//! `Grapheme` represents a Unicode grapheme cluster by its length and offset in the source bytes. const std = @import("std"); const unicode = std.unicode; const ziglyph = @import("ziglyph"); const CodePoint = @import("CodePoint.zig"); const CodePointIterator = CodePoint.CodePointIterator; // const emoji = ziglyph.emoji; // const gbp = ziglyph.grapheme_break; const gbp = @import("gbp"); const emoji = @import("emoji"); const indic = @import("indic"); pub const Grapheme = @This(); len: usize, offset: usize, /// `eql` comparse `str` with the bytes of this grapheme cluster in `src` for equality. pub fn eql(self: Grapheme, src: []const u8, other: []const u8) bool { return std.mem.eql(u8, src[self.offset .. self.offset + self.len], other); } /// `slice` returns the bytes that correspond to this grapheme cluster in `src`. pub fn slice(self: Grapheme, src: []const u8) []const u8 { return src[self.offset .. self.offset + self.len]; } /// `GraphemeIterator` iterates a sting of UTF-8 encoded bytes one grapheme cluster at-a-time. pub const GraphemeIterator = struct { buf: [2]?CodePoint = [_]?CodePoint{ null, null }, cp_iter: CodePointIterator, const Self = @This(); /// Assumes `src` is valid UTF-8. pub fn init(str: []const u8) Self { var self = Self{ .cp_iter = CodePointIterator{ .bytes = str } }; self.buf[1] = self.cp_iter.next(); return self; } fn advance(self: *Self) void { self.buf[0] = self.buf[1]; self.buf[1] = self.cp_iter.next(); } pub fn next(self: *Self) ?Grapheme { self.advance(); // If at end if (self.buf[0] == null) return null; if (self.buf[1] == null) return Grapheme{ .len = self.buf[0].?.len, .offset = self.buf[0].?.offset }; const gc_start = self.buf[0].?.offset; var gc_len: usize = self.buf[0].?.len; var state: u3 = 0; if (graphemeBreak( self.buf[0].?.code, self.buf[1].?.code, &state, )) return Grapheme{ .len = gc_len, .offset = gc_start }; while (true) { self.advance(); if (self.buf[0] == null) break; gc_len += self.buf[0].?.len; if (graphemeBreak( self.buf[0].?.code, if (self.buf[1]) |ncp| ncp.code else 0, &state, )) break; } return Grapheme{ .len = gc_len, .offset = gc_start }; } }; // Predicates inline fn isBreaker(cp: u21) bool { return cp == '\x0d' or cp == '\x0a' or gbp.stage_3[gbp.stage_2[gbp.stage_1[cp >> 8] + (cp & 0xff)]] == .control; } inline fn isIgnorable(cp: u21) bool { const cp_gbp_prop = gbp.stage_3[gbp.stage_2[gbp.stage_1[cp >> 8] + (cp & 0xff)]]; return cp_gbp_prop == .extend or cp_gbp_prop == .spacing or cp == '\u{200d}'; } test "Segmentation comptime GraphemeIterator" { const want = [_][]const u8{ "H", "é", "l", "l", "o" }; comptime { const src = "Héllo"; var ct_iter = GraphemeIterator.init(src); var i = 0; while (ct_iter.next()) |grapheme| : (i += 1) { try std.testing.expect(grapheme.eql(src, want[i])); } } } test "Segmentation ZWJ and ZWSP emoji sequences" { const seq_1 = "\u{1F43B}\u{200D}\u{2744}\u{FE0F}"; const seq_2 = "\u{1F43B}\u{200D}\u{2744}\u{FE0F}"; const with_zwj = seq_1 ++ "\u{200D}" ++ seq_2; const with_zwsp = seq_1 ++ "\u{200B}" ++ seq_2; const no_joiner = seq_1 ++ seq_2; var ct_iter = GraphemeIterator.init(with_zwj); var i: usize = 0; while (ct_iter.next()) |_| : (i += 1) {} try std.testing.expectEqual(@as(usize, 1), i); ct_iter = GraphemeIterator.init(with_zwsp); i = 0; while (ct_iter.next()) |_| : (i += 1) {} try std.testing.expectEqual(@as(usize, 3), i); ct_iter = GraphemeIterator.init(no_joiner); i = 0; while (ct_iter.next()) |_| : (i += 1) {} try std.testing.expectEqual(@as(usize, 2), i); } // Grapheme break state. // Extended Pictographic (emoji) inline fn hasXpic(state: *const u3) bool { return state.* & 1 == 1; } inline fn setXpic(state: *u3) void { state.* |= 1; } inline fn unsetXpic(state: *u3) void { state.* ^= 1; } // Regional Indicatior (flags) inline fn hasRegional(state: *const u3) bool { return state.* & 2 == 2; } inline fn setRegional(state: *u3) void { state.* |= 2; } inline fn unsetRegional(state: *u3) void { state.* ^= 2; } // Indic Conjunct inline fn hasIndic(state: *const u3) bool { return state.* & 4 == 4; } inline fn setIndic(state: *u3) void { state.* |= 4; } inline fn unsetIndic(state: *u3) void { state.