1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
|
const std = @import("std");
const build_options = @import("build_options");
const debug = std.debug;
const mem = std.mem;
const testing = std.testing;
const c = @cImport({
@cInclude("sqlite3.h");
});
usingnamespace @import("query.zig");
usingnamespace @import("error.zig");
const logger = std.log.scoped(.sqlite);
/// ThreadingMode controls the threading mode used by SQLite.
///
/// See https://sqlite.org/threadsafe.html
pub const ThreadingMode = enum {
/// SingleThread makes SQLite unsafe to use with more than a single thread at once.
SingleThread,
/// MultiThread makes SQLite safe to use with multiple threads at once provided that
/// a single database connection is not by more than a single thread at once.
MultiThread,
/// Serialized makes SQLite safe to use with multiple threads at once with no restriction.
Serialized,
};
pub const InitOptions = struct {
/// mode controls how the database is opened.
///
/// Defaults to a in-memory database.
mode: Db.Mode = .Memory,
/// open_flags controls the flags used when opening a database.
///
/// Defaults to a read only database.
open_flags: Db.OpenFlags = .{},
/// threading_mode controls the threading mode used by SQLite.
///
/// Defaults to Serialized.
threading_mode: ThreadingMode = .Serialized,
};
/// DetailedError contains a SQLite error code and error message.
pub const DetailedError = struct {
code: usize,
message: []const u8,
};
fn isThreadSafe() bool {
return c.sqlite3_threadsafe() > 0;
}
fn getDetailedErrorFromResultCode(code: c_int) DetailedError {
return .{
.code = @intCast(usize, code),
.message = blk: {
const msg = c.sqlite3_errstr(code);
break :blk mem.spanZ(msg);
},
};
}
fn getLastDetailedErrorFromDb(db: *c.sqlite3) DetailedError {
return .{
.code = @intCast(usize, c.sqlite3_extended_errcode(db)),
.message = blk: {
const msg = c.sqlite3_errmsg(db);
break :blk mem.spanZ(msg);
},
};
}
/// Db is a wrapper around a SQLite database, providing high-level functions for executing queries.
/// A Db can be opened with a file database or a in-memory database:
///
/// // File database
/// var db: sqlite.Db = undefined;
/// try db.init(.{ .mode = { .File = "/tmp/data.db" } });
///
/// // In memory database
/// var db: sqlite.Db = undefined;
/// try db.init(.{ .mode = { .Memory = {} } });
///
pub const Db = struct {
const Self = @This();
db: *c.sqlite3,
/// Mode determines how the database will be opened.
pub const Mode = union(enum) {
File: [:0]const u8,
Memory,
};
/// OpenFlags contains various flags used when opening a SQLite databse.
pub const OpenFlags = struct {
write: bool = false,
create: bool = false,
};
/// init creates a database with the provided `mode`.
pub fn init(self: *Self, options: InitOptions) !void {
// Validate the threading mode
if (options.threading_mode != .SingleThread and !isThreadSafe()) {
return error.CannotUseSingleThreadedSQLite;
}
// Compute the flags
var flags: c_int = 0;
flags |= @as(c_int, if (options.open_flags.write) c.SQLITE_OPEN_READWRITE else c.SQLITE_OPEN_READONLY);
if (options.open_flags.create) {
flags |= c.SQLITE_OPEN_CREATE;
}
switch (options.threading_mode) {
.MultiThread => flags |= c.SQLITE_OPEN_NOMUTEX,
.Serialized => flags |= c.SQLITE_OPEN_FULLMUTEX,
else => {},
}
switch (options.mode) {
.File => |path| {
logger.info("opening {s}", .{path});
var db: ?*c.sqlite3 = undefined;
const result = c.sqlite3_open_v2(path, &db, flags, null);
if (result != c.SQLITE_OK or db == null) {
return errorFromResultCode(result);
}
self.db = db.?;
},
.Memory => {
logger.info("opening in memory", .{});
flags |= c.SQLITE_OPEN_MEMORY;
var db: ?*c.sqlite3 = undefined;
const result = c.sqlite3_open_v2(":memory:", &db, flags, null);
if (result != c.SQLITE_OK or db == null) {
return errorFromResultCode(result);
}
self.db = db.?;
},
}
}
/// deinit closes the database.
pub fn deinit(self: *Self) void {
_ = c.sqlite3_close(self.db);
}
// getDetailedError returns the detailed error for the last API call if it failed.
pub fn getDetailedError(self: *Self) DetailedError {
return getLastDetailedErrorFromDb(self.db);
}
fn getPragmaQuery(comptime buf: []u8, comptime name: []const u8, comptime arg: anytype) []const u8 {
return if (arg.len == 1) blk: {
break :blk try std.fmt.bufPrint(buf, "PRAGMA {s} = {s}", .{ name, arg[0] });
} else blk: {
break :blk try std.fmt.bufPrint(buf, "PRAGMA {s}", .{name});
};
}
/// pragmaAlloc is like `pragma` but can allocate memory.
///
/// Useful when the pragma command returns text, for example:
///
/// const journal_mode = try db.pragma([]const u8, allocator, .{}, "journal_mode", .{});
///
pub fn pragmaAlloc(self: *Self, comptime Type: type, allocator: *mem.Allocator, options: anytype, comptime name: []const u8, comptime arg: anytype) !?Type {
comptime var buf: [1024]u8 = undefined;
comptime var query = getPragmaQuery(&buf, name, arg);
var stmt = try self.prepare(query);
defer stmt.deinit();
return try stmt.oneAlloc(Type, allocator, options, .{});
}
/// pragma is a convenience function to use the PRAGMA statement.
