cutoff: u21 = undefined, cwcf_exceptions_min: u21 = undefined, cwcf_exceptions_max: u21 = undefined, cwcf_exceptions: []u21 = undefined, multiple_start: u21 = undefined, stage1: []u8 = undefined, stage2: []u8 = undefined, stage3: []i24 = undefined, normalize: Normalize, owns_normalize: bool, const CaseFolding = @This(); pub fn init(allocator: Allocator) Allocator.Error!CaseFolding { var case_fold: CaseFolding = undefined; try case_fold.setup(allocator); return case_fold; } pub fn initWithNormalize(allocator: Allocator, norm: Normalize) Allocator.Error!CaseFolding { var casefold: CaseFolding = undefined; try casefold.setupWithNormalize(allocator, norm); return casefold; } pub fn setup(casefold: *CaseFolding, allocator: Allocator) Allocator.Error!void { try casefold.setupImpl(allocator); // Handle normalize memory separately during setup: casefold.owns_normalize = false; errdefer casefold.deinit(allocator); try casefold.normalize.setup(allocator); casefold.owns_normalize = true; } pub fn setupWithNormalize(casefold: *CaseFolding, allocator: Allocator, norm: Normalize) !void { try casefold.setupImpl(allocator); casefold.normalize = norm; casefold.owns_normalize = false; } fn setupImpl(casefold: *CaseFolding, allocator: Allocator) Allocator.Error!void { casefold.setupImplInner(allocator) catch |err| { switch (err) { error.OutOfMemory => |e| return e, else => unreachable, } }; } inline fn setupImplInner(casefold: *CaseFolding, allocator: Allocator) !void { const decompressor = compress.flate.inflate.decompressor; const in_bytes = @embedFile("fold"); var in_fbs = std.io.fixedBufferStream(in_bytes); var in_decomp = decompressor(.raw, in_fbs.reader()); var reader = in_decomp.reader(); const endian = builtin.cpu.arch.endian(); casefold.cutoff = @intCast(try reader.readInt(u24, endian)); casefold.multiple_start = @intCast(try reader.readInt(u24, endian)); var len = try reader.readInt(u16, endian); casefold.stage1 = try allocator.alloc(u8, len); errdefer allocator.free(casefold.stage1); for (0..len) |i| casefold.stage1[i] = try reader.readInt(u8, endian); len = try reader.readInt(u16, endian); casefold.stage2 = try allocator.alloc(u8, len); errdefer allocator.free(casefold.stage2); for (0..len) |i| casefold.stage2[i] = try reader.readInt(u8, endian); len = try reader.readInt(u16, endian); casefold.stage3 = try allocator.alloc(i24, len); errdefer allocator.free(casefold.stage3); for (0..len) |i| casefold.stage3[i] = try reader.readInt(i24, endian); casefold.cwcf_exceptions_min = @intCast(try reader.readInt(u24, endian)); casefold.cwcf_exceptions_max = @intCast(try reader.readInt(u24, endian)); len = try reader.readInt(u16, endian); casefold.cwcf_exceptions = try allocator.alloc(u21, len); errdefer allocator.free(casefold.cwcf_exceptions); for (0..len) |i| casefold.cwcf_exceptions[i] = @intCast(try reader.readInt(u24, endian)); } pub fn deinit(fdata: *const CaseFolding, allocator: mem.Allocator) void { allocator.free(fdata.stage1); allocator.free(fdata.stage2); allocator.free(fdata.stage3); allocator.free(fdata.cwcf_exceptions); if (fdata.owns_normalize) fdata.normalize.deinit(allocator); } /// Returns the case fold for `cp`. pub fn caseFold(fdata: *const CaseFolding, cp: u21, buf: []u21) []const u21 { if (cp >= fdata.cutoff) return &.{}; const stage1_val = fdata.stage1[cp >> 8]; if (stage1_val == 0) return &.