summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/core/CMakeLists.txt1
-rw-r--r--src/core/core_timing_util.cpp84
-rw-r--r--src/core/core_timing_util.h61
3 files changed, 48 insertions, 98 deletions
diff --git a/src/core/CMakeLists.txt b/src/core/CMakeLists.txt
index 28196d26a..c6bdf72ec 100644
--- a/src/core/CMakeLists.txt
+++ b/src/core/CMakeLists.txt
@@ -19,7 +19,6 @@ add_library(core STATIC
19 core.h 19 core.h
20 core_timing.cpp 20 core_timing.cpp
21 core_timing.h 21 core_timing.h
22 core_timing_util.cpp
23 core_timing_util.h 22 core_timing_util.h
24 cpu_manager.cpp 23 cpu_manager.cpp
25 cpu_manager.h 24 cpu_manager.h
diff --git a/src/core/core_timing_util.cpp b/src/core/core_timing_util.cpp
deleted file mode 100644
index 8ce8e602e..000000000
--- a/src/core/core_timing_util.cpp
+++ /dev/null
@@ -1,84 +0,0 @@
1// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project
2// Licensed under GPLv2+
3// Refer to the license.txt file included.
4
5#include "core/core_timing_util.h"
6
7#include <cinttypes>
8#include <limits>
9#include "common/logging/log.h"
10#include "common/uint128.h"
11#include "core/hardware_properties.h"
12
13namespace Core::Timing {
14
15constexpr u64 MAX_VALUE_TO_MULTIPLY = std::numeric_limits<s64>::max() / Hardware::BASE_CLOCK_RATE;
16
17s64 msToCycles(std::chrono::milliseconds ms) {
18 if (static_cast<u64>(ms.count() / 1000) > MAX_VALUE_TO_MULTIPLY) {
19 LOG_ERROR(Core_Timing, "Integer overflow, use max value");
20 return std::numeric_limits<s64>::max();
21 }
22 if (static_cast<u64>(ms.count()) > MAX_VALUE_TO_MULTIPLY) {
23 LOG_DEBUG(Core_Timing, "Time very big, do rounding");
24 return Hardware::BASE_CLOCK_RATE * (ms.count() / 1000);
25 }
26 return (Hardware::BASE_CLOCK_RATE * ms.count()) / 1000;
27}
28
29s64 usToCycles(std::chrono::microseconds us) {
30 if (static_cast<u64>(us.count() / 1000000) > MAX_VALUE_TO_MULTIPLY) {
31 LOG_ERROR(Core_Timing, "Integer overflow, use max value");
32 return std::numeric_limits<s64>::max();
33 }
34 if (static_cast<u64>(us.count()) > MAX_VALUE_TO_MULTIPLY) {
35 LOG_DEBUG(Core_Timing, "Time very big, do rounding");
36 return Hardware::BASE_CLOCK_RATE * (us.count() / 1000000);
37 }
38 return (Hardware::BASE_CLOCK_RATE * us.count()) / 1000000;
39}
40
41s64 nsToCycles(std::chrono::nanoseconds ns) {
42 const u128 temporal = Common::Multiply64Into128(ns.count(), Hardware::BASE_CLOCK_RATE);
43 return Common::Divide128On32(temporal, static_cast<u32>(1000000000)).first;
44}
45
46u64 msToClockCycles(std::chrono::milliseconds ns) {
47 const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ);
48 return Common::Divide128On32(temp, 1000).first;
49}
50
51u64 usToClockCycles(std::chrono::microseconds ns) {
52 const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ);
53 return Common::Divide128On32(temp, 1000000).first;
54}
55
56u64 nsToClockCycles(std::chrono::nanoseconds ns) {
57 const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ);
58 return Common::Divide128On32(temp, 1000000000).first;
59}
60
61u64 CpuCyclesToClockCycles(u64 ticks) {
62 const u128 temporal = Common::Multiply64Into128(ticks, Hardware::CNTFREQ);
63 return Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
64}
65
66std::chrono::milliseconds CyclesToMs(s64 cycles) {
67 const u128 temporal = Common::Multiply64Into128(cycles, 1000);
68 u64 ms = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
69 return std::chrono::milliseconds(ms);
70}
71
72std::chrono::nanoseconds CyclesToNs(s64 cycles) {
73 const u128 temporal = Common::Multiply64Into128(cycles, 1000000000);
74 u64 ns = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
75 return std::chrono::nanoseconds(ns);
76}
77
78std::chrono::microseconds CyclesToUs(s64 cycles) {
79 const u128 temporal = Common::Multiply64Into128(cycles, 1000000);
80 u64 us = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
81 return std::chrono::microseconds(us);
82}
83
84} // namespace Core::Timing
diff --git a/src/core/core_timing_util.h b/src/core/core_timing_util.h
index e4a046bf9..14c36a485 100644
--- a/src/core/core_timing_util.h
+++ b/src/core/core_timing_util.h
@@ -1,24 +1,59 @@
1// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project 1// Copyright 2020 yuzu Emulator Project
2// Licensed under GPLv2+ 2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included. 3// Refer to the license.txt file included.