///
/// Here is how to set a pragma value:
///
/// try db.pragma(void, "foreign_keys", .{}, .{1});
///
/// Here is how to query a pragama value:
///
/// const journal_mode = try db.pragma([128:0]const u8, .{}, "journal_mode", .{});
///
/// The pragma name must be known at comptime.
///
/// This cannot allocate memory. If your pragma command returns text you must use an array or call `pragmaAlloc`.
pub fn pragma(self: *Self, comptime Type: type, options: anytype, comptime name: []const u8, arg: anytype) !?Type {
comptime var buf: [1024]u8 = undefined;
comptime var query = getPragmaQuery(&buf, name, arg);
var stmt = try self.prepare(query);
defer stmt.deinit();
return try stmt.one(Type, options, .{});
}
/// exec is a convenience function which prepares a statement and executes it directly.
pub fn exec(self: *Self, comptime query: []const u8, values: anytype) !void {
var stmt = try self.prepare(query);
defer stmt.deinit();
try stmt.exec(values);
}
/// one is a convenience function which prepares a statement and reads a single row from the result set.
pub fn one(self: *Self, comptime Type: type, comptime query: []const u8, options: anytype, values: anytype) !?Type {
var stmt = try self.prepare(query);
defer stmt.deinit();
return try stmt.one(Type, options, values);
}
/// oneAlloc is like `one` but can allocate memory.
pub fn oneAlloc(self: *Self, comptime Type: type, allocator: *mem.Allocator, comptime query: []const u8, options: anytype, values: anytype) !?Type {
var stmt = try self.prepare(query);
defer stmt.deinit();
return try stmt.oneAlloc(Type, allocator, options, values);
}
/// prepare prepares a statement for the `query` provided.
///
/// The query is analysed at comptime to search for bind markers.
/// prepare enforces having as much fields in the `values` tuple as there are bind markers.
///
/// Example usage:
///
/// var stmt = try db.prepare("INSERT INTO foo(id, name) VALUES(?, ?)");
/// defer stmt.deinit();
///
/// The statement returned is only compatible with the number of bind markers in the input query.
/// This is done because we type check the bind parameters when executing the statement later.
///
pub fn prepare(self: *Self, comptime query: []const u8) !Statement(.{}, ParsedQuery.from(query)) {
@setEvalBranchQuota(10000);
const parsed_query = ParsedQuery.from(query);
return Statement(.{}, comptime parsed_query).prepare(self, 0);
}
/// rowsAffected returns the number of rows affected by the last statement executed.
pub fn rowsAffected(self: *Self) usize {
return @intCast(usize, c.sqlite3_changes(self.db));
}
};
/// Iterator allows iterating over a result set.
///
/// Each call to `next` returns the next row of the result set, or null if the result set is exhausted.
/// Each row will have the type `Type` so the columns returned in the result set must be compatible with this type.
///
/// Here is an example of how to use the iterator:
///
/// const User = struct {
/// name: Text,
/// age: u16,
/// };
///
/// var stmt = try db.prepare("SELECT name, age FROM user");
/// defer stmt.deinit();
///
/// var iter = try stmt.iterator(User, .{});
/// while (true) {
/// const row: User = (try iter.next(.{})) orelse break;
/// ...
/// }
///
/// The iterator _must not_ outlive the statement.
pub fn Iterator(comptime Type: type) type {
return struct {
const Self = @This();
const TypeInfo = @typeInfo(Type);
stmt: *c.sqlite3_stmt,
// next scans the next row using the prepared statement.
// If it returns null iterating is done.
//
// This cannot allocate memory. If you need to read TEXT or BLOB columns you need to use arrays or alternatively call nextAlloc.
pub fn next(self: *Self, options: anytype) !?Type {
var result = c.sqlite3_step(self.stmt);
if (result == c.SQLITE_DONE) {
return null;
}
if (result != c.SQLITE_ROW) {
return errorFromResultCode(result);
}
const columns = c.sqlite3_column_count(self.stmt);
switch (TypeInfo) {
.Int => {
debug.assert(columns == 1);
return try self.readInt(Type, 0);
},
.Float => {
debug.assert(columns == 1);
return try self.readFloat(Type, 0);
},
.Bool => {
debug.assert(columns == 1);
return try self.readBool(0);
},
.Void => {
debug.assert(columns == 1);
},
.Array => {
debug.assert(columns == 1);
return try self.readArray(Type, 0);
},
.Struct => {
std.debug.assert(columns == TypeInfo.Struct.fields.len);
return try self.readStruct(.{});
},
else => @compileError("cannot read into type " ++ @typeName(Type) ++ " ; if dynamic memory allocation is required use nextAlloc"),
}
}
// nextAlloc is like `next` but can allocate memory.
pub fn nextAlloc(self: *Self, allocator: *mem.Allocator, options: anytype) !?Type {
var result = c.sqlite3_step(self.stmt);
if (result == c.SQLITE_DONE) {
return null;
}
if (result != c.SQLITE_ROW) {
return errorFromResultCode(result);
}
const columns = c.sqlite3_column_count(self.stmt);
switch (Type) {
[]const u8, []u8 => {
debug.assert(columns == 1);
return try self.readBytes(Type, allocator, 0, .Text);
},
Blob => {
debug.assert(columns == 1);
return try self.readBytes(Blob, allocator, 0, .Blob);
},
Text => {
debug.assert(columns == 1);
return try self.readBytes(Text, allocator, 0, .Text);
},
else => {},
}
switch (TypeInfo) {
.Int => {
debug.assert(columns == 1);
return try self.readInt(Type, 0);
},
.Float => {
debug.assert(columns == 1);
return try self.readFloat(Type, 0);
},
.Bool => {
debug.assert(columns == 1);
return try self.readBool(0);
},
.Void => {
debug.assert(columns == 1);
},
.Array => {
debug.assert(columns == 1);
return try self.readArray(Type, 0);
},
.Pointer => {
debug.assert(columns == 1);
return try self.readPointer(Type, allocator, 0);
},
.Struct => {
std.debug.assert(columns == TypeInfo.Struct.fields.len);
return try self.readStruct(.{
.allocator = allocator,
});
},
else => @compileError("cannot read into type " ++ @typeName(Type)),
}
}
// readArray reads a sqlite BLOB or TEXT column into an array of u8.
