diff options
| author | 2024-04-25 21:24:10 +0100 | |
|---|---|---|
| committer | 2024-04-25 22:32:27 +0000 | |
| commit | 2d04cacc5322951f187bb17e017c12920ac8ebe2 (patch) | |
| tree | 80ee017efa878dfd5344b44249e6a241f2a7f6e2 /v4.0/src/DEV/XMAEM/INDEIDT.ASM | |
| parent | Merge pull request #430 from jpbaltazar/typoptbr (diff) | |
| download | ms-dos-main.tar.gz ms-dos-main.tar.xz ms-dos-main.zip | |
Diffstat (limited to 'v4.0/src/DEV/XMAEM/INDEIDT.ASM')
| -rw-r--r-- | v4.0/src/DEV/XMAEM/INDEIDT.ASM | 512 |
1 files changed, 512 insertions, 0 deletions
diff --git a/v4.0/src/DEV/XMAEM/INDEIDT.ASM b/v4.0/src/DEV/XMAEM/INDEIDT.ASM new file mode 100644 index 0000000..28e9161 --- /dev/null +++ b/v4.0/src/DEV/XMAEM/INDEIDT.ASM | |||
| @@ -0,0 +1,512 @@ | |||
| 1 | PAGE 60,132 | ||
| 2 | TITLE INDEIDT - 386 XMA Emulator - Build Interrupt Descriptor Table | ||
| 3 | |||
| 4 | COMMENT # | ||
| 5 | * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * | ||
| 6 | * * | ||
| 7 | * MODULE NAME : INDEIDT * | ||
| 8 | * * | ||
| 9 | * * | ||
| 10 | * 5669-196 (C) COPYRIGHT 1988 Microsoft Corp. * | ||
| 11 | * * | ||
| 12 | * DESCRIPTIVE NAME: Build the Interrupt Descriptor Table (IDT) * | ||
| 13 | * * | ||
| 14 | * STATUS (LEVEL) : Version (0) Level (2.0) * | ||
| 15 | * * | ||
| 16 | * FUNCTION : Build the Interrupt Descriptor Table for the 80386 XMA * | ||
| 17 | * emulator. * | ||
| 18 | * * | ||
| 19 | * MODULE TYPE : ASM * | ||
| 20 | * * | ||
| 21 | * REGISTER USAGE : 80386 Standard * | ||
| 22 | * * | ||
| 23 | * RESTRICTIONS : None * | ||
| 24 | * * | ||
| 25 | * DEPENDENCIES : None * | ||
| 26 | * * | ||
| 27 | * ENTRY POINT : SIDT_BLD (not to be confused with SIDTBLD) * | ||
| 28 | * * | ||
| 29 | * LINKAGE : Called by INDEINI * | ||
| 30 | * * | ||
| 31 | * INPUT PARMS : None * | ||
| 32 | * * | ||
| 33 | * RETURN PARMS : None * | ||
| 34 | * * | ||
| 35 | * OTHER EFFECTS : None * | ||
| 36 | * * | ||
| 37 | * EXIT NORMAL : Return to INDEINI * | ||
| 38 | * * | ||
| 39 | * EXIT ERROR : None * | ||
| 40 | * * | ||
| 41 | * EXTERNAL * | ||
| 42 | * REFERENCES : VEXCP13 - Entry point for INDEEXC * | ||
| 43 | * * | ||
| 44 | * SUB-ROUTINES : BLD_IDT - Put the entries into the IDT * | ||
| 45 | * * | ||
| 46 | * MACROS : DATAOV - Create a prefix for the following instruction * | ||
| 47 | * so that it accesses data 32 bits wide * | ||
| 48 | * ADDROV - Create a prefix for the following instruction * | ||
| 49 | * so that it uses addresses that are 32 bits wide * | ||
| 50 | * * | ||
| 51 | * CONTROL BLOCKS : INDEDAT * | ||
| 52 | * * | ||
| 53 | * CHANGE ACTIVITY : * | ||
| 54 | * * | ||
| 55 | * $MOD(INDEIDT) COMP(LOAD) PROD(3270PC) : * | ||
| 56 | * * | ||
