summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/core/hle/kernel/vm_manager.cpp22
-rw-r--r--src/core/hle/kernel/vm_manager.h20
-rw-r--r--src/core/memory.cpp44
-rw-r--r--src/core/memory.h16
-rw-r--r--src/core/memory_setup.h6
5 files changed, 54 insertions, 54 deletions
diff --git a/src/core/hle/kernel/vm_manager.cpp b/src/core/hle/kernel/vm_manager.cpp
index cef1f7fa8..f70c32501 100644
--- a/src/core/hle/kernel/vm_manager.cpp
+++ b/src/core/hle/kernel/vm_manager.cpp
@@ -56,7 +56,7 @@ void VMManager::Reset() {
56 initial_vma.size = MAX_ADDRESS; 56 initial_vma.size = MAX_ADDRESS;
57 vma_map.emplace(initial_vma.base, initial_vma); 57 vma_map.emplace(initial_vma.base, initial_vma);
58 58
59 UpdatePageTableForVMA(initial_vma); 59 //UpdatePageTableForVMA(initial_vma);
60} 60}
61 61
62VMManager::VMAHandle VMManager::FindVMA(VAddr target) const { 62VMManager::VMAHandle VMManager::FindVMA(VAddr target) const {
@@ -69,7 +69,7 @@ VMManager::VMAHandle VMManager::FindVMA(VAddr target) const {
69 69
70ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target, 70ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target,
71 std::shared_ptr<std::vector<u8>> block, 71 std::shared_ptr<std::vector<u8>> block,
72 size_t offset, u32 size, 72 size_t offset, u64 size,
73 MemoryState state) { 73 MemoryState state) {
74 ASSERT(block != nullptr); 74 ASSERT(block != nullptr);
75 ASSERT(offset + size <= block->size()); 75 ASSERT(offset + size <= block->size());
@@ -89,7 +89,7 @@ ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target,
89 return MakeResult<VMAHandle>(MergeAdjacent(vma_handle)); 89 return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
90} 90}
91 91
92ResultVal<VMManager::VMAHandle> VMManager::MapBackingMemory(VAddr target, u8* memory, u32 size, 92ResultVal<VMManager::VMAHandle> VMManager::MapBackingMemory(VAddr target, u8* memory, u64 size,
93 MemoryState state) { 93 MemoryState state) {
94 ASSERT(memory != nullptr); 94 ASSERT(memory != nullptr);
95 95
@@ -107,7 +107,7 @@ ResultVal<VMManager::VMAHandle> VMManager::MapBackingMemory(VAddr target, u8* me
107 return MakeResult<VMAHandle>(MergeAdjacent(vma_handle)); 107 return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
108} 108}
109 109
110ResultVal<VMManager::VMAHandle> VMManager::MapMMIO(VAddr target, PAddr paddr, u32 size, 110ResultVal<VMManager::VMAHandle> VMManager::MapMMIO(VAddr target, PAddr paddr, u64 size,
111 MemoryState state, 111 MemoryState state,
112 Memory::MMIORegionPointer mmio_handler) { 112 Memory::MMIORegionPointer mmio_handler) {
113 // This is the appropriately sized VMA that will turn into our allocation. 113 // This is the appropriately sized VMA that will turn into our allocation.