//
// We also require the array to have a sentinel because otherwise we have no way
// of communicating the end of the data to the caller.
//
// If the array is too small for the data an error will be returned.
fn readArray(self: *Self, comptime ArrayType: type, _i: usize) error{ArrayTooSmall}!ArrayType {
const i = @intCast(c_int, _i);
const type_info = @typeInfo(ArrayType);
var ret: ArrayType = undefined;
switch (type_info) {
.Array => |arr| {
comptime if (arr.sentinel == null) {
@compileError("cannot populate array of " ++ @typeName(arr.child) ++ ", arrays must have a sentinel");
};
switch (arr.child) {
u8 => {
const data = c.sqlite3_column_blob(self.stmt, i);
const size = @intCast(usize, c.sqlite3_column_bytes(self.stmt, i));
if (size >= @as(usize, arr.len)) return error.ArrayTooSmall;
const ptr = @ptrCast([*c]const u8, data)[0..size];
mem.copy(u8, ret[0..], ptr);
ret[size] = arr.sentinel.?;
},
else => @compileError("cannot populate field " ++ field.name ++ " of type array of " ++ @typeName(arr.child)),
}
},
else => @compileError("cannot populate field " ++ field.name ++ " of type array of " ++ @typeName(arr.child)),
}
return ret;
}
// readInt reads a sqlite INTEGER column into an integer.
fn readInt(self: *Self, comptime IntType: type, i: usize) !IntType {
const n = c.sqlite3_column_int64(self.stmt, @intCast(c_int, i));
return @intCast(IntType, n);
}
// readFloat reads a sqlite REAL column into a float.
fn readFloat(self: *Self, comptime FloatType: type, i: usize) !FloatType {
const d = c.sqlite3_column_double(self.stmt, @intCast(c_int, i));
return @floatCast(FloatType, d);
}
// readFloat reads a sqlite INTEGER column into a bool (true is anything > 0, false is anything <= 0).
fn readBool(self: *Self, i: usize) !bool {
const d = c.sqlite3_column_int64(self.stmt, @intCast(c_int, i));
return d > 0;
}
const ReadBytesMode = enum {
Blob,
Text,
};
// dupeWithSentinel is like dupe/dupeZ but allows for any sentinel value.
fn dupeWithSentinel(comptime SliceType: type, allocator: *mem.Allocator, data: []const u8) !SliceType {
const type_info = @typeInfo(SliceType);
switch (type_info) {
.Pointer => |ptr_info| {
if (ptr_info.sentinel) |sentinel| {
const slice = try allocator.alloc(u8, data.len + 1);
mem.copy(u8, slice, data);
slice[data.len] = sentinel;
return slice[0..data.len :sentinel];
} else {
return try allocator.dupe(u8, data);
}
},
else => @compileError("cannot dupe type " ++ @typeName(SliceType)),
}
}
// readBytes reads a sqlite BLOB or TEXT column.
//
// The mode controls which sqlite function is used to retrieve the data:
// * .Blob uses sqlite3_column_blob
// * .Text uses sqlite3_column_text
//
// When using .Blob you can only read into either []const u8, []u8 or Blob.
// When using .Text you can only read into either []const u8, []u8 or Text.
//
// The options must contain an `allocator` field which will be used to create a copy of the data.
fn readBytes(self: *Self, comptime BytesType: type, allocator: *mem.Allocator, _i: usize, comptime mode: ReadBytesMode) !BytesType {
const i = @intCast(c_int, _i);
const type_info = @typeInfo(BytesType);
var ret: BytesType = switch (BytesType) {
Text, Blob => .{ .data = "" },
else => try dupeWithSentinel(BytesType, allocator, ""),
};
switch (mode) {
.Blob => {
const data = c.sqlite3_column_blob(self.stmt, i);
if (data == null) {
return switch (BytesType) {
Text, Blob => .{ .data = try allocator.dupe(u8, "") },
else => try dupeWithSentinel(BytesType, allocator, ""),
};
}
const size = @intCast(usize, c.sqlite3_column_bytes(self.stmt, i));
const ptr = @ptrCast([*c]const u8, data)[0..size];
if (BytesType == Blob) {
return Blob{ .data = try allocator.dupe(u8, ptr) };
}
return try dupeWithSentinel(BytesType, allocator, ptr);
},
.Text => {
const data = c.sqlite3_column_text(self.stmt, i);
if (data == null) {
return switch (BytesType) {
Text, Blob => .{ .data = try allocator.dupe(u8, "") },
else => try dupeWithSentinel(BytesType, allocator, ""),
};
}
const size = @intCast(usize, c.sqlite3_column_bytes(self.stmt, i));
const ptr = @ptrCast([*c]const u8, data)[0..size];
if (BytesType == Text) {
return Text{ .data = try allocator.dupe(u8, ptr) };
}
return try dupeWithSentinel(BytesType, allocator, ptr);
},
}
}
fn readPointer(self: *Self, comptime PointerType: type, allocator: *mem.Allocator, i: usize) !PointerType {
const type_info = @typeInfo(PointerType);
var ret: PointerType = undefined;
switch (type_info) {
.Pointer => |ptr| {
switch (ptr.size) {
.One => unreachable,
.Slice => switch (ptr.child) {
u8 => ret = try self.readBytes(PointerType, allocator, i, .Text),
else => @compileError("cannot read pointer of type " ++ @typeName(PointerType)),
},
else => @compileError("cannot read pointer of type " ++ @typeName(PointerType)),
}
},
else => @compileError("cannot read pointer of type " ++ @typeName(PointerType)),
}
return ret;
}
// readStruct reads an entire sqlite row into a struct.