| 57 | * $D0=D0004700 410 870530 D : NEW FOR RELEASE 1.1 * | ||
| 58 | * $P1=P0000312 410 870803 D : CHANGE COMPONENT FROM MISC TO LOAD * | ||
| 59 | * $P2=P0000xxx 120 880517 D : HANDLE INT 0D FROM V86 TASK, I.E., OPTICAL DISK * | ||
| 60 | * * | ||
| 61 | * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * | ||
| 62 | # | ||
| 63 | |||
| 64 | .286P ; Enable recognition of 286 privileged instructs. | ||
| 65 | |||
| 66 | .XLIST ; Turn off the listing | ||
| 67 | INCLUDE INDEDAT.INC ; System data structures and equates | ||
| 68 | |||
| 69 | IF1 ; Only include macros on the first pass | ||
| 70 | INCLUDE INDEOVP.MAC | ||
| 71 | ENDIF | ||
| 72 | .LIST ; Turn on the listing | ||
| 73 | PAGE | ||
| 74 | |||
| 75 | PROG SEGMENT PARA PUBLIC 'PROG' | ||
| 76 | |||
| 77 | ASSUME CS:PROG | ||
| 78 | ASSUME SS:NOTHING | ||
| 79 | ASSUME DS:NOTHING | ||
| 80 | ASSUME ES:NOTHING | ||
| 81 | |||
| 82 | INDEIDT LABEL NEAR | ||
| 83 | |||
| 84 | ; Let these entry points be known to other modules. | ||
| 85 | |||
| 86 | PUBLIC INDEIDT | ||
| 87 | PUBLIC SIDT_BLD | ||
| 88 | |||
| 89 | ; This is the entry point to INDEEXC. | ||
| 90 | |||
| 91 | EXTRN VEXCPT13:NEAR | ||
| 92 | |||
| 93 | PAGE | ||
| 94 | ; Define the stack structure for our fast path. For all the interrupts that we | ||
| 95 | ; don't want to handle we just pass the interrupt back to the real interrupt | ||
| 96 | ; vector. The entry points for these vectors push the interrupt vector offset | ||
| 97 | ; (interrupt number * 4) onto the stack and then call FASTPATH to pass the | ||
| 98 | ; interrupt to the real vector. FASTPATH pushes BP, AX, DI and SI on to the | ||
| 99 | ; stack. The following structure is a map of the stack after these registers | ||
| 100 | ; are pushed. This structure allows us to access info on the stack. | ||
| 101 | |||
| 102 | SPSTACK STRUC | ||
| 103 | |||
| 104 | SP_SI DW 0 ; Saved ESI (32 bit SI) | ||
| 105 | DW 0 | ||
| 106 | SP_DI DW 0 ; Saved EDI (32 bit DI) | ||
| 107 | DW 0 | ||
| 108 | SP_AX DW 0 ; Saved EAX | ||
| 109 | DW 0 | ||
| 110 | SP_BP DW 0 ; Saved BP (only 16 bits) | ||
| 111 | SP_EX DW 0 ; Interrupt vector offset (interrupt number * 4) | ||
| 112 | |||
| 113 | ; The following information is saved by the 80386 | ||
| 114 | |||
| 115 | SP_IP DW 0 ; Interruptee's EIP (32 bit IP) | ||
| 116 | SP_IP2 DW 0 | ||
| 117 | SP_CS DW 0 ; Interruptee's CS (16 bit CS and 16 bit junk) | ||
| 118 | SP_CS2 DW 0 | ||
| 119 | SP_FL DW 0 ; Interruptee's Eflags (32 bit flags) | ||
| 120 | SP_FL2 DW 0 | ||
| 121 | SP_SP DW 0 ; Interruptee's ESP | ||
| 122 | SP_SP2 DW 0 | ||
| 123 | SP_SS DW 0 ; Interruptee's SS | ||
| 124 | SP_SS2 DW 0 | ||
| 125 | SP_VMES DW 0 ; Interruptee's ES | ||
| 126 | DW 0 | ||