@@ -141,7 +141,7 @@ VMManager::VMAIter VMManager::Unmap(VMAIter vma_handle) {
141 return MergeAdjacent(vma_handle); 141 return MergeAdjacent(vma_handle);
142} 142}
143 143
144ResultCode VMManager::UnmapRange(VAddr target, u32 size) { 144ResultCode VMManager::UnmapRange(VAddr target, u64 size) {
145 CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size)); 145 CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size));
146 VAddr target_end = target + size; 146 VAddr target_end = target + size;
147 147
@@ -166,7 +166,7 @@ VMManager::VMAHandle VMManager::Reprotect(VMAHandle vma_handle, VMAPermission ne
166 return MergeAdjacent(iter); 166 return MergeAdjacent(iter);
167} 167}
168 168
169ResultCode VMManager::ReprotectRange(VAddr target, u32 size, VMAPermission new_perms) { 169ResultCode VMManager::ReprotectRange(VAddr target, u64 size, VMAPermission new_perms) {
170 CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size)); 170 CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size));
171 VAddr target_end = target + size; 171 VAddr target_end = target + size;
172 172
@@ -209,7 +209,7 @@ VMManager::VMAIter VMManager::StripIterConstness(const VMAHandle& iter) {
209 return vma_map.erase(iter, iter); // Erases an empty range of elements 209 return vma_map.erase(iter, iter); // Erases an empty range of elements
210} 210}
211 211
212ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u32 size) { 212ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u64 size) {
213 ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x%8X", size); 213 ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x%8X", size);
214 ASSERT_MSG((base & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x%08X", base); 214 ASSERT_MSG((base & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x%08X", base);
215 215
@@ -225,8 +225,8 @@ ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u32 size) {
225 return ERR_INVALID_ADDRESS_STATE; 225 return ERR_INVALID_ADDRESS_STATE;
226 } 226 }
227 227
228 u32 start_in_vma = base - vma.base; 228 u64 start_in_vma = base - vma.base;
229 u32 end_in_vma = start_in_vma + size; 229 u64 end_in_vma = start_in_vma + size;
230 230
231 if (end_in_vma > vma.size) { 231 if (end_in_vma > vma.size) {
232 // Requested allocation doesn't fit inside VMA 232 // Requested allocation doesn't fit inside VMA
@@ -245,7 +245,7 @@ ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u32 size) {
245 return MakeResult<VMAIter>(vma_handle); 245 return MakeResult<VMAIter>(vma_handle);
246} 246}
247 247
248ResultVal<VMManager::VMAIter> VMManager::CarveVMARange(VAddr target, u32 size) { 248ResultVal<VMManager::VMAIter> VMManager::CarveVMARange(VAddr target, u64 size) {
249 ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x%8X", size); 249 ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x%8X", size);
250 ASSERT_MSG((target & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x%08X", target); 250 ASSERT_MSG((target & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x%08X", target);
251 251
@@ -274,7 +274,7 @@ ResultVal<VMManager::VMAIter> VMManager::CarveVMARange(VAddr target, u32 size) {
274 return MakeResult<VMAIter>(begin_vma); 274 return MakeResult<VMAIter>(begin_vma);
275} 275}
276 276
277VMManager::VMAIter VMManager::SplitVMA(VMAIter vma_handle, u32 offset_in_vma) { 277VMManager::VMAIter VMManager::SplitVMA(VMAIter vma_handle, u64 offset_in_vma) {
278 VirtualMemoryArea& old_vma = vma_handle->second; 278 VirtualMemoryArea& old_vma = vma_handle->second;
279 VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA 279 VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA
280 280
diff --git a/src/core/hle/kernel/vm_manager.h b/src/core/hle/kernel/vm_manager.h
index 38e0d74d0..aa2265ce6 100644
--- a/src/core/hle/kernel/vm_manager.h
+++ b/src/core/hle/kernel/vm_manager.h
@@ -63,7 +63,7 @@ struct VirtualMemoryArea {
63 /// Virtual base address of the region. 63 /// Virtual base address of the region.
64 VAddr base = 0; 64 VAddr base = 0;
65 /// Size of the region. 65 /// Size of the region.
66 u32 size = 0; 66 u64 size = 0;
67 67
68 VMAType type = VMAType::Free; 68 VMAType type = VMAType::Free;
69 VMAPermission permissions = VMAPermission::None; 69 VMAPermission permissions = VMAPermission::None;
@@ -109,7 +109,7 @@ public:
109 * used. 109 * used.
