a code point:
try expectEqual(cp, code_point.codepointAtIndex(str, cp.offset + 1).?);
}
// Reverse iteration is also an option:
var r_iter: code_point.ReverseIterator = .init(str);
// Both iterators can be peeked:
try expectEqual('😊', r_iter.peek().?.code);
try expectEqual('😊', r_iter.prev().?.code);
// Both kinds of iterators can be reversed:
var fwd_iter = r_iter.forwardIterator(); // or iter.reverseIterator();
// This will always return the last codepoint from
// the prior iterator, _if_ it yielded one:
try expectEqual('😊', fwd_iter.next().?.code);
}
}
```
Note that it's safe to call CodePoint functions on invalid
UTF-8. Iterators and decode functions will return the Unicode
Replacement Character `U+FFFD`, according to the Substitution of Maximal
Subparts algorithm, for any invalid code unit sequences encountered.
## Grapheme Clusters
Many characters are composed from more than one code point. These
are known as Grapheme Clusters, and the `Graphemes` module has a
data structure to represent them, `Grapheme`, and an `Iterator` and
`ReverseIterator` to iterate over them in a string.
There is also `graphemeAtIndex`, which returns whatever grapheme
belongs to the index; this does not have to be on a valid grapheme
or codepoint boundary, but it is illegal to call on an empty string.
Last, `iterateAfterGrapheme` or `iterateBeforeGrapheme` will provide
forward or backward grapheme iterators of the string, from the grapheme
provided. Thus, given an index, you can begin forward or backward
iteration at that index without needing to slice the string.
In your `build.zig`:
```zig
exe.root_module.addImport("Graphemes", zg.module("Graphemes"));
```
In your code:
```zig
const Graphemes = @import("Graphemes");
test "Grapheme cluster iterator" {
const graph = try Graphemes.init(allocator);
defer graph.deinit(allocator);
const str = "He\u{301}"; // Hé
var iter = graph.iterator(str);
var i: usize = 0;
while (iter.next()) |gc| : (i += 1) {
// The `len` field is the length in bytes of the
// grapheme cluster in the source string.
if (i == 0) try expect(gc.len == 1);
if (i == 1) {
try expect(gc.len == 3);
// The `offset` in bytes of the grapheme cluster
// in the source string.
try expect(gc.offset == 1);
// The `bytes` method returns the slice of bytes
// that comprise this grapheme cluster in the
// source string `str`.
try expectEqualStrings("e\u{301}", gc.bytes(str));
}
}
}
```
## Words
Unicode has a standard word segmentation algorithm, which gives good
results for most languages. Some languages, such as Thai, require a
dictionary to find the boundary between words; these cases are not
handled by the standard algorithm.
`zg` implements that algorithm in the `Words` module. As a note,
the iterators and functions provided here will yield segments which
are not a "word" in the conventional sense, but word _boundaries_.
Specifically, the iterators in this module will return every segment of
a string, ensuring that words are kept whole when encountered. If the
word breaks are of primary interest, you'll want to use the `.offset`
field of each iterated value, and handle `string.len` as the final case
when the iteration returns `null`.
The API is congruent with `Graphemes`: forward and backward iterators,
`wordAtIndex`, and `iterateAfter` and before.
In your `build.zig`:
```zig
exe.root_module.addImport("Words", zg.module("Words"));
```
In your code:
```zig
const Words = @import("Words");
test "Words" {
const wb = try Words.init(testing.allocator);
defer wb.deinit(testing.allocator);
const word_str = "Metonym Μετωνύμιο メトニム";
var w_iter = wb.iterator(word_str);
try testing.expectEqualStrings("Metonym", w_iter.next().?.bytes(word_str));
// Spaces are "words" too!
try testing.expectEqualStrings(" ", w_iter.next().?.bytes(word_str));
const in_greek = w_iter.next().?;
// wordAtIndex doesn't care if the index is valid for a codepoint:
for (in_greek.offset..in_greek.offset + in_greek.len) |i| {
const at_index = wb.wordAtIndex(word_str, i).bytes(word_str);
try testing.expectEqualStrings("Μετωνύμιο", at_index);
}
_ = w_iter.next();
try testing.expectEqualStrings("メトニム", w_iter.next().?.bytes(word_str));
}
```
## Unicode General Categories
To detect the general category for a code point, use the `GeneralCategories` module.
In your `build.zig`:
```zig
exe.root_module.addImport("GeneralCategories", zg.module("GeneralCategories"));
```
In your code:
```zig
const GeneralCategories = @import("GeneralCategories");
test "General Categories" {
const gen_cat = try GeneralCategories.init(allocator);
defer gen_cat.deinit(allocator);
// The `gc` method returns the abbreviated General Category.