| 127 | SP_VMDS DW 0 ; Interruptee's DS | ||
| 128 | DW 0 | ||
| 129 | SP_VMFS DW 0 ; Interruptee's FS | ||
| 130 | DW 0 | ||
| 131 | SP_VMGS DW 0 ; Interruptee's GS | ||
| 132 | DW 0 | ||
| 133 | SP_STK DW 0 ; The rest of the stack | ||
| 134 | |||
| 135 | SPSTACK ENDS | ||
| 136 | |||
| 137 | SP_START EQU 0 ; Offset from BP of the start of the save area | ||
| 138 | ; BP is set ot point to the start of the save area | ||
| 139 | |||
| 140 | PAGE | ||
| 141 | |||
| 142 | SIDTBLD PROC NEAR | ||
| 143 | |||
| 144 | ; Generate the entry points for all (yes, ALL) 256 interrupt vectors. For | ||
| 145 | ; interrupt 0D (general Protection exception) we will check if it was the V86 | ||
| 146 | ; task that faulted. If so, then we will just pass the interrupt back to the | ||
| 147 | ; V86 task. Else, we will go to our exception handler since the interrupt | ||
| 148 | ; happened because of the emulator. | ||
| 149 | ; | ||
| 150 | ; For interrupts 00, 01, 02, 03, 04, 05, 06, 07, 09, 0A, 0B, 0C, 0E and 15 we | ||
| 151 | ; will go to our exception handler. | ||
| 152 | ; | ||
| 153 | ; For all other interrupts we will go to the FASTPATH routine which will pass | ||
| 154 | ; the interrupt back to the V86 interrupt vector. | ||
| 155 | ; | ||
| 156 | ; Note: For interrupts that go to our exception handler we push a 32 bit error | ||
| 157 | ; code and then push the interrupt number. For the FASTPATH interrupts | ||
| 158 | ; we push the interrupt vector offset (interrupt number *4). This results | ||
| 159 | ; in different stack structures depending on how the interrupt is handled. | ||
| 160 | ; So be careful when you're trying to figure out what's on the stack. | ||
| 161 | ; | ||
| 162 | |||
| 163 | ; Interrupt 0D | ||
| 164 | |||
| 165 | IRP V,<0D> | ||
| 166 | VEC&V: | ||
| 167 | PUSH 0&V&H ; Push the interrupt number (0D) | ||
| 168 | PUSH BP ; Save BP | ||
| 169 | DATAOV ; @P2A | ||
| 170 | PUSH AX ; Save EAX, all 32bits of it. @P2A | ||
| 171 | DATAOV ; @P2A | ||
| 172 | PUSH DI ; Save EDI @P2A | ||
| 173 | DATAOV ; @P2A | ||
| 174 | PUSH SI ; Save ESI @P2A | ||
| 175 | MOV BP,SP ; Point BP to the save area @P2A | ||
| 176 | |||
| 177 | ; Now we must check if the INT 0D came from the V86 task P2A | ||
| 178 | ; or if it was a General Protection exception. In the P2A | ||
| 179 | ; case of a General Protection exception the 80386 puts P2A | ||
| 180 | ; an error code on the stack after pushing the EFLAGS, CS P2A | ||
| 181 | ; and EIP. The error code is 32 bits wide. If the V86 P2A | ||
| 182 | ; task issues an INT 0D, an error code is NOT placed on P2A | ||
| 183 | ; the stack. In this case we want to pass the interrupt P2A | ||
| 184 | ; back to the V86 task instead of going to our exception P2A | ||