//
// Each field correspond to a column; its position in the struct determines the column used for it.
// For example, given the following query:
//
// SELECT id, name, age FROM user
//
// The struct must have the following fields:
//
// struct {
// id: usize,
// name: []const u8,
// age: u16,
// }
//
// The field `id` will be associated with the column `id` and so on.
//
// This function relies on the fact that there are the same number of fields than columns and
// that the order is correct.
//
// TODO(vincent): add comptime checks for the fields/columns.
fn readStruct(self: *Self, options: anytype) !Type {
var value: Type = undefined;
inline for (@typeInfo(Type).Struct.fields) |field, _i| {
const i = @as(usize, _i);
const field_type_info = @typeInfo(field.field_type);
const ret = switch (field.field_type) {
Blob => try self.readBytes(Blob, options.allocator, i, .Blob),
Text => try self.readBytes(Text, options.allocator, i, .Text),
else => switch (field_type_info) {
.Int => try self.readInt(field.field_type, i),
.Float => try self.readFloat(field.field_type, i),
.Bool => try self.readBool(i),
.Void => {},
.Array => try self.readArray(field.field_type, i),
.Pointer => try self.readPointer(field.field_type, options.allocator, i),
else => @compileError("cannot populate field " ++ field.name ++ " of type " ++ @typeName(field.field_type)),
},
};
@field(value, field.name) = ret;
}
return value;
}
};
}
pub const StatementOptions = struct {};
/// Statement is a wrapper around a SQLite statement, providing high-level functions to execute
/// a statement and retrieve rows for SELECT queries.
///
/// The exec function can be used to execute a query which does not return rows:
///
/// var stmt = try db.prepare("UPDATE foo SET id = ? WHERE name = ?");
/// defer stmt.deinit();
///
/// try stmt.exec(.{
/// .id = 200,
/// .name = "José",
/// });
///
/// The one function can be used to select a single row:
///
/// var stmt = try db.prepare("SELECT name FROM foo WHERE id = ?");
/// defer stmt.deinit();
///
/// const name = try stmt.one([]const u8, .{}, .{ .id = 200 });
///
/// The all function can be used to select all rows:
///
/// var stmt = try db.prepare("SELECT id, name FROM foo");
/// defer stmt.deinit();
///
/// const Row = struct {
/// id: usize,
/// name: []const u8,
/// };
/// const rows = try stmt.all(Row, .{ .allocator = allocator }, .{});
///
/// Look at each function for more complete documentation.
///
pub fn Statement(comptime opts: StatementOptions, comptime query: ParsedQuery) type {
return struct {
const Self = @This();
stmt: *c.sqlite3_stmt,
fn prepare(db: *Db, flags: c_uint) !Self {
var stmt = blk: {
const real_query = query.getQuery();
var tmp: ?*c.sqlite3_stmt = undefined;
const result = c.sqlite3_prepare_v3(
db.db,
real_query.ptr,
@intCast(c_int, real_query.len),
flags,
&tmp,
null,
);
if (result != c.SQLITE_OK) {
return errorFromResultCode(result);
}
break :blk tmp.?;
};
return Self{
.stmt = stmt,
};
}
/// deinit releases the prepared statement.
///
/// After a call to `deinit` the statement must not be used.
pub fn deinit(self: *Self) void {
const result = c.sqlite3_finalize(self.stmt);
if (result != c.SQLITE_OK) {
logger.err("unable to finalize prepared statement, result: {}", .{result});
}
}
/// reset resets the prepared statement to make it reusable.
pub fn reset(self: *Self) void {
const result = c.sqlite3_clear_bindings(self.stmt);
if (result != c.SQLITE_OK) {
logger.err("unable to clear prepared statement bindings, result: {}", .{result});
}
const result2 = c.sqlite3_reset(self.stmt);
if (result2 != c.SQLITE_OK) {
logger.err("unable to reset prepared statement, result: {}", .{result2});
}
}
/// bind binds values to every bind marker in the prepared statement.
///
/// The `values` variable must be a struct where each field has the type of the corresponding bind marker.
/// For example this query:
/// SELECT 1 FROM user WHERE name = ?{text} AND age < ?{u32}
///
/// Has two bind markers, so `values` must have at least the following fields:
/// struct {
/// name: Text,
/// age: u32
/// }
///
/// The types are checked at comptime.