// These abbreviations and descriptive comments can be found
// in the source file `src/GenCatData.zig` as en enum.
try expect(gen_cat.gc('A') == .Lu); // Lu: uppercase letter
try expect(gen_cat.gc('3') == .Nd); // Nd: decimal number
// The following are convenience methods for groups of General
// Categories. For example, all letter categories start with `L`:
// Lu, Ll, Lt, Lo.
try expect(gen_cat.isControl(0));
try expect(gen_cat.isLetter('z'));
try expect(gen_cat.isMark('\u{301}'));
try expect(gen_cat.isNumber('3'));
try expect(gen_cat.isPunctuation('['));
try expect(gen_cat.isSeparator(' '));
try expect(gen_cat.isSymbol('©'));
}
```
## Unicode Properties
You can detect common properties of a code point with the `Properties` module.
In your `build.zig`:
```zig
exe.root_module.addImport("Properties", zg.module("Properties"));
```
In your code:
```zig
const Properties = @import("Properties");
test "Properties" {
const props = try Properties.init(allocator);
defer props.deinit(allocator);
// Mathematical symbols and letters.
try expect(props.isMath('+'));
// Alphabetic only code points.
try expect(props.isAlphabetic('Z'));
// Space, tab, and other separators.
try expect(props.isWhitespace(' '));
// Hexadecimal digits and variations thereof.
try expect(props.isHexDigit('f'));
try expect(!props.isHexDigit('z'));
// Accents, dieresis, and other combining marks.
try expect(props.isDiacritic('\u{301}'));
// Unicode has a specification for valid identifiers like
// the ones used in programming and regular expressions.
try expect(props.isIdStart('Z')); // Identifier start character
try expect(!props.isIdStart('1'));
try expect(props.isIdContinue('1'));
// The `X` versions add some code points that can appear after
// normalizing a string.
try expect(props.isXidStart('\u{b33}')); // Extended identifier start character
try expect(props.isXidContinue('\u{e33}'));
try expect(!props.isXidStart('1'));
// Note surprising Unicode numeric type properties!
try expect(props.isNumeric('\u{277f}'));
try expect(!props.isNumeric('3')); // 3 is not numeric!
try expect(props.isDigit('\u{2070}'));
try expect(!props.isDigit('3')); // 3 is not a digit!
try expect(props.isDecimal('3')); // 3 is a decimal digit
}
```
## Letter Case Detection and Conversion
To detect and convert to and from different letter cases, use the `LetterCasing`
module.
In your `build.zig`:
```zig
exe.root_module.addImport("LetterCasing", zg.module("LetterCasing"));
```
In your code:
```zig
const LetterCasing = @import("LetterCasing");
test "LetterCasing" {
const case = try LetterCasing.init(allocator);
defer case.deinit(allocator);
// Upper and lower case.
try expect(case.isUpper('A'));
try expect('A' == case.toUpper('a'));
try expect(case.isLower('a'));
try expect('a' == case.toLower('A'));
// Code points that have case.
try expect(case.isCased('É'));
try expect(!case.isCased('3'));
// Case detection and conversion for strings.
try expect(case.isUpperStr("HELLO 123!"));
const ucased = try case.toUpperStr(allocator, "hello 123");
defer allocator.free(ucased);
try expectEqualStrings("HELLO 123", ucased);
try expect(case.isLowerStr("hello 123!"));
const lcased = try case.toLowerStr(allocator, "HELLO 123");
defer allocator.free(lcased);
try expectEqualStrings("hello 123", lcased);
}
```
## Normalization
Unicode normalization is the process of converting a string into a uniform
representation that can guarantee a known structure by following a strict set
of rules. There are four normalization forms:
**Canonical Composition (NFC)**
: The most compact representation obtained by first
decomposing to Canonical Decomposition and then composing to NFC.
**Compatibility Composition (NFKC)**
: The most comprehensive composition obtained
by first decomposing to Compatibility Decomposition and then composing to NFKC.
**Canonical Decomposition (NFD)**
: Only code points with canonical decompositions
are decomposed. This is a more compact and faster decomposition but will not
provide the most comprehensive normalization possible.
**Compatibility Decomposition (NFKD)**
: The most comprehensive decomposition method
where both canonical and compatibility decompositions are performed recursively.
`zg` has methods to produce all four normalization forms in the `Normalize` module.