| 185 | ; handler. The way we check for an error code is by P2A | ||
| 186 | ; checking how much ESP has been decremented since the P2A | ||
| 187 | ; start of the interrupt. The original ESP is saved in P2A | ||
| 188 | ; the TSS. Our stack definition above does not include P2A | ||
| 189 | ; an error code. So if ESP has been decremented more than P2A | ||
| 190 | ; the size of our structure, we can know that an error P2A | ||
| 191 | ; code is on the stack and then go to our exception P2A | ||
| 192 | ; handler. P2A | ||
| 193 | |||
| 194 | MOV AX,SCRUBBER.TSS_PTR ; Load DS with the selector @P2A | ||
| 195 | MOV DS,AX ; that accesses the TSS as data @P2A | ||
| 196 | MOV SI,0 ; Base for reading the TSS @P2A | ||
| 197 | DATAOV ; @P2A | ||
| 198 | MOV AX,[SI].ETSS_SP0 ; Get the original SP before the @P2A | ||
| 199 | DATAOV ; interrupt @P2A | ||
| 200 | SUB AX,SP ; Subtract the current stack @P2A | ||
| 201 | ; pointer @P2A | ||
| 202 | CMP AX,SP_STK ; Check for an error code @P2A | ||
| 203 | ; @P2D | ||
| 204 | JG SKIP&V ; If there's an error code, go @P2C | ||
| 205 | ; handle the exception P2C | ||
| 206 | MOV WORD PTR [BP+SP_EX],0&V&H*4 ; If there is no error @P2A | ||
| 207 | ; code then multiply the vector P2A | ||
| 208 | ; number by four for the FASTPATH P2A | ||
| 209 | ; code. P2A | ||
| 210 | JMP PASS_ON ; Give the interrupt back to the @P2C | ||
| 211 | ; V86 task. | ||
| 212 | SKIP&V: DATAOV ; @P2A | ||
| 213 | POP SI ; Restore ESI from off our stack @P2A | ||
| 214 | DATAOV ; @P2A | ||
| 215 | POP DI ; Restore EDI @P2A | ||
| 216 | DATAOV ; @P2A | ||
| 217 | POP AX ; Restore EAX @P2A | ||
| 218 | POP BP ; Take BP off the stack. This leaves | ||
| 219 | ; the interrupt number that we pushed | ||
| 220 | ; above and the error code that was | ||
| 221 | ; pushed by the 386 on the INT 0D. | ||
| 222 | JMP VEXCPT13 ; Go to the exception handler. | ||
| 223 | |||
| 224 | ENDM | ||
| 225 | |||
| 226 | PAGE | ||
| 227 | ; For interrupts 00, 01, 02, 03, 04, 05, 06, 07, 09, 0A, 0B, 0C, 0E and 15 | ||
| 228 | ; push a dummy error code of 0 and then the interrupt number. Then go to the | ||
| 229 | ; exception handler. | ||
| 230 | |||
| 231 | IRP V,<00,01,02,03,04,05,06,07,09,0A,0B,0C,0E,15> | ||
| 232 | VEC&V: | ||
| 233 | PUSH 0 ; Push a dummy error code of 0 | ||
| 234 | PUSH 0 ; 32 bits wide | ||
| 235 | SKIP&V: | ||
| 236 | PUSH 0&V&H ; Push the interrupt number | ||
| 237 | JMP VEXCPT13 ; Go to the exception handler | ||
| 238 | ENDM | ||
| 239 | |||
| 240 | PAGE | ||
| 241 | ; For the rest of the interrupts push the interrupt vector offset (interrupt | ||
| 242 | ; number * 4) and go to the fast path routine. | ||
| 243 | ; | ||