110 * @note This is the limit used by the New 3DS kernel. Old 3DS used 0x20000000. 110 * @note This is the limit used by the New 3DS kernel. Old 3DS used 0x20000000.
111 */ 111 */
112 static const u32 MAX_ADDRESS = 0x40000000; 112 static const VAddr MAX_ADDRESS = 0x8000000000;
113 113
114 /** 114 /**
115 * A map covering the entirety of the managed address space, keyed by the `base` field of each 115 * A map covering the entirety of the managed address space, keyed by the `base` field of each
@@ -142,7 +142,7 @@ public:
142 * @param state MemoryState tag to attach to the VMA. 142 * @param state MemoryState tag to attach to the VMA.
143 */ 143 */
144 ResultVal<VMAHandle> MapMemoryBlock(VAddr target, std::shared_ptr<std::vector<u8>> block, 144 ResultVal<VMAHandle> MapMemoryBlock(VAddr target, std::shared_ptr<std::vector<u8>> block,
145 size_t offset, u32 size, MemoryState state); 145 size_t offset, u64 size, MemoryState state);
146 146
147 /** 147 /**
148 * Maps an unmanaged host memory pointer at a given address. 148 * Maps an unmanaged host memory pointer at a given address.
@@ -152,7 +152,7 @@ public:
152 * @param size Size of the mapping. 152 * @param size Size of the mapping.
153 * @param state MemoryState tag to attach to the VMA. 153 * @param state MemoryState tag to attach to the VMA.
154 */ 154 */
155 ResultVal<VMAHandle> MapBackingMemory(VAddr target, u8* memory, u32 size, MemoryState state); 155 ResultVal<VMAHandle> MapBackingMemory(VAddr target, u8* memory, u64 size, MemoryState state);
156 156
157 /** 157 /**
158 * Maps a memory-mapped IO region at a given address. 158 * Maps a memory-mapped IO region at a given address.
@@ -163,17 +163,17 @@ public:
163 * @param state MemoryState tag to attach to the VMA. 163 * @param state MemoryState tag to attach to the VMA.
164 * @param mmio_handler The handler that will implement read and write for this MMIO region. 164 * @param mmio_handler The handler that will implement read and write for this MMIO region.
165 */ 165 */
166 ResultVal<VMAHandle> MapMMIO(VAddr target, PAddr paddr, u32 size, MemoryState state, 166 ResultVal<VMAHandle> MapMMIO(VAddr target, PAddr paddr, u64 size, MemoryState state,
167 Memory::MMIORegionPointer mmio_handler); 167 Memory::MMIORegionPointer mmio_handler);
168 168
169 /// Unmaps a range of addresses, splitting VMAs as necessary. 169 /// Unmaps a range of addresses, splitting VMAs as necessary.
170 ResultCode UnmapRange(VAddr target, u32 size); 170 ResultCode UnmapRange(VAddr target, u64 size);
171 171
172 /// Changes the permissions of the given VMA. 172 /// Changes the permissions of the given VMA.
173 VMAHandle Reprotect(VMAHandle vma, VMAPermission new_perms); 173 VMAHandle Reprotect(VMAHandle vma, VMAPermission new_perms);
174 174
175 /// Changes the permissions of a range of addresses, splitting VMAs as necessary. 175 /// Changes the permissions of a range of addresses, splitting VMAs as necessary.
176 ResultCode ReprotectRange(VAddr target, u32 size, VMAPermission new_perms); 176 ResultCode ReprotectRange(VAddr target, u64 size, VMAPermission new_perms);
177 177
178 /** 178 /**
179 * Scans all VMAs and updates the page table range of any that use the given vector as backing 179 * Scans all VMAs and updates the page table range of any that use the given vector as backing
@@ -197,19 +197,19 @@ private:
197 * Carves a VMA of a specific size at the specified address by splitting Free VMAs while doing 197 * Carves a VMA of a specific size at the specified address by splitting Free VMAs while doing
198 * the appropriate error checking. 198 * the appropriate error checking.
