const std = @import("std"); const builtin = @import("builtin"); const os = std.os; const heap = std.heap; const mem = std.mem; const debug = std.debug; /// The names a ::Param can have. pub const Names = struct { /// No prefix bare: ?[]const u8, /// '-' prefix short: ?u8, /// '--' prefix long: ?[]const u8, /// Initializes no names pub fn none() Names { return Names{ .bare = null, .short = null, .long = null, }; } /// Initializes a bare name pub fn bare(b: []const u8) Names { return Names{ .bare = b, .short = null, .long = null, }; } /// Initializes a short name pub fn short(s: u8) Names { return Names{ .bare = null, .short = s, .long = null, }; } /// Initializes a long name pub fn long(l: []const u8) Names { return Names{ .bare = null, .short = null, .long = l, }; } /// Initializes a name with a prefix. /// ::short is set to ::name[0], and ::long is set to ::name. /// This function asserts that ::name.len != 0 pub fn prefix(name: []const u8) Names { debug.assert(name.len != 0); return Names{ .bare = null, .short = name[0], .long = name, }; } }; /// Represents a parameter for the command line. /// Parameters come in three kinds: /// * Short ("-a"): Should be used for the most commonly used parameters in your program. /// * They can take a value three different ways. /// * "-a value" /// * "-a=value" /// * "-avalue" /// * They chain if they don't take values: "-abc". /// * The last given parameter can take a value in the same way that a single parameter can: /// * "-abc value" /// * "-abc=value" /// * "-abcvalue" /// * Long ("--long-param"): Should be used for less common parameters, or when no single character /// can describe the paramter. /// * They can take a value two different ways. /// * "--long-param value" /// * "--long-param=value" /// * Bare ("bare"): Should be used as for sub-commands and other keywords. /// * They can take a value two different ways. /// * "command value" /// * "command=value" /// * Value ("value"): Should be used as the primary parameter of the program, like a filename or /// an expression to parse. /// * Value parameters must take a value. pub fn Param(comptime Id: type) type { return struct { const Self = this; id: Id, takes_value: bool, names: Names, pub fn init(id: Id, takes_value: bool, names: &const Names) Self { // Assert, that if the param have no name, then it has to take // a value. debug.assert( names.bare != null or names.long != null or names.short != null or takes_value ); return Self{ .id = id, .takes_value = takes_value, .names = names.*, }; } }; } /// The result returned from ::Clap.next pub fn Arg(comptime Id: type) type { return struct { const Self = this; id: Id, value: ?[]const u8, pub fn init(id: Id, value: ?[]const u8) Self { return Self { .id = id, .value = value, }; } }; } /// A interface for iterating over command line arguments pub const ArgIterator = struct { const Error = error{OutOfMemory}; nextFn: fn(iter: &ArgIterator, allocator: &mem.Allocator) Error!?[]const u8, pub fn next(iter: &ArgIterator, allocator: &mem.Allocator) Error!?[]const u8 { return iter.nextFn(iter, allocator); } }; /// An ::ArgIterator, which iterates over a slice of arguments. /// This implementation does not allocate. pub const ArgSliceIterator = struct { args: []const []const u8, index: usize, iter: ArgIterator, pub fn init(args: []const []const u8) ArgSliceIterator { return ArgSliceIterator { .args = args, .index = 0, .iter = ArgIterator { .nextFn = nextFn, }, }; } fn nextFn(iter: &ArgIterator, allocator: &mem.Allocator) ArgIterator.Error!?[]const u8 { const self = @fieldParentPtr(ArgSliceIterator, "iter", iter); if (self.args.len <= self.index) return null; defer self.index += 1; return self.args[self.index]; } }; /// An ::ArgIterator, which wraps the ArgIterator in ::std. /// On windows, this iterator allocates. pub const OsArgIterator = struct { args: os.ArgIterator, iter: ArgIterator, pub fn init() OsArgIterator { return OsArgIterator { .args = os.args(), .iter = ArgIterator { .nextFn = nextFn, }, }; } fn nextFn(iter: &ArgIterator, allocator: &mem.Allocator) ArgIterator.Error!?