fn bind(self: *Self, values: anytype) void {
const StructType = @TypeOf(values);
const StructTypeInfo = @typeInfo(StructType).Struct;
if (comptime query.nb_bind_markers != StructTypeInfo.fields.len) {
@compileError("number of bind markers not equal to number of fields");
}
inline for (StructTypeInfo.fields) |struct_field, _i| {
const bind_marker = query.bind_markers[_i];
switch (bind_marker) {
.Typed => |typ| if (struct_field.field_type != typ) {
@compileError("value type " ++ @typeName(struct_field.field_type) ++ " is not the bind marker type " ++ @typeName(typ));
},
.Untyped => {},
}
const field_value = @field(values, struct_field.name);
self.bindField(struct_field.field_type, struct_field.name, _i, field_value);
}
}
fn bindField(self: *Self, comptime FieldType: type, comptime field_name: []const u8, i: c_int, field: FieldType) void {
const field_type_info = @typeInfo(FieldType);
const column = i + 1;
switch (FieldType) {
Text => _ = c.sqlite3_bind_text(self.stmt, column, field.data.ptr, @intCast(c_int, field.data.len), null),
Blob => _ = c.sqlite3_bind_blob(self.stmt, column, field.data.ptr, @intCast(c_int, field.data.len), null),
else => switch (field_type_info) {
.Int, .ComptimeInt => _ = c.sqlite3_bind_int64(self.stmt, column, @intCast(c_longlong, field)),
.Float, .ComptimeFloat => _ = c.sqlite3_bind_double(self.stmt, column, field),
.Bool => _ = c.sqlite3_bind_int64(self.stmt, column, @boolToInt(field)),
.Pointer => |ptr| switch (ptr.size) {
.One => self.bindField(ptr.child, field_name, i, field.*),
.Slice => switch (ptr.child) {
u8 => {
_ = c.sqlite3_bind_text(self.stmt, column, field.ptr, @intCast(c_int, field.len), null);
},
else => @compileError("cannot bind field " ++ field_name ++ " of type " ++ @typeName(FieldType)),
},
else => @compileError("cannot bind field " ++ field_name ++ " of type " ++ @typeName(FieldType)),
},
.Array => |arr| {
switch (arr.child) {
u8 => {
const data: []const u8 = field[0..field.len];
_ = c.sqlite3_bind_text(self.stmt, column, data.ptr, @intCast(c_int, data.len), null);
},
else => @compileError("cannot bind field " ++ field_name ++ " of type array of " ++ @typeName(arr.child)),
}
},
else => @compileError("cannot bind field " ++ field_name ++ " of type " ++ @typeName(FieldType)),
},
}
}
/// exec executes a statement which does not return data.
///
/// The `values` variable is used for the bind parameters. It must have as many fields as there are bind markers
/// in the input query string.
///
pub fn exec(self: *Self, values: anytype) !void {
self.bind(values);
const result = c.sqlite3_step(self.stmt);
switch (result) {
c.SQLITE_DONE => {},
c.SQLITE_BUSY => return errorFromResultCode(result),
else => std.debug.panic("invalid result {}", .{result}),
}
}
/// iterator returns an iterator to read data from the result set, one row at a time.
///
/// The data in the row is used to populate a value of the type `Type`.
/// This means that `Type` must have as many fields as is returned in the query
/// executed by this statement.
/// This also means that the type of each field must be compatible with the SQLite type.
///
/// Here is an example of how to use the iterator:
///
/// var iter = try stmt.iterator(usize, .{});
/// while (true) {
/// const row = (try iter.next(.{})) orelse break;
/// ...
/// }
///
/// The `values` tuple is used for the bind parameters. It must have as many fields as there are bind markers
/// in the input query string.
///
/// The iterator _must not_ outlive the statement.
pub fn iterator(self: *Self, comptime Type: type, values: anytype) !Iterator(Type) {
self.bind(values);
var res: Iterator(Type) = undefined;
res.stmt = self.stmt;
return res;
}
/// one reads a single row from the result set of this statement.
///
/// The data in the row is used to populate a value of the type `Type`.
/// This means that `Type` must have as many fields as is returned in the query
/// executed by this statement.
/// This also means that the type of each field must be compatible with the SQLite type.
///
/// Here is an example of how to use an anonymous struct type:
///
/// const row = try stmt.one(
/// struct {
/// id: usize,
/// name: [400]u8,
/// age: usize,
/// },
/// .{},
/// .{ .foo = "bar", .age = 500 },
/// );
///
/// The `options` tuple is used to provide additional state in some cases.
///
/// The `values` tuple is used for the bind parameters. It must have as many fields as there are bind markers
/// in the input query string.
///
/// This cannot allocate memory. If you need to read TEXT or BLOB columns you need to use arrays or alternatively call `oneAlloc`.
pub fn one(self: *Self, comptime Type: type, options: anytype, values: anytype) !?Type {
if (!comptime std.meta.trait.is(.Struct)(@TypeOf(options))) {
@compileError("options passed to iterator must be a struct");
}
var iter = try self.iterator(Type, values);
const row = (try iter.next(options)) orelse return null;
return row;
}
/// oneAlloc is like `one` but can allocate memory.
pub fn oneAlloc(self: *Self, comptime Type: type, allocator: *mem.Allocator, options: anytype, values: anytype) !?Type {
if (!comptime std.meta.trait.is(.Struct)(@TypeOf(options))) {
@compileError("options passed to iterator must be a struct");
}
var iter = try self.iterator(Type, values);
const row = (try iter.nextAlloc(allocator, options)) orelse return null;
return row;
}
/// all reads all rows from the result set of this statement.
///
/// The data in each row is used to populate a value of the type `Type`.
/// This means that `Type` must have as many fields as is returned in the query
/// executed by this statement.
/// This also means that the type of each field must be compatible with the SQLite type.
///
/// Here is an example of how to use an anonymous struct type:
///
/// const rows = try stmt.all(
/// struct {
/// id: usize,
/// name: []const u8,
/// age: usize,
/// },
/// allocator,
/// .{},
/// .{ .foo = "bar", .age = 500 },
/// );
///
/// The `options` tuple is used to provide additional state in some cases.
///
/// The `values` tuple is used for the bind parameters. It must have as many fields as there are bind markers
/// in the input query string.