199 */ 199 */
200 ResultVal<VMAIter> CarveVMA(VAddr base, u32 size); 200 ResultVal<VMAIter> CarveVMA(VAddr base, u64 size);
201 201
202 /** 202 /**
203 * Splits the edges of the given range of non-Free VMAs so that there is a VMA split at each 203 * Splits the edges of the given range of non-Free VMAs so that there is a VMA split at each
204 * end of the range. 204 * end of the range.
205 */ 205 */
206 ResultVal<VMAIter> CarveVMARange(VAddr base, u32 size); 206 ResultVal<VMAIter> CarveVMARange(VAddr base, u64 size);
207 207
208 /** 208 /**
209 * Splits a VMA in two, at the specified offset. 209 * Splits a VMA in two, at the specified offset.
210 * @returns the right side of the split, with the original iterator becoming the left side. 210 * @returns the right side of the split, with the original iterator becoming the left side.
211 */ 211 */
212 VMAIter SplitVMA(VMAIter vma, u32 offset_in_vma); 212 VMAIter SplitVMA(VMAIter vma, u64 offset_in_vma);
213 213
214 /** 214 /**
215 * Checks for and merges the specified VMA with adjacent ones if possible. 215 * Checks for and merges the specified VMA with adjacent ones if possible.
diff --git a/src/core/memory.cpp b/src/core/memory.cpp
index 65649d9d7..ed453d0c1 100644
--- a/src/core/memory.cpp
+++ b/src/core/memory.cpp
@@ -34,7 +34,7 @@ enum class PageType {
34 34
35struct SpecialRegion { 35struct SpecialRegion {
36 VAddr base; 36 VAddr base;
37 u32 size; 37 u64 size;
38 MMIORegionPointer handler; 38 MMIORegionPointer handler;
39}; 39};
40 40
@@ -49,7 +49,7 @@ struct PageTable {
49 * Array of memory pointers backing each page. An entry can only be non-null if the 49 * Array of memory pointers backing each page. An entry can only be non-null if the
50 * corresponding entry in the `attributes` array is of type `Memory`. 50 * corresponding entry in the `attributes` array is of type `Memory`.
51 */ 51 */
52 std::array<u8*, PAGE_TABLE_NUM_ENTRIES> pointers; 52 std::map<u64, u8*> pointers;
53 53
54 /** 54 /**
55 * Contains MMIO handlers that back memory regions whose entries in the `attribute` array is of 55 * Contains MMIO handlers that back memory regions whose entries in the `attribute` array is of
@@ -61,13 +61,13 @@ struct PageTable {
61 * Array of fine grained page attributes. If it is set to any value other than `Memory`, then 61 * Array of fine grained page attributes. If it is set to any value other than `Memory`, then
62 * the corresponding entry in `pointers` MUST be set to null. 62 * the corresponding entry in `pointers` MUST be set to null.