[]const u8 { const self = @fieldParentPtr(OsArgIterator, "iter", iter); if (builtin.os == builtin.Os.windows) { return try self.args.next(allocator) ?? return null; } else { return self.args.nextPosix(); } } }; /// A command line argument parser which, given an ::ArgIterator, will parse arguments according /// to the ::params. ::Clap parses in an iterating manner, so you have to use a loop together with /// ::Clap.next to parse all the arguments of your program. pub fn Clap(comptime Id: type) type { return struct { const Self = this; const State = union(enum) { Normal, Chaining: Chaining, const Chaining = struct { arg: []const u8, index: usize, }; }; arena: heap.ArenaAllocator, params: []const Param(Id), inner: &ArgIterator, state: State, pub fn init(params: []const Param(Id), inner: &ArgIterator, allocator: &mem.Allocator) Self { var res = Self { .arena = heap.ArenaAllocator.init(allocator), .params = params, .inner = inner, .state = State.Normal, }; return res; } pub fn deinit(iter: &Self) void { iter.arena.deinit(); } /// Get the next ::Arg that matches a ::Param. pub fn next(iter: &Self) !?Arg(Id) { const ArgInfo = struct { const Kind = enum { Long, Short, Bare }; arg: []const u8, kind: Kind, }; switch (iter.state) { State.Normal => { const full_arg = (try iter.innerNext()) ?? return null; const arg_info = blk: { var arg = full_arg; var kind = ArgInfo.Kind.Bare; if (mem.startsWith(u8, arg, "--")) { arg = arg[2..]; kind = ArgInfo.Kind.Long; } else if (mem.startsWith(u8, arg, "-")) { arg = arg[1..]; kind = ArgInfo.Kind.Short; } if (arg.len == 0) return error.ArgWithNoName; break :blk ArgInfo { .arg = arg, .kind = kind }; }; const arg = arg_info.arg; const kind = arg_info.kind; const eql_index = mem.indexOfScalar(u8, arg, '='); switch (kind) { ArgInfo.Kind.Bare, ArgInfo.Kind.Long => { for (iter.params) |*param| { const match = switch (kind) { ArgInfo.Kind.Bare => param.names.bare ?? continue, ArgInfo.Kind.Long => param.names.long ?? continue, else => unreachable, }; const name = if (eql_index) |i| arg[0..i] else arg; const maybe_value = if (eql_index) |i| arg[i + 1..] else null; if (!mem.eql(u8, name, match)) continue; if (!param.takes_value) { if (maybe_value != null) return error.DoesntTakeValue; return Arg(Id).init(param.id, null); } const value = blk: { if (maybe_value) |v| break :blk v; break :blk (try iter.innerNext()) ?? return error.MissingValue; }; return Arg(Id).init(param.id, value); } }, ArgInfo.Kind.Short => { return try iter.chainging(State.Chaining { .arg = full_arg, .index = (full_arg.len - arg.len), }); }, } // We do a final pass to look for value parameters matches if (kind == ArgInfo.Kind.Bare) { for (iter.params) |*param| { if (param.names.bare) |_| continue; if (param.names.short) |_| continue; if (param.names.long) |_| continue; return Arg(Id).init(param.id, arg); } } return error.InvalidArgument; }, @TagType(State).Chaining => |state| return try iter.chainging(state), } } fn chainging(iter: &Self, state: &const State.Chaining) !?Arg(Id) { const arg = state.arg; const index = state.index; const next_index = index + 1; for (iter.params) |param| { const short = param.names.short ?? continue; if (short != arg[index]) continue; // Before we return, we have to set the new state of the iterator defer { if (arg.len <= next_index or param.takes_value) { iter.state = State.Normal; } else { iter.state = State { .Chaining = State.Chaining { .arg = arg, .index = next_index, }}; } } if (!param.takes_value) return Arg(Id).init(param.id, null); if (arg.len <= next_index) { const value = (try iter.innerNext()) ?? return error.MissingValue; return Arg(Id).init(param.id, value); } if (arg[next_index] == '=') { return Arg(Id).init(param.id, arg[next_index + 1..]); } return Arg(Id).init(param.id, arg[next_index..]); } return error.InvalidArgument; } fn innerNext(iter: &Self) !?[]const u8 { return try iter.inner.next(&iter.arena.allocator); } }; }