In your `build.zig`:
```zig
exe.root_module.addImport("Normalize", zg.module("Normalize"));
```
In your code:
```zig
const Normalize = @import("Normalize");
test "Normalize" {
const normalize = try Normalize.init(allocator);
defer normalize.deinit(allocator);
// NFC: Canonical composition
const nfc_result = try normalize.nfc(allocator, "Complex char: \u{3D2}\u{301}");
defer nfc_result.deinit(allocator);
try expectEqualStrings("Complex char: \u{3D3}", nfc_result.slice);
// NFKC: Compatibility composition
const nfkc_result = try normalize.nfkc(allocator, "Complex char: \u{03A5}\u{0301}");
defer nfkc_result.deinit(allocator);
try expectEqualStrings("Complex char: \u{038E}", nfkc_result.slice);
// NFD: Canonical decomposition
const nfd_result = try normalize.nfd(allocator, "Héllo World! \u{3d3}");
defer nfd_result.deinit(allocator);
try expectEqualStrings("He\u{301}llo World! \u{3d2}\u{301}", nfd_result.slice);
// NFKD: Compatibility decomposition
const nfkd_result = try normalize.nfkd(allocator, "Héllo World! \u{3d3}");
defer nfkd_result.deinit(allocator);
try expectEqualStrings("He\u{301}llo World! \u{3a5}\u{301}", nfkd_result.slice);
// Test for equality of two strings after normalizing to NFC.
try expect(try normalize.eql(allocator, "foé", "foe\u{0301}"));
try expect(try normalize.eql(allocator, "foϓ", "fo\u{03D2}\u{0301}"));
}
```
The `Result` returned by normalization functions may or may not be copied from the
inputs given. For example, an all-ASCII input does not need to be a copy, and will
be a view of the original slice. Calling `result.deinit(allocator)` will only free
an allocated `Result`, not one which is a view. Thus it is safe to do
unconditionally.
This does mean that the validity of a `Result` can depend on the original string
staying in memory. To ensure that your `Result` is always a copy, you may call
`try result.toOwned(allocator)`, which will only make a copy if one was not
already made.
## Caseless Matching via Case Folding
Unicode provides a more efficient way of comparing strings while ignoring letter
case differences: case folding. When you case fold a string, it's converted into a
normalized case form suitable for efficient matching. Use the `CaseFold` module
for this.
In your `build.zig`:
```zig
exe.root_module.addImport("CaseFolding", zg.module("CaseFolding"));
```
In your code:
```zig
const CaseFolding = @import("CaseFolding");
test "Caseless matching" {
// We need Unicode case fold data.
const case_fold = try CaseFolding.init(allocator);
defer case_fold.deinit(allocator);
// `compatCaselessMatch` provides the deepest level of caseless
// matching because it decomposes fully to NFKD.
const a = "Héllo World! \u{3d3}";
const b = "He\u{301}llo World! \u{3a5}\u{301}";
try expect(try case_fold.compatCaselessMatch(allocator, a, b));
const c = "He\u{301}llo World! \u{3d2}\u{301}";
try expect(try case_fold.compatCaselessMatch(allocator, a, c));
// `canonCaselessMatch` isn't as comprehensive as `compatCaselessMatch`
// because it only decomposes to NFD. Naturally, it's faster because of this.
try expect(!try case_fold.canonCaselessMatch(allocator, a, b));
try expect(try case_fold.canonCaselessMatch(allocator, a, c));
}
```
Case folding needs to use the `Normalize` module in order to produce the compatibility
forms for comparison. If you are already using a `Normalize` for other purposes,
`CaseFolding` can borrow it:
```zig
const CaseFolding = @import("CaseFolding");
const Normalize = @import("Normalize");
test "Initialize With a Normalize" {
const normalize = try Normalize.init(allocator);
// You're responsible for freeing this:
defer normalize.deinit(allocator);
const case_fold = try CaseFolding.initWithNormalize(allocator, normalize);
// This will not free your normalize when it runs first.
defer case_fold.deinit(allocator);
}
```
This has a `setupWithNormalize` variant as well, note that this also takes
a `Normalize` struct, and not a pointer to it.
## Display Width of Characters and Strings
When displaying text with a fixed-width font on a terminal screen, it's very
important to know exactly how many columns or cells each character should take.
Most characters will use one column, but there are many, like emoji and East-
Asian ideographs that need more space. The `DisplayWidth` module provides
methods for this purpose. It also has methods that use the display width calculation
to `center`, `padLeft`, `padRight`, and `wrap` text.