///
/// Note that this allocates all rows into a single slice: if you read a lot of data this can use a lot of memory.
pub fn all(self: *Self, comptime Type: type, allocator: *mem.Allocator, options: anytype, values: anytype) ![]Type {
if (!comptime std.meta.trait.is(.Struct)(@TypeOf(options))) {
@compileError("options passed to iterator must be a struct");
}
var iter = try self.iterator(Type, values);
var rows = std.ArrayList(Type).init(allocator);
while (true) {
const row = (try iter.nextAlloc(allocator, options)) orelse break;
try rows.append(row);
}
return rows.toOwnedSlice();
}
};
}
const TestUser = struct {
id: usize,
name: []const u8,
age: usize,
weight: f32,
};
const test_users = &[_]TestUser{
.{ .id = 20, .name = "Vincent", .age = 33, .weight = 85.4 },
.{ .id = 40, .name = "Julien", .age = 35, .weight = 100.3 },
.{ .id = 60, .name = "José", .age = 40, .weight = 240.2 },
};
fn addTestData(db: *Db) !void {
const AllDDL = &[_][]const u8{
\\CREATE TABLE user(
\\ id integer PRIMARY KEY,
\\ name text,
\\ age integer,
\\ weight real
\\)
,
\\CREATE TABLE article(
\\ id integer PRIMARY KEY,
\\ author_id integer,
\\ data text,
\\ is_published integer,
\\ FOREIGN KEY(author_id) REFERENCES user(id)
\\)
};
// Create the tables
inline for (AllDDL) |ddl| {
try db.exec(ddl, .{});
}
for (test_users) |user| {
try db.exec("INSERT INTO user(id, name, age, weight) VALUES(?{usize}, ?{[]const u8}, ?{usize}, ?{f32})", user);
const rows_inserted = db.rowsAffected();
testing.expectEqual(@as(usize, 1), rows_inserted);
}
}
test "sqlite: db init" {
var db: Db = undefined;
try db.init(initOptions());
try db.init(.{});
}
test "sqlite: db pragma" {
var arena = std.heap.ArenaAllocator.init(testing.allocator);
defer arena.deinit();
var db: Db = undefined;
try db.init(initOptions());
const foreign_keys = try db.pragma(usize, .{}, "foreign_keys", .{});
testing.expect(foreign_keys != null);
testing.expectEqual(@as(usize, 0), foreign_keys.?);
const arg = .{"wal"};
if (build_options.in_memory) {
{
const journal_mode = try db.pragma([128:0]u8, .{}, "journal_mode", arg);
testing.expect(journal_mode != null);
testing.expectEqualStrings("memory", mem.spanZ(&journal_mode.?));
}
{
const journal_mode = try db.pragmaAlloc([]const u8, &arena.allocator, .{}, "journal_mode", arg);
testing.expect(journal_mode != null);
testing.expectEqualStrings("memory", journal_mode.?);
}
} else {
{
const journal_mode = try db.pragma([128:0]u8, .{}, "journal_mode", arg);
testing.expect(journal_mode != null);
testing.expectEqualStrings("wal", mem.spanZ(&journal_mode.?));
}
{
const journal_mode = try db.pragmaAlloc([]const u8, &arena.allocator, .{}, "journal_mode", arg);
testing.expect(journal_mode != null);
testing.expectEqualStrings("wal", journal_mode.?);
}
}
}
test "sqlite: statement exec" {
var db: Db = undefined;
try db.init(initOptions());
try addTestData(&db);
// Test with a Blob struct
{
try db.exec("INSERT INTO user(id, name, age) VALUES(?{usize}, ?{blob}, ?{u32})", .{
.id = @as(usize, 200),
.name = Blob{ .data = "hello" },
.age = @as(u32, 20),
});
}
// Test with a Text struct
{
try db.exec("INSERT INTO user(id, name, age) VALUES(?{usize}, ?{text}, ?{u32})", .{
.id = @as(usize, 201),
.name = Text{ .data = "hello" },
.age = @as(u32, 20),
});
}
}
test "sqlite: read a single user into a struct" {
var arena = std.heap.ArenaAllocator.init(testing.allocator);
defer arena.deinit();
var db: Db = undefined;
try db.init(initOptions());
try addTestData(&db);
var stmt = try db.prepare("SELECT id, name, age, weight FROM user WHERE id = ?{usize}");
defer stmt.deinit();
var rows = try stmt.all(TestUser, &arena.allocator, .{}, .{
.id = @as(usize, 20),
});
for (rows) |row| {
testing.expectEqual(test_users[0].id, row.id);
testing.expectEqualStrings(test_users[0].name, row.name);
testing.expectEqual(test_users[0].age, row.age);
}
// Read a row with db.one()
{
var row = try db.one(
struct {
id: usize,
name: [128:0]u8,
age: usize,
},
"SELECT id, name, age FROM user WHERE id = ?{usize}",
.{},
.{@as(usize, 20)},
);
testing.expect(row != null);
const exp = test_users[0];
testing.expectEqual(exp.id, row.?.id);
testing.expectEqualStrings(exp.name, mem.spanZ(&row.?.name));
testing.expectEqual(exp.age, row.?.age);
}
// Read a row with db.oneAlloc()
{
var row = try db.oneAlloc(
struct {
id: usize,
name: Text,
age: usize,
},
&arena.allocator,
"SELECT id, name, age FROM user WHERE id = ?{usize}",
.{},
.{@as(usize, 20)},
);
testing.expect(row != null);
const exp = test_users[0];
testing.expectEqual(exp.id, row.?.id);
testing.expectEqualStrings(exp.name, row.?.name.data);
testing.expectEqual(exp.age, row.?.age);
}
}
test "sqlite: read all users into a struct" {
var arena = std.heap.ArenaAllocator.init(testing.allocator);