{}; const stage2_index = @as(usize, stage1_val) * 256 + (cp & 0xFF); const stage3_index = fdata.stage2[stage2_index]; if (stage3_index & 0x80 != 0) { const real_index = @as(usize, fdata.multiple_start) + (stage3_index ^ 0x80) * 3; const mapping = mem.sliceTo(fdata.stage3[real_index..][0..3], 0); for (mapping, 0..) |c, i| buf[i] = @intCast(c); return buf[0..mapping.len]; } const offset = fdata.stage3[stage3_index]; if (offset == 0) return &.{}; buf[0] = @intCast(@as(i32, cp) + offset); return buf[0..1]; } /// Produces the case folded code points for `cps`. Caller must free returned /// slice with `allocator`. pub fn caseFoldAlloc( casefold: *const CaseFolding, allocator: Allocator, cps: []const u21, ) Allocator.Error![]const u21 { var cfcps = std.ArrayList(u21).init(allocator); defer cfcps.deinit(); var buf: [3]u21 = undefined; for (cps) |cp| { const cf = casefold.caseFold(cp, &buf); if (cf.len == 0) { try cfcps.append(cp); } else { try cfcps.appendSlice(cf); } } return try cfcps.toOwnedSlice(); } /// Returns true when caseFold(NFD(`cp`)) != NFD(`cp`). pub fn cpChangesWhenCaseFolded(casefold: *const CaseFolding, cp: u21) bool { var buf: [3]u21 = undefined; const has_mapping = casefold.caseFold(cp, &buf).len != 0; return has_mapping and !casefold.isCwcfException(cp); } pub fn changesWhenCaseFolded(casefold: *const CaseFolding, cps: []const u21) bool { return for (cps) |cp| { if (casefold.cpChangesWhenCaseFolded(cp)) break true; } else false; } fn isCwcfException(casefold: *const CaseFolding, cp: u21) bool { return cp >= casefold.cwcf_exceptions_min and cp <= casefold.cwcf_exceptions_max and std.mem.indexOfScalar(u21, casefold.cwcf_exceptions, cp) != null; } /// Caseless compare `a` and `b` by decomposing to NFKD. This is the most /// comprehensive comparison possible, but slower than `canonCaselessMatch`. pub fn compatCaselessMatch( casefold: *const CaseFolding, allocator: Allocator, a: []const u8, b: []const u8, ) Allocator.Error!bool { if (ascii.isAsciiOnly(a) and ascii.isAsciiOnly(b)) return std.ascii.eqlIgnoreCase(a, b); // Process a const nfd_a = try casefold.normalize.nfxdCodePoints(allocator, a, .nfd); defer allocator.free(nfd_a); var need_free_cf_nfd_a = false; var cf_nfd_a: []const u21 = nfd_a; if (casefold.changesWhenCaseFolded(nfd_a)) { cf_nfd_a = try casefold.caseFoldAlloc(allocator, nfd_a); need_free_cf_nfd_a = true; } defer if (need_free_cf_nfd_a) allocator.free(cf_nfd_a); const nfkd_cf_nfd_a = try casefold.normalize.nfkdCodePoints(allocator, cf_nfd_a); defer allocator.free(nfkd_cf_nfd_a); const cf_nfkd_cf_nfd_a = try casefold.caseFoldAlloc(allocator, nfkd_cf_nfd_a); defer allocator.free(cf_nfkd_cf_nfd_a); const nfkd_cf_nfkd_cf_nfd_a = try casefold.normalize.nfkdCodePoints(allocator, cf_nfkd_cf_nfd_a); defer allocator.free(nfkd_cf_nfkd_cf_nfd_a); // Process b const nfd_b = try casefold.normalize.nfxdCodePoints(allocator, b, .nfd); defer allocator.free(nfd_b); var need_free_cf_nfd_b = false; var cf_nfd_b: []const u21 = nfd_b; if (casefold.changesWhenCaseFolded(nfd_b)) { cf_nfd_b = try casefold.caseFoldAlloc(allocator, nfd_b); need_free_cf_nfd_b = true; } defer if (need_free_cf_nfd_b) allocator.free(cf_nfd_b); const nfkd_cf_nfd_b = try casefold.normalize.nfkdCodePoints(allocator, cf_nfd_b); defer allocator.free(nfkd_cf_nfd_b); const cf_nfkd_cf_nfd_b = try casefold.caseFoldAlloc(allocator, nfkd_cf_nfd_b); defer allocator.free(cf_nfkd_cf_nfd_b); const nfkd_cf_nfkd_cf_nfd_b = try casefold.normalize.nfkdCodePoints(allocator, cf_nfkd_cf_nfd_b); defer allocator.free(nfkd_cf_nfkd_cf_nfd_b); return