63 */ 63 */
64 std::array<PageType, PAGE_TABLE_NUM_ENTRIES> attributes; 64 std::map<u64, PageType> attributes;
65 65
66 /** 66 /**
67 * Indicates the number of externally cached resources touching a page that should be 67 * Indicates the number of externally cached resources touching a page that should be
68 * flushed before the memory is accessed 68 * flushed before the memory is accessed
69 */ 69 */
70 std::array<u8, PAGE_TABLE_NUM_ENTRIES> cached_res_count; 70 std::map<u64, u8> cached_res_count;
71}; 71};
72 72
73/// Singular page table used for the singleton process 73/// Singular page table used for the singleton process
@@ -75,18 +75,18 @@ static PageTable main_page_table;
75/// Currently active page table 75/// Currently active page table
76static PageTable* current_page_table = &main_page_table; 76static PageTable* current_page_table = &main_page_table;
77 77
78std::array<u8*, PAGE_TABLE_NUM_ENTRIES>* GetCurrentPageTablePointers() { 78//std::array<u8*, PAGE_TABLE_NUM_ENTRIES>* GetCurrentPageTablePointers() {
79 return &current_page_table->pointers; 79// return &current_page_table->pointers;
80} 80//}
81 81
82static void MapPages(u32 base, u32 size, u8* memory, PageType type) { 82static void MapPages(u64 base, u64 size, u8* memory, PageType type) {
83 LOG_DEBUG(HW_Memory, "Mapping %p onto %08X-%08X", memory, base * PAGE_SIZE, 83 LOG_DEBUG(HW_Memory, "Mapping %p onto %08X-%08X", memory, base * PAGE_SIZE,
84 (base + size) * PAGE_SIZE); 84 (base + size) * PAGE_SIZE);
85 85
86 RasterizerFlushVirtualRegion(base << PAGE_BITS, size * PAGE_SIZE, 86 RasterizerFlushVirtualRegion(base << PAGE_BITS, size * PAGE_SIZE,
87 FlushMode::FlushAndInvalidate); 87 FlushMode::FlushAndInvalidate);
88 88
89 u32 end = base + size; 89 u64 end = base + size;
90 while (base != end) { 90 while (base != end) {
91 ASSERT_MSG(base < PAGE_TABLE_NUM_ENTRIES, "out of range mapping at %08X", base); 91 ASSERT_MSG(base < PAGE_TABLE_NUM_ENTRIES, "out of range mapping at %08X", base);
92 92
@@ -101,18 +101,18 @@ static void MapPages(u32 base, u32 size, u8* memory, PageType type) {
101} 101}
102 102
103void InitMemoryMap() { 103void InitMemoryMap() {
104 main_page_table.pointers.fill(nullptr); 104 //main_page_table.pointers.fill(nullptr);
105 main_page_table.attributes.fill(PageType::Unmapped); 105 //main_page_table.attributes.fill(PageType::Unmapped);
106 main_page_table.cached_res_count.fill(0); 106 //main_page_table.cached_res_count.fill(0);
107} 107}
108 108
109void MapMemoryRegion(VAddr base, u32 size, u8* target) { 109void MapMemoryRegion(VAddr base, u64 size, u8* target) {
110 ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size); 110 ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size);
111 ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base); 111 ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base);
112 MapPages(base / PAGE_SIZE, size / PAGE_SIZE, target, PageType::Memory); 112 MapPages(base / PAGE_SIZE, size / PAGE_SIZE, target, PageType::Memory);
113} 113}
114 114
115void MapIoRegion(VAddr base, u32 size, MMIORegionPointer mmio_handler) { 115void MapIoRegion(VAddr base, u64 size, MMIORegionPointer mmio_handler) {
116 ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size); 116 ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size);
117 ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base); 117 ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base);
118 MapPages(base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Special); 118 MapPages(base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Special);
@@ -120,7 +120,7 @@ void MapIoRegion(VAddr base, u32 size, MMIORegionPointer mmio_handler) {
120 current_page_table->special_regions.emplace_back(SpecialRegion{base, size, mmio_handler}); 120 current_page_table->special_regions.emplace_back(SpecialRegion{base, size, mmio_handler});
121} 121}
122 122
123void UnmapRegion(VAddr base, u32 size) { 123void UnmapRegion(VAddr base, u64 size) {
124 ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size); 124 ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size);