| 244 | ; INT 08H is given the FASTPATH. It's the double fault interrupt so we are | ||
| 245 | ; dead any way. This interrupt is normally used for the timer interrupt. | ||
| 246 | ; | ||
| 247 | ; INT 10H, BIOS video calls, is given the fastest code path by putting it just | ||
| 248 | ; before the FASTPATH routine. | ||
| 249 | |||
| 250 | IRP V,<08,0F,11,12,13,14,16,17,18,19,1A,1B,1C,1D,1E,1F> | ||
| 251 | VEC&V: | ||
| 252 | PUSH 0&V&H*4 ; Push the interrupt vector offset | ||
| 253 | JMP FASTPATH ; Go to the fastpath routine | ||
| 254 | ENDM | ||
| 255 | IRP V,<20,21,22,23,24,25,26,27,28,29,2A,2B,2C,2D,2E,2F> | ||
| 256 | VEC&V: | ||
| 257 | PUSH 0&V&H*4 ; Push the interrupt vector offset | ||
| 258 | JMP FASTPATH ; Go to the fastpath routine | ||
| 259 | ENDM | ||
| 260 | IRP V,<30,31,32,33,34,35,36,37,38,39,3A,3B,3C,3D,3E,3F> | ||
| 261 | VEC&V: | ||
| 262 | PUSH 0&V&H*4 ; Push the interrupt vector offset | ||
| 263 | JMP FASTPATH ; Go to the fastpath routine | ||
| 264 | ENDM | ||
| 265 | IRP V,<40,41,42,43,44,45,46,47,48,49,4A,4B,4C,4D,4E,4F> | ||
| 266 | VEC&V: | ||
| 267 | PUSH 0&V&H*4 ; Push the interrupt vector offset | ||
| 268 | JMP FASTPATH ; Go to the fastpath routine | ||
| 269 | ENDM | ||
| 270 | IRP V,<50,51,52,53,54,55,56,57,58,59,5A,5B,5C,5D,5E,5F> | ||
| 271 | VEC&V: | ||
| 272 | PUSH 0&V&H*4 ; Push the interrupt vector offset | ||
| 273 | JMP FASTPATH ; Go to the fastpath routine | ||
| 274 | ENDM | ||
| 275 | IRP V,<60,61,62,63,64,65,66,67,68,69,6A,6B,6C,6D,6E,6F> | ||
| 276 | VEC&V: | ||
| 277 | PUSH 0&V&H*4 ; Push the interrupt vector offset | ||
| 278 | JMP FASTPATH ; Go to the fastpath routine | ||
| 279 | ENDM | ||
| 280 | IRP V,<70,71,72,73,74,75,76,77,78,79,7A,7B,7C,7D,7E,7F> | ||
| 281 | VEC&V: | ||
| 282 | PUSH 0&V&H*4 ; Push the interrupt vector offset | ||
| 283 | JMP FASTPATH ; Go to the fastpath routine | ||
| 284 | ENDM | ||
| 285 | IRP V,<80,81,82,83,84,85,86,87,88,89,8A,8B,8C,8D,8E,8F> | ||
| 286 | VEC&V: | ||
| 287 | PUSH 0&V&H*4 ; Push the interrupt vector offset | ||
| 288 | JMP FASTPATH ; Go to the fastpath routine | ||
| 289 | ENDM | ||
| 290 | IRP V,<90,91,92,93,94,95,96,97,98,99,9A,9B,9C,9D,9E,9F> | ||
| 291 | VEC&V: | ||
| 292 | PUSH 0&V&H*4 ; Push the interrupt vector offset | ||
| 293 | JMP FASTPATH ; Go to the fastpath routine | ||
| 294 | ENDM | ||
| 295 | IRP V,<A0,A1,A2,A3,A4,A5,A6,A7,A8,A9,AA,AB,AC,AD,AE,AF> | ||
| 296 | VEC&V: | ||
| 297 | PUSH 0&V&H*4 ; Push the interrupt vector offset | ||
| 298 | JMP FASTPATH ; Go to the fastpath routine | ||
| 299 | ENDM | ||
| 300 | IRP V,<B0,B1,B2,B3,B4,B5,B6,B7,B8,B9,BA,BB,BC,BD,BE,BF> | ||
| 301 | VEC&V: | ||
| 302 | PUSH 0&V&H*4 ; Push the interrupt vector offset | ||
| 303 | JMP FASTPATH ; Go to the fastpath routine | ||