In your `build.zig`:
```zig
exe.root_module.addImport("DisplayWidth", zg.module("DisplayWidth"));
```
In your code:
```zig
const DisplayWidth = @import("DisplayWidth");
test "Display width" {
const dw = try DisplayWidth.init(allocator);
defer dw.deinit(allocator);
// String display width
try expectEqual(@as(usize, 5), dw.strWidth("Hello\r\n"));
try expectEqual(@as(usize, 8), dw.strWidth("Hello 😊"));
try expectEqual(@as(usize, 8), dw.strWidth("Héllo 😊"));
try expectEqual(@as(usize, 9), dw.strWidth("Ẓ̌á̲l͔̝̞̄̑͌g̖̘̘̔̔͢͞͝o̪̔T̢̙̫̈̍͞e̬͈͕͌̏͑x̺̍ṭ̓̓ͅ"));
try expectEqual(@as(usize, 17), dw.strWidth("슬라바 우크라이나"));
// Centering text
const centered = try dw.center(allocator, "w😊w", 10, "-");
defer allocator.free(centered);
try expectEqualStrings("---w😊w---", centered);
// Pad left
const right_aligned = try dw.padLeft(allocator, "abc", 9, "*");
defer allocator.free(right_aligned);
try expectEqualStrings("******abc", right_aligned);
// Pad right
const left_aligned = try dw.padRight(allocator, "abc", 9, "*");
defer allocator.free(left_aligned);
try expectEqualStrings("abc******", left_aligned);
// Wrap text
const input = "The quick brown fox\r\njumped over the lazy dog!";
const wrapped = try dw.wrap(allocator, input, 10, 3);
defer allocator.free(wrapped);
const want =
\\The quick
\\brown fox
\\jumped
\\over the
\\lazy dog!
;
try expectEqualStrings(want, wrapped);
}
```
This module has build options. The first is `cjk`, which will consider [ambiguous characters](https://www.unicode.org/reports/tr11/tr11-6.html) as double-width.
To choose this option, add it to the dependency like so:
```zig
const zg = b.dependency("zg", .{
.cjk = true,
});
```
The other options are `c0_width` and `c1_width`. The standard behavior is to treat
C0 and C1 control codes as zero-width, except for delete and backspace, which are
-1 (the logic ensures that a `strWidth` is always at least 0). If printing
control codes with replacement characters, it's necessary to assign these a width,
hence the options. When provided these values must fit in an `i4`, this allows
for C1s to be printed as `\u{80}` if desired.
`DisplayWidth` uses the `Graphemes` module internally. If you already have one,
it can be borrowed using `DisplayWidth.initWithGraphemes(allocator, graphemes)`
in the same fashion as shown for `CaseFolding` and `Normalize`.
## Scripts
Unicode categorizes code points by the Script in which they belong. A Script
collects letters and other symbols that belong to a particular writing system.
You can detect the Script for a code point with the `Scripts` module.
In your `build.zig`:
```zig
exe.root_module.addImport("Scripts", zg.module("Scripts"));
```
In your code:
```zig
const Scripts= @import("Scripts");
test "Scripts" {
const scripts = try Scripts.init(allocator);
defer scripts.deinit(allocator);
// To see the full list of Scripts, look at the
// `src/Scripts.zig` file. They are list in an enum.
try expect(scripts.script('A') == .Latin);
try expect(scripts.script('Ω') == .Greek);
try expect(scripts.script('צ') == .Hebrew);
}
```
## Limits
Iterators, and fragment types such as `CodePoint`, `Grapheme` and
`Word`, use a `u32` to store the offset into a string, and the length of
the fragment (`CodePoint` uses a `u3` for length, actually).
4GiB is a lot of string. There are a few reasons to work with that much
string, log files primarily, but fewer to bring it all into memory at
once, and practically no reason at all to do anything to such a string
without breaking it into smaller piece to work with.
Also, Zig compiles on 32 bit systems, where `usize` is a `u32`. Code
running on such systems has no choice but to handle slices in smaller
pieces. In general, if you want code to perform correctly when
encountering multi-gigabyte strings, you'll need to code for that, at a
level one or two steps above that in which you'll want to, for example,
iterate some graphemes of that string.
That all said, `zg` modules can be passed the Boolean config option
`fat_offset`, which will make all of those data structures use a `u64`
instead. I added this option not because you should use it, which you
should not, but to encourage awareness that code operating on strings
needs to pay attention to the size of those strings, and have a plan for
when sizes get out of specification. What would your code do with a
1MiB region of string with no newline? There are many questions of this
nature, and robust code must detect when data is out of the expected
envelope, so it can respond accordingly.
Code which does pay attention to these questions has no need for `u64`
sized offsets, and code which does not will not be helped by them. But
perhaps yours is an exception, in which case, by all means, configure
accordingly.
|