125 ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base); 125 ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base);
126 MapPages(base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Unmapped); 126 MapPages(base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Unmapped);
@@ -222,7 +222,7 @@ void Write(const VAddr vaddr, const T data) {
222 PageType type = current_page_table->attributes[vaddr >> PAGE_BITS]; 222 PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
223 switch (type) { 223 switch (type) {
224 case PageType::Unmapped: 224 case PageType::Unmapped:
225 LOG_ERROR(HW_Memory, "unmapped Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32)data, 225 LOG_ERROR(HW_Memory, "unmapped Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u64)data,
226 vaddr); 226 vaddr);
227 return; 227 return;
228 case PageType::Memory: 228 case PageType::Memory:
@@ -304,12 +304,12 @@ u8* GetPhysicalPointer(PAddr address) {
304 return vaddr ? GetPointer(*vaddr) : nullptr; 304 return vaddr ? GetPointer(*vaddr) : nullptr;
305} 305}
306 306
307void RasterizerMarkRegionCached(PAddr start, u32 size, int count_delta) { 307void RasterizerMarkRegionCached(PAddr start, u64 size, int count_delta) {
308 if (start == 0) { 308 if (start == 0) {
309 return; 309 return;
310 } 310 }
311 311
312 u32 num_pages = ((start + size - 1) >> PAGE_BITS) - (start >> PAGE_BITS) + 1; 312 u64 num_pages = ((start + size - 1) >> PAGE_BITS) - (start >> PAGE_BITS) + 1;
313 PAddr paddr = start; 313 PAddr paddr = start;
314 314
315 for (unsigned i = 0; i < num_pages; ++i, paddr += PAGE_SIZE) { 315 for (unsigned i = 0; i < num_pages; ++i, paddr += PAGE_SIZE) {
@@ -368,13 +368,13 @@ void RasterizerMarkRegionCached(PAddr start, u32 size, int count_delta) {
368 } 368 }
369} 369}
370 370
371void RasterizerFlushRegion(PAddr start, u32 size) { 371void RasterizerFlushRegion(PAddr start, u64 size) {
372 if (VideoCore::g_renderer != nullptr) { 372 if (VideoCore::g_renderer != nullptr) {
373 VideoCore::g_renderer->Rasterizer()->FlushRegion(start, size); 373 VideoCore::g_renderer->Rasterizer()->FlushRegion(start, size);
374 } 374 }
375} 375}
376 376
377void RasterizerFlushAndInvalidateRegion(PAddr start, u32 size) { 377void RasterizerFlushAndInvalidateRegion(PAddr start, u64 size) {
378 // Since pages are unmapped on shutdown after video core is shutdown, the renderer may be 378 // Since pages are unmapped on shutdown after video core is shutdown, the renderer may be
379 // null here 379 // null here
380 if (VideoCore::g_renderer != nullptr) { 380 if (VideoCore::g_renderer != nullptr) {
@@ -382,7 +382,7 @@ void RasterizerFlushAndInvalidateRegion(PAddr start, u32 size) {
382 } 382 }
383} 383}
384 384
385void RasterizerFlushVirtualRegion(VAddr start, u32 size, FlushMode mode) { 385void RasterizerFlushVirtualRegion(VAddr start, u64 size, FlushMode mode) {
386 // Since pages are unmapped on shutdown after video core is shutdown, the renderer may be 386 // Since pages are unmapped on shutdown after video core is shutdown, the renderer may be
387 // null here 387 // null here
388 if (VideoCore::g_renderer != nullptr) { 388 if (VideoCore::g_renderer != nullptr) {
@@ -398,7 +398,7 @@ void RasterizerFlushVirtualRegion(VAddr start, u32 size, FlushMode mode) {
398 VAddr overlap_end = std::min(end, region_end); 398 VAddr overlap_end = std::min(end, region_end);
399 399
400 PAddr physical_start = TryVirtualToPhysicalAddress(overlap_start).value(); 400 PAddr physical_start = TryVirtualToPhysicalAddress(overlap_start).value();
401 u32 overlap_size = overlap_end - overlap_start; 401 u64 overlap_size = overlap_end - overlap_start;
402 402
403 auto* rasterizer = VideoCore::g_renderer->Rasterizer(); 403 auto* rasterizer = VideoCore::g_renderer->Rasterizer();
404 switch (mode) { 404 switch (mode) {
diff --git a/src/core/memory.h b/src/core/memory.h
index c8c56babd..e8d796d24 100644
--- a/src/core/memory.h
+++ b/src/core/memory.h
@@ -16,10 +16,10 @@ namespace Memory {
16 * Page size used by the ARM architecture. This is the smallest granularity with which memory can 16 * Page size used by the ARM architecture. This is the smallest granularity with which memory can
17 * be mapped. 17 * be mapped.