| 304 | ENDM | ||
| 305 | IRP V,<C0,C1,C2,C3,C4,C5,C6,C7,C8,C9,CA,CB,CC,CD,CE,CF> | ||
| 306 | VEC&V: | ||
| 307 | PUSH 0&V&H*4 ; Push the interrupt vector offset | ||
| 308 | JMP FASTPATH ; Go to the fastpath routine | ||
| 309 | ENDM | ||
| 310 | IRP V,<D0,D1,D2,D3,D4,D5,D6,D7,D8,D9,DA,DB,DC,DD,DE,DF> | ||
| 311 | VEC&V: | ||
| 312 | PUSH 0&V&H*4 ; Push the interrupt vector offset | ||
| 313 | JMP FASTPATH ; Go to the fastpath routine | ||
| 314 | ENDM | ||
| 315 | IRP V,<E0,E1,E2,E3,E4,E5,E6,E7,E8,E9,EA,EB,EC,ED,EE,EF> | ||
| 316 | VEC&V: | ||
| 317 | PUSH 0&V&H*4 ; Push the interrupt vector offset | ||
| 318 | JMP FASTPATH ; Go to the fastpath routine | ||
| 319 | ENDM | ||
| 320 | IRP V,<F0,F1,F2,F3,F4,F5,F6,F7,F8,F9,FA,FB,FC,FD,FE,FF> | ||
| 321 | VEC&V: | ||
| 322 | PUSH 0&V&H*4 ; Push the interrupt vector offset | ||
| 323 | JMP FASTPATH ; Go to the fastpath routine | ||
| 324 | ENDM | ||
| 325 | |||
| 326 | VEC10: | ||
| 327 | PUSH 010H*4 ; Push the interrupt vector offset | ||
| 328 | |||
| 329 | PAGE | ||
| 330 | FASTPATH: | ||
| 331 | PUSH BP ; Save BP | ||
| 332 | DATAOV | ||
| 333 | PUSH AX ; Save EAX, all 32bits of it. | ||
| 334 | DATAOV | ||
| 335 | PUSH DI ; Save EDI | ||
| 336 | DATAOV | ||
| 337 | PUSH SI ; Save ESI | ||
| 338 | MOV BP,SP ; Point BP to the save area | ||
| 339 | |||
| 340 | PASS_ON: ; @P2C | ||
| 341 | CLD ; All string operations go forward | ||
| 342 | |||
| 343 | MOV AX,HUGE_PTR ; Load DS and ES with a selector that | ||
| 344 | MOV DS,AX ; accesses all of memory as data | ||
| 345 | MOV ES,AX | ||
| 346 | DATAOV | ||
| 347 | SUB DI,DI ; Clear EDI | ||
| 348 | MOV DI,SS:[BP+SP_SP] ; Load DI with the interruptee's SP | ||
| 349 | SUB DI,6 ; Decrement "SP" to simulate the pushing | ||
| 350 | ; of the flags, CS and IP on an INT. | ||
| 351 | MOV SS:WORD PTR [BP+SP_SP],DI ; Replace the user's SP | ||
| 352 | |||
| 353 | DATAOV | ||
| 354 | SUB AX,AX ; Clear EAX | ||
| 355 | MOV AX,SS:[BP+SP_SS] ; Load AX with the user's SS register | ||
| 356 | DATAOV ; Shift "SS" left four bits to convert | ||
| 357 | SHL AX,4 ; it to an offset | ||
| 358 | DATAOV ; Add on "SP" to get a 32 bit offset | ||
| 359 | ADD DI,AX ; from 0 of the user's stack. | ||
| 360 | |||
| 361 | ; Put the user's IP, CS and flags onto his stack. This is done in reverse | ||
| 362 | ; order because we are moving forward in memory whereas stacks grow backward. | ||
| 363 | |||
| 364 | MOV AX,SS:[BP+SP_IP] ; Get the user's IP | ||
| 365 | ADDROV | ||
| 366 | STOSW ; And put it on the stack | ||
| 367 | ADDROV ; Intel bug # A0-119 | ||
| 368 | NOP ; Intel bug # A0-119 | ||
| 369 | |||
| 370 | MOV AX,SS:[BP+SP_CS] ; Get the user's CS | ||
| 371 | ADDROV | ||