defer arena.deinit();
var db: Db = undefined;
try db.init(initOptions());
try addTestData(&db);
var stmt = try db.prepare("SELECT id, name, age, weight FROM user");
defer stmt.deinit();
var rows = try stmt.all(TestUser, &arena.allocator, .{}, .{});
testing.expectEqual(@as(usize, 3), rows.len);
for (rows) |row, i| {
const exp = test_users[i];
testing.expectEqual(exp.id, row.id);
testing.expectEqualStrings(exp.name, row.name);
testing.expectEqual(exp.age, row.age);
testing.expectEqual(exp.weight, row.weight);
}
}
test "sqlite: read in an anonymous struct" {
var arena = std.heap.ArenaAllocator.init(testing.allocator);
defer arena.deinit();
var db: Db = undefined;
try db.init(initOptions());
try addTestData(&db);
var stmt = try db.prepare("SELECT id, name, name, age, id, weight FROM user WHERE id = ?{usize}");
defer stmt.deinit();
var row = try stmt.oneAlloc(
struct {
id: usize,
name: []const u8,
name_2: [200:0xAD]u8,
age: usize,
is_id: bool,
weight: f64,
},
&arena.allocator,
.{},
.{ .id = @as(usize, 20) },
);
testing.expect(row != null);
const exp = test_users[0];
testing.expectEqual(exp.id, row.?.id);
testing.expectEqualStrings(exp.name, row.?.name);
testing.expectEqualStrings(exp.name, mem.spanZ(&row.?.name_2));
testing.expectEqual(exp.age, row.?.age);
testing.expect(row.?.is_id);
testing.expectEqual(exp.weight, @floatCast(f32, row.?.weight));
}
test "sqlite: read in a Text struct" {
var arena = std.heap.ArenaAllocator.init(testing.allocator);
defer arena.deinit();
var db: Db = undefined;
try db.init(initOptions());
try addTestData(&db);
var stmt = try db.prepare("SELECT id, name, age FROM user WHERE id = ?{usize}");
defer stmt.deinit();
var row = try stmt.oneAlloc(
struct {
id: usize,
name: Text,
age: usize,
},
&arena.allocator,
.{},
.{@as(usize, 20)},
);
testing.expect(row != null);
const exp = test_users[0];
testing.expectEqual(exp.id, row.?.id);
testing.expectEqualStrings(exp.name, row.?.name.data);
testing.expectEqual(exp.age, row.?.age);
}
test "sqlite: read a single text value" {
var arena = std.heap.ArenaAllocator.init(testing.allocator);
defer arena.deinit();
var db: Db = undefined;
try db.init(initOptions());
try addTestData(&db);
const types = &[_]type{
// Slices
[]const u8,
[]u8,
[:0]const u8,
[:0]u8,
[:0xAD]const u8,
[:0xAD]u8,
// Array
[8:0]u8,
[8:0xAD]u8,
// Specific text or blob
Text,
Blob,
};
inline for (types) |typ| {
const query = "SELECT name FROM user WHERE id = ?{usize}";
var stmt: Statement(.{}, ParsedQuery.from(query)) = try db.prepare(query);
defer stmt.deinit();
const name = try stmt.oneAlloc(typ, &arena.allocator, .{}, .{
.id = @as(usize, 20),
});
testing.expect(name != null);
switch (typ) {
Text, Blob => {
testing.expectEqualStrings("Vincent", name.?.data);
},
else => {
const span = blk: {
const type_info = @typeInfo(typ);
break :blk switch (type_info) {
.Pointer => name.?,
.Array => mem.spanZ(&(name.?)),
else => @compileError("invalid type " ++ @typeName(typ)),
};
};
testing.expectEqualStrings("Vincent", span);
},
}
}
}
test "sqlite: read a single integer value" {
var db: Db = undefined;
try db.init(initOptions());
try addTestData(&db);
const types = &[_]type{
u8,
u16,
u32,
u64,
u128,
usize,
f16,
f32,
f64,
f128,
};
inline for (types) |typ| {
const query = "SELECT age FROM user WHERE id = ?{usize}";
@setEvalBranchQuota(5000);
var stmt: Statement(.{}, ParsedQuery.from(query)) = try db.prepare(query);
defer stmt.deinit();
var age = try stmt.one(typ, .{}, .{
.id = @as(usize, 20),
});
testing.expect(age != null);
testing.expectEqual(@as(typ, 33), age.?);
}
}
test "sqlite: read a single value into void" {
var db: Db = undefined;
try db.init(initOptions());
try addTestData(&db);
const query = "SELECT age FROM user WHERE id = ?{usize}";
var stmt: Statement(.{}, ParsedQuery.from(query)) = try db.prepare(query);
defer stmt.deinit();
_ = try stmt.one(void, .{}, .{
.id = @as(usize, 20),
});
}
test "sqlite: read a single value into bool" {
var db: Db = undefined;
try db.init(initOptions());
try addTestData(&db);
const query = "SELECT id FROM user WHERE id = ?{usize}";
var stmt: Statement(.{}, ParsedQuery.from(query)) = try db.prepare(query);
defer stmt.deinit();
const b = try stmt.one(bool, .{}, .{
.id = @as(usize, 20),
});
testing.expect(b != null);
testing.expect(b.?);
}
test "sqlite: insert bool and bind bool" {
var db: Db = undefined;
try db.init(initOptions());
try addTestData(&db);
try db.exec("INSERT INTO article(id, author_id, is_published) VALUES(?{usize}, ?{usize}, ?{bool})", .{
.id = @as(usize, 1),
.author_id = @as(usize, 20),
.is_published = true,
});
const query = "SELECT id FROM article WHERE is_published = ?{bool}";
var stmt: Statement(.{}, ParsedQuery.from(query)) = try db.prepare(query);