* ^= 4; } /// `graphemeBreak` returns true only if a grapheme break point is required /// between `cp1` and `cp2`. `state` should start out as 0. If calling /// iteratively over a sequence of code points, this function must be called /// IN ORDER on ALL potential breaks in a string. /// Modeled after the API of utf8proc's `utf8proc_grapheme_break_stateful`. /// https://github.com/JuliaStrings/utf8proc/blob/2bbb1ba932f727aad1fab14fafdbc89ff9dc4604/utf8proc.h#L599-L617 pub fn graphemeBreak( cp1: u21, cp2: u21, state: *u3, ) bool { // GB11: Emoji Extend* ZWJ x Emoji if (!hasXpic(state) and emoji.isExtendedPictographic(cp1)) setXpic(state); // GB9c: Indic Conjunct Break const cp1_indic_prop = indic.stage_3[indic.stage_2[indic.stage_1[cp1 >> 8] + (cp1 & 0xff)]]; const cp2_indic_prop = indic.stage_3[indic.stage_2[indic.stage_1[cp2 >> 8] + (cp2 & 0xff)]]; if (!hasIndic(state) and cp1_indic_prop == .Consonant) setIndic(state); // GB3: CR x LF if (cp1 == '\r' and cp2 == '\n') return false; // GB4: Control if (isBreaker(cp1)) return true; // GB6: Hangul L x (L|V|LV|VT) const cp1_gbp_prop = gbp.stage_3[gbp.stage_2[gbp.stage_1[cp1 >> 8] + (cp1 & 0xff)]]; const cp2_gbp_prop = gbp.stage_3[gbp.stage_2[gbp.stage_1[cp2 >> 8] + (cp2 & 0xff)]]; if (cp1_gbp_prop == .hangul_l) { if (cp2_gbp_prop == .hangul_l or cp2_gbp_prop == .hangul_v or cp2_gbp_prop == .hangul_lv or cp2_gbp_prop == .hangul_lvt) return false; } // GB7: Hangul (LV | V) x (V | T) if (cp1_gbp_prop == .hangul_lv or cp1_gbp_prop == .hangul_v) { if (cp2_gbp_prop == .hangul_v or cp2_gbp_prop == .hangul_t) return false; } // GB8: Hangul (LVT | T) x T if (cp1_gbp_prop == .hangul_lvt or cp1_gbp_prop == .hangul_t) { if (cp2_gbp_prop == .hangul_t) return false; } // GB9b: x (Extend | ZWJ) if (cp2_gbp_prop == .extend or cp2_gbp_prop == .zwj) return false; // GB9a: x Spacing if (cp2_gbp_prop == .spacing) return false; // GB9b: Prepend x if (cp1_gbp_prop == .prepend and !isBreaker(cp2)) return false; // GB12, GB13: RI x RI if (cp1_gbp_prop == .regional and cp2_gbp_prop == .regional) { if (hasRegional(state)) { unsetRegional(state); return true; } else { setRegional(state); return false; } } // GB11: Emoji Extend* ZWJ x Emoji if (hasXpic(state) and cp1_gbp_prop == .zwj and emoji.isExtendedPictographic(cp2)) { unsetXpic(state); return false; } // GB9c: Indic Conjunct Break if (hasIndic(state) and cp1_indic_prop == .Consonant and cp2_indic_prop == .Extend) { return false; } if (hasIndic(state) and cp1_indic_prop == .Consonant and cp2_indic_prop == .Linker) { return false; } if (hasIndic(state) and cp1_indic_prop == .Extend and cp2_indic_prop == .Linker) { return false; } if (hasIndic(state) and cp1_indic_prop == .Linker and cp2_indic_prop == .Consonant) { unsetIndic(state); return false; } if (hasIndic(state) and cp1_gbp_prop == .zwj and cp2_indic_prop == .Consonant) { unsetIndic(state); return false; } return true; } test "Segmentation GraphemeIterator" { const allocator = std.testing.allocator; var file = try std.fs.cwd().openFile("GraphemeBreakTest.txt", .{}); defer file.close(); var buf_reader = std.io.bufferedReader(file.reader()); var input_stream = buf_reader.reader(); var buf: [4096]u8 = undefined; var line_no: usize = 1; while (try input_stream.readUntilDelimiterOrEof(&buf, '\n')) |raw| : (line_no += 1) { // Skip comments or empty lines. if (raw.len == 0 or raw[0] == '#' or raw[0] == '@') continue; // Clean up. var line = std.mem.trimLeft(u8, raw, "÷ "); if (std.mem.indexOf(u8, line, " ÷\t#")) |octo| { line = line[0..octo]; } // Iterate over fields. var want = std.ArrayList(Grapheme).init(allocator); defer want.deinit(); var all_bytes = std.ArrayList(u8).init(allocator); defer all_bytes.deinit(); var graphemes = std.mem.split(u8, line, " ÷ "); var bytes_index: usize = 0; while (graphemes.next()) |field| { var code_points = std.mem.split(u8, field, " "); var cp_buf: [4]u8 = undefined; var cp_index: usize = 0; var gc_len: usize = 0; while (code_points.next()) |code_point| { if (std.mem.eql(u8, code_point, "×")) continue; const cp: u21 = try std.fmt.parseInt(u21, code_point, 16); const len = try unicode.utf8Encode(cp, &cp_buf); try all_bytes.appendSlice(cp_buf[0..len]); cp_index += len; gc_len += len; } try want.append(Grapheme{ .len = gc_len, .offset = bytes_index }); bytes_index += cp_index; } // std.debug.print("\nline {}: {s}\n", .{ line_no, all_bytes.items }); var iter = GraphemeIterator.init(all_bytes.items); // Chaeck. for (want.items) |w| { const g = (iter.next()).?; try std.testing.expect(w.eql(all_bytes.items, all_bytes.items[g.offset .. g.offset + g.len])); } } }