| 372 | STOSW ; And put it on the stack | ||
| 373 | ADDROV ; Intel bug # A0-119 | ||
| 374 | NOP ; Intel bug # A0-119 | ||
| 375 | |||
| 376 | MOV AX,SS:[BP+SP_FL] ; Get the user's flags | ||
| 377 | ADDROV | ||
| 378 | STOSW ; And put them on the stack | ||
| 379 | ADDROV ; Intel bug # A0-119 | ||
| 380 | NOP ; Intel bug # A0-119 | ||
| 381 | |||
| 382 | AND AX,3CFFH ; Clean up the flags for our IRET by | ||
| 383 | MOV WORD PTR SS:[BP+SP_FL],AX ; setting IOPL to 3 | ||
| 384 | |||
| 385 | ; Replace the interruptee's CS:IP with the CS:IP of the interrupt vector. When | ||
| 386 | ; we IRET back to the V86 task control will go to the interrupt routine. | ||
| 387 | |||
| 388 | MOV SI,SS:[BP+SP_EX] ; Get the interrupt vector offset | ||
| 389 | LODSW ; Get the IP of the interrupt vector | ||
| 390 | MOV WORD PTR SS:[BP+SP_IP],AX ; Replace the user's IP | ||
| 391 | LODSW ; Get the CS of the interrupt vector | ||
| 392 | MOV WORD PTR SS:[BP+SP_CS],AX ; Replace the user's CS | ||
| 393 | |||
| 394 | DATAOV | ||
| 395 | POP SI ; Restore ESI from off our stack | ||
| 396 | DATAOV | ||
| 397 | POP DI ; Restore EDI | ||
| 398 | DATAOV | ||
| 399 | POP AX ; Restore EAX | ||
| 400 | POP BP ; Restore BP | ||
| 401 | ADD SP,(SP_IP-SP_EX) ; Step SP past the interrupt vector | ||
| 402 | ; offset | ||
| 403 | DATAOV | ||
| 404 | IRET ; Give control back to the interruptee | ||
| 405 | |||
| 406 | PAGE | ||
| 407 | |||
| 408 | ; Build a talbe of the offsets of all the interrupt entry points. This table | ||
| 409 | ; is used as input to the procedure that builds the IDT. | ||
| 410 | |||
| 411 | SIDT_OFFSETS LABEL WORD | ||
| 412 | |||
| 413 | IRP V,<00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F> | ||
| 414 | DW OFFSET VEC&V | ||
| 415 | ENDM | ||
| 416 | IRP V,<10,11,12,13,14,15,16,17,18,19,1A,1B,1C,1D,1E,1F> | ||
| 417 | DW OFFSET VEC&V | ||
| 418 | ENDM | ||
| 419 | IRP V,<20,21,22,23,24,25,26,27,28,29,2A,2B,2C,2D,2E,2F> | ||
| 420 | DW OFFSET VEC&V | ||
| 421 | ENDM | ||
| 422 | IRP V,<30,31,32,33,34,35,36,37,38,39,3A,3B,3C,3D,3E,3F> | ||
| 423 | DW OFFSET VEC&V | ||
| 424 | ENDM | ||
| 425 | IRP V,<40,41,42,43,44,45,46,47,48,49,4A,4B,4C,4D,4E,4F> | ||
| 426 | DW OFFSET VEC&V | ||
| 427 | ENDM | ||
| 428 | IRP V,<50,51,52,53,54,55,56,57,58,59,5A,5B,5C,5D,5E,5F> | ||
| 429 | DW OFFSET VEC&V | ||
| 430 | ENDM | ||
| 431 | IRP V,<60,61,62,63,64,65,66,67,68,69,6A,6B,6C,6D,6E,6F> | ||
| 432 | DW OFFSET VEC&V | ||
| 433 | ENDM | ||
| 434 | IRP V,<70,71,72,73,74,75,76,77,78,79,7A,7B,7C,7D,7E,7F> | ||
| 435 | DW OFFSET VEC&V | ||
| 436 | ENDM | ||
| 437 | IRP V,<80,81,82,83,84,85,86,87,88,89,8A,8B,8C,8D,8E,8F> | ||
| 438 | DW OFFSET VEC&V | ||
| 439 | ENDM | ||
| 440 | IRP V,<90,91,92,93,94,95,96,97,98,99,9A,9B,9C,9D,9E,9F> | ||