defer stmt.deinit();
const b = try stmt.one(bool, .{}, .{
.is_published = true,
});
testing.expect(b != null);
testing.expect(b.?);
}
test "sqlite: bind string literal" {
var db: Db = undefined;
try db.init(initOptions());
try addTestData(&db);
try db.exec("INSERT INTO article(id, data) VALUES(?, ?)", .{
@as(usize, 10),
"foobar",
});
const query = "SELECT id FROM article WHERE data = ?";
var stmt = try db.prepare(query);
defer stmt.deinit();
const b = try stmt.one(usize, .{}, .{"foobar"});
testing.expect(b != null);
testing.expectEqual(@as(usize, 10), b.?);
}
test "sqlite: bind pointer" {
var arena = std.heap.ArenaAllocator.init(testing.allocator);
defer arena.deinit();
var db: Db = undefined;
try db.init(initOptions());
try addTestData(&db);
const query = "SELECT name FROM user WHERE id = ?";
var stmt = try db.prepare(query);
defer stmt.deinit();
for (test_users) |test_user, i| {
stmt.reset();
const name = try stmt.oneAlloc([]const u8, &arena.allocator, .{}, .{&test_user.id});
testing.expect(name != null);
testing.expectEqualStrings(test_users[i].name, name.?);
}
}
test "sqlite: statement reset" {
var db: Db = undefined;
try db.init(initOptions());
try addTestData(&db);
// Add data
var stmt = try db.prepare("INSERT INTO user(id, name, age, weight) VALUES(?{usize}, ?{[]const u8}, ?{usize}, ?{f32})");
defer stmt.deinit();
const users = &[_]TestUser{
.{ .id = 200, .name = "Vincent", .age = 33, .weight = 10.0 },
.{ .id = 400, .name = "Julien", .age = 35, .weight = 12.0 },
.{ .id = 600, .name = "José", .age = 40, .weight = 14.0 },
};
for (users) |user| {
stmt.reset();
try stmt.exec(user);
const rows_inserted = db.rowsAffected();
testing.expectEqual(@as(usize, 1), rows_inserted);
}
}
test "sqlite: statement iterator" {
var arena = std.heap.ArenaAllocator.init(testing.allocator);
defer arena.deinit();
var allocator = &arena.allocator;
var db: Db = undefined;
try db.init(initOptions());
try addTestData(&db);
// Cleanup first
try db.exec("DELETE FROM user", .{});
// Add data
var stmt = try db.prepare("INSERT INTO user(id, name, age, weight) VALUES(?{usize}, ?{[]const u8}, ?{usize}, ?{f32})");
defer stmt.deinit();
var expected_rows = std.ArrayList(TestUser).init(allocator);
var i: usize = 0;
while (i < 20) : (i += 1) {
const name = try std.fmt.allocPrint(allocator, "Vincent {d}", .{i});
const user = TestUser{ .id = i, .name = name, .age = i + 200, .weight = @intToFloat(f32, i + 200) };
try expected_rows.append(user);
stmt.reset();
try stmt.exec(user);
const rows_inserted = db.rowsAffected();
testing.expectEqual(@as(usize, 1), rows_inserted);
}
// Get data with a non-allocating iterator.
{
var stmt2 = try db.prepare("SELECT name, age FROM user");
defer stmt2.deinit();
const RowType = struct {
name: [128:0]u8,
age: usize,
};
var iter = try stmt2.iterator(RowType, .{});
var rows = std.ArrayList(RowType).init(allocator);
while (true) {
const row = (try iter.next(.{})) orelse break;
try rows.append(row);
}
// Check the data
testing.expectEqual(expected_rows.items.len, rows.items.len);
for (rows.items) |row, j| {
const exp_row = expected_rows.items[j];
testing.expectEqualStrings(exp_row.name, mem.spanZ(&row.name));
testing.expectEqual(exp_row.age, row.age);
}
}
// Get data with an iterator
{
var stmt2 = try db.prepare("SELECT name, age FROM user");
defer stmt2.deinit();
const RowType = struct {
name: Text,
age: usize,
};
var iter = try stmt2.iterator(RowType, .{});
var rows = std.ArrayList(RowType).init(allocator);
while (true) {
const row = (try iter.nextAlloc(allocator, .{})) orelse break;
try rows.append(row);
}
// Check the data
testing.expectEqual(expected_rows.items.len, rows.items.len);
for (rows.items) |row, j| {
const exp_row = expected_rows.items[j];
testing.expectEqualStrings(exp_row.name, row.name.data);
testing.expectEqual(exp_row.age, row.age);
}
}
}
test "sqlite: failing open" {
var db: Db = undefined;
const res = db.init(.{
.open_flags = .{},
.mode = .{ .File = "/tmp/not_existing.db" },
});
testing.expectError(error.SQLiteCantOpen, res);
}
test "sqlite: failing prepare statement" {
var db: Db = undefined;
try db.init(initOptions());
const result = db.prepare("SELECT id FROM foobar");
testing.expectError(error.SQLiteError, result);
const detailed_err = db.getDetailedError();
testing.expectEqual(@as(usize, 1), detailed_err.code);
testing.expectEqualStrings("no such table: foobar", detailed_err.message);
}
fn initOptions() InitOptions {
return .{
.open_flags = .{
.write = true,
.create = true,
},
.mode = dbMode(),
};
}
fn dbMode() Db.Mode {
return if (build_options.in_memory) blk: {
break :blk .{ .Memory = {} };
} else blk: {
const path = "/tmp/zig-sqlite.db";
std.fs.cwd().deleteFile(path) catch {};
break :blk .{ .File = path };
};
}
|