4 4
5#pragma once 5#pragma once
6 6
7#include <chrono> 7#include <chrono>
8
8#include "common/common_types.h" 9#include "common/common_types.h"
10#include "core/hardware_properties.h"
9 11
10namespace Core::Timing { 12namespace Core::Timing {
11 13
12s64 msToCycles(std::chrono::milliseconds ms); 14namespace detail {
13s64 usToCycles(std::chrono::microseconds us); 15constexpr u64 CNTFREQ_ADJUSTED = Hardware::CNTFREQ / 1000;
14s64 nsToCycles(std::chrono::nanoseconds ns); 16constexpr u64 BASE_CLOCK_RATE_ADJUSTED = Hardware::BASE_CLOCK_RATE / 1000;
15u64 msToClockCycles(std::chrono::milliseconds ns); 17} // namespace detail
16u64 usToClockCycles(std::chrono::microseconds ns); 18
17u64 nsToClockCycles(std::chrono::nanoseconds ns); 19[[nodiscard]] constexpr s64 msToCycles(std::chrono::milliseconds ms) {
18std::chrono::milliseconds CyclesToMs(s64 cycles); 20 return ms.count() * detail::BASE_CLOCK_RATE_ADJUSTED;
19std::chrono::nanoseconds CyclesToNs(s64 cycles); 21}
20std::chrono::microseconds CyclesToUs(s64 cycles); 22
21 23[[nodiscard]] constexpr s64 usToCycles(std::chrono::microseconds us) {
22u64 CpuCyclesToClockCycles(u64 ticks); 24 return us.count() * detail::BASE_CLOCK_RATE_ADJUSTED / 1000;
25}
26
27[[nodiscard]] constexpr s64 nsToCycles(std::chrono::nanoseconds ns) {
28 return ns.count() * detail::BASE_CLOCK_RATE_ADJUSTED / 1000000;
29}
30
31[[nodiscard]] constexpr u64 msToClockCycles(std::chrono::milliseconds ms) {
32 return static_cast<u64>(ms.count()) * detail::CNTFREQ_ADJUSTED;
33}
34
35[[nodiscard]] constexpr u64 usToClockCycles(std::chrono::microseconds us) {
36 return us.count() * detail::CNTFREQ_ADJUSTED / 1000;
37}
38
39[[nodiscard]] constexpr u64 nsToClockCycles(std::chrono::nanoseconds ns) {
40 return ns.count() * detail::CNTFREQ_ADJUSTED / 1000000;
41}
42
43[[nodiscard]] constexpr u64 CpuCyclesToClockCycles(u64 ticks) {
44 return ticks * detail::CNTFREQ_ADJUSTED / detail::BASE_CLOCK_RATE_ADJUSTED;
45}
46
47[[nodiscard]] constexpr std::chrono::milliseconds CyclesToMs(s64 cycles) {
48 return std::chrono::milliseconds(cycles / detail::BASE_CLOCK_RATE_ADJUSTED);
49}
50
51[[nodiscard]] constexpr std::chrono::nanoseconds CyclesToNs(s64 cycles) {
52 return std::chrono::nanoseconds(cycles * 1000000 / detail::BASE_CLOCK_RATE_ADJUSTED);
53}
54
55[[nodiscard]] constexpr std::chrono::microseconds CyclesToUs(s64 cycles) {
56 return std::chrono::microseconds(cycles * 1000 / detail::BASE_CLOCK_RATE_ADJUSTED);
57}
23 58
24} // namespace Core::Timing 59} // namespace Core::Timing