| 441 | DW OFFSET VEC&V | ||
| 442 | ENDM | ||
| 443 | IRP V,<A0,A1,A2,A3,A4,A5,A6,A7,A8,A9,AA,AB,AC,AD,AE,AF> | ||
| 444 | DW OFFSET VEC&V | ||
| 445 | ENDM | ||
| 446 | IRP V,<B0,B1,B2,B3,B4,B5,B6,B7,B8,B9,BA,BB,BC,BD,BE,BF> | ||
| 447 | DW OFFSET VEC&V | ||
| 448 | ENDM | ||
| 449 | IRP V,<C0,C1,C2,C3,C4,C5,C6,C7,C8,C9,CA,CB,CC,CD,CE,CF> | ||
| 450 | DW OFFSET VEC&V | ||
| 451 | ENDM | ||
| 452 | IRP V,<D0,D1,D2,D3,D4,D5,D6,D7,D8,D9,DA,DB,DC,DD,DE,DF> | ||
| 453 | DW OFFSET VEC&V | ||
| 454 | ENDM | ||
| 455 | IRP V,<E0,E1,E2,E3,E4,E5,E6,E7,E8,E9,EA,EB,EC,ED,EE,EF> | ||
| 456 | DW OFFSET VEC&V | ||
| 457 | ENDM | ||
| 458 | IRP V,<F0,F1,F2,F3,F4,F5,F6,F7,F8,F9,FA,FB,FC,FD,FE,FF> | ||
| 459 | DW OFFSET VEC&V | ||
| 460 | ENDM | ||
| 461 | PAGE | ||
| 462 | SIDT_BLD: | ||
| 463 | |||
| 464 | ; Build the system IDT. The system IDT will contain 256 interrupt gates. | ||
| 465 | |||
| 466 | MOV AX,CS ; Set DS:SI to point to the table of | ||
| 467 | MOV DS,AX ; interrupt entry points | ||
| 468 | MOV SI,OFFSET SIDT_OFFSETS | ||
| 469 | |||
| 470 | MOV DI,SIDT_LOC ; Set ES:DI to point to the beginning | ||
| 471 | ; of the IDT | ||
| 472 | MOV BX,SYS_PATCH_CS ; Load BX with the selector for the | ||
| 473 | ; segment of the interrupt routines. | ||
| 474 | ; It's our code segment. | ||
| 475 | |||
| 476 | ; DX contains the second highest word of the interrupt descriptor. | ||
| 477 | |||
| 478 | MOV DH,0EEH ; Set DPL to 3 to reduce the number of | ||
| 479 | ; exceptions | ||
| 480 | MOV DL,0 ; The word count field is unused | ||
| 481 | |||
| 482 | MOV CX,256 ; 256 interrupt gates | ||
| 483 | |||
| 484 | CALL BLD_IDT ; Go build the IDT | ||
| 485 | |||
| 486 | RET ; Return to INDEINI | ||
| 487 | |||
| 488 | PAGE | ||
| 489 | |||
| 490 | ; This loop builds descriptors in the IDT. DS:SI points to a table of 16 bit | ||
| 491 | ; offsets for the interrupt entry points. ES:DI points to the start of the IDT. | ||
| 492 | ; BX contains the segment selector of the interrupt entry points. DX contains | ||
| 493 | ; the DPL of the interrupt gates. | ||
| 494 | |||
| 495 | BLD_IDT: | ||
| 496 | MOVSW ; Get an interrupt routine entry point | ||
| 497 | ; and put it in the offset field | ||
| 498 | MOV AX,BX ; Get the segment selector | ||
| 499 | STOSW ; and put it in the selector field | ||
| 500 | MOV AX,DX ; Get the interrupt gate DPL | ||
| 501 | STOSW ; and put it in the access rights field | ||
| 502 | MOV AX,0 ; Zero out the reserved portions | ||
| 503 | STOSW | ||
| 504 | LOOP BLD_IDT ; Repeat for all interrupt vectors | ||
| 505 | |||
| 506 | RET | ||
| 507 | |||
| 508 | SIDTBLD ENDP | ||
| 509 | |||
| 510 | PROG ENDS | ||
| 511 | |||
| 512 | END | ||