mem.eql(u21, nfkd_cf_nfkd_cf_nfd_a, nfkd_cf_nfkd_cf_nfd_b); } test "compatCaselessMatch" { const allocator = testing.allocator; const caser = try CaseFolding.init(allocator); defer caser.deinit(allocator); try testing.expect(try caser.compatCaselessMatch(allocator, "ascii only!", "ASCII Only!")); const a = "Héllo World! \u{3d3}"; const b = "He\u{301}llo World! \u{3a5}\u{301}"; try testing.expect(try caser.compatCaselessMatch(allocator, a, b)); const c = "He\u{301}llo World! \u{3d2}\u{301}"; try testing.expect(try caser.compatCaselessMatch(allocator, a, c)); } /// Performs canonical caseless string matching by decomposing to NFD. This is /// faster than `compatCaselessMatch`, but less comprehensive. pub fn canonCaselessMatch( casefold: *const CaseFolding, allocator: Allocator, a: []const u8, b: []const u8, ) Allocator.Error!bool { if (ascii.isAsciiOnly(a) and ascii.isAsciiOnly(b)) return std.ascii.eqlIgnoreCase(a, b); // Process a const nfd_a = try casefold.normalize.nfxdCodePoints(allocator, a, .nfd); defer allocator.free(nfd_a); var need_free_cf_nfd_a = false; var cf_nfd_a: []const u21 = nfd_a; if (casefold.changesWhenCaseFolded(nfd_a)) { cf_nfd_a = try casefold.caseFoldAlloc(allocator, nfd_a); need_free_cf_nfd_a = true; } defer if (need_free_cf_nfd_a) allocator.free(cf_nfd_a); var need_free_nfd_cf_nfd_a = false; var nfd_cf_nfd_a = cf_nfd_a; if (!need_free_cf_nfd_a) { nfd_cf_nfd_a = try casefold.normalize.nfdCodePoints(allocator, cf_nfd_a); need_free_nfd_cf_nfd_a = true; } defer if (need_free_nfd_cf_nfd_a) allocator.free(nfd_cf_nfd_a); // Process b const nfd_b = try casefold.normalize.nfxdCodePoints(allocator, b, .nfd); defer allocator.free(nfd_b); var need_free_cf_nfd_b = false; var cf_nfd_b: []const u21 = nfd_b; if (casefold.changesWhenCaseFolded(nfd_b)) { cf_nfd_b = try casefold.caseFoldAlloc(allocator, nfd_b); need_free_cf_nfd_b = true; } defer if (need_free_cf_nfd_b) allocator.free(cf_nfd_b); var need_free_nfd_cf_nfd_b = false; var nfd_cf_nfd_b = cf_nfd_b; if (!need_free_cf_nfd_b) { nfd_cf_nfd_b = try casefold.normalize.nfdCodePoints(allocator, cf_nfd_b); need_free_nfd_cf_nfd_b = true; } defer if (need_free_nfd_cf_nfd_b) allocator.free(nfd_cf_nfd_b); return mem.eql(u21, nfd_cf_nfd_a, nfd_cf_nfd_b); } test "canonCaselessMatch" { const allocator = testing.allocator; const caser = try CaseFolding.init(allocator); defer caser.deinit(allocator); try testing.expect(try caser.canonCaselessMatch(allocator, "ascii only!", "ASCII Only!")); const a = "Héllo World! \u{3d3}"; const b = "He\u{301}llo World! \u{3a5}\u{301}"; try testing.expect(!try caser.canonCaselessMatch(allocator, a, b)); const c = "He\u{301}llo World! \u{3d2}\u{301}"; try testing.expect(try caser.canonCaselessMatch(allocator, a, c)); } fn testAllocations(allocator: Allocator) !void { // With normalize provided { const normalize = try Normalize.init(allocator); defer normalize.deinit(allocator); const caser = try CaseFolding.initWithNormalize(allocator, normalize); defer caser.deinit(allocator); } // With normalize owned { const caser = try CaseFolding.init(allocator); defer caser.deinit(allocator); } } test "Allocation Failures" { try testing.checkAllAllocationFailures( testing.allocator, testAllocations, .{}, ); } const std = @import("std"); const builtin = @import("builtin"); const mem = std.mem; const testing = std.testing; const Allocator = mem.Allocator; const ascii = @import("ascii"); const Normalize = @import("Normalize"); const compress = std.compress;