18 */ 18 */
19const u32 PAGE_SIZE = 0x1000;
20const u32 PAGE_MASK = PAGE_SIZE - 1;
21const int PAGE_BITS = 12; 19const int PAGE_BITS = 12;
22const size_t PAGE_TABLE_NUM_ENTRIES = 1 << (32 - PAGE_BITS); 20const u64 PAGE_SIZE = 1 << PAGE_BITS;
21const u64 PAGE_MASK = PAGE_SIZE - 1;
22const size_t PAGE_TABLE_NUM_ENTRIES = 1ULL << (64 - PAGE_BITS);
23 23
24/// Physical memory regions as seen from the ARM11 24/// Physical memory regions as seen from the ARM11
25enum : PAddr { 25enum : PAddr {
@@ -178,17 +178,17 @@ u8* GetPhysicalPointer(PAddr address);
178 * Adds the supplied value to the rasterizer resource cache counter of each 178 * Adds the supplied value to the rasterizer resource cache counter of each
179 * page touching the region. 179 * page touching the region.
180 */ 180 */
181void RasterizerMarkRegionCached(PAddr start, u32 size, int count_delta); 181void RasterizerMarkRegionCached(PAddr start, u64 size, int count_delta);
182 182
183/** 183/**
184 * Flushes any externally cached rasterizer resources touching the given region. 184 * Flushes any externally cached rasterizer resources touching the given region.
185 */ 185 */
186void RasterizerFlushRegion(PAddr start, u32 size); 186void RasterizerFlushRegion(PAddr start, u64 size);
187 187
188/** 188/**
189 * Flushes and invalidates any externally cached rasterizer resources touching the given region. 189 * Flushes and invalidates any externally cached rasterizer resources touching the given region.
190 */ 190 */
191void RasterizerFlushAndInvalidateRegion(PAddr start, u32 size); 191void RasterizerFlushAndInvalidateRegion(PAddr start, u64 size);
192 192
193enum class FlushMode { 193enum class FlushMode {
194 /// Write back modified surfaces to RAM 194 /// Write back modified surfaces to RAM
@@ -201,12 +201,12 @@ enum class FlushMode {
201 * Flushes and invalidates any externally cached rasterizer resources touching the given virtual 201 * Flushes and invalidates any externally cached rasterizer resources touching the given virtual
202 * address region. 202 * address region.
203 */ 203 */
204void RasterizerFlushVirtualRegion(VAddr start, u32 size, FlushMode mode); 204void RasterizerFlushVirtualRegion(VAddr start, u64 size, FlushMode mode);
205 205
206/** 206/**
207 * Dynarmic has an optimization to memory accesses when the pointer to the page exists that 207 * Dynarmic has an optimization to memory accesses when the pointer to the page exists that
208 * can be used by setting up the current page table as a callback. This function is used to 208 * can be used by setting up the current page table as a callback. This function is used to
209 * retrieve the current page table for that purpose. 209 * retrieve the current page table for that purpose.
210 */ 210 */
211std::array<u8*, PAGE_TABLE_NUM_ENTRIES>* GetCurrentPageTablePointers(); 211//std::array<u8*, PAGE_TABLE_NUM_ENTRIES>* GetCurrentPageTablePointers();
212} 212}
diff --git a/src/core/memory_setup.h b/src/core/memory_setup.h
index 3fdf3a87d..fc3fda466 100644
--- a/src/core/memory_setup.h
+++ b/src/core/memory_setup.h
@@ -18,7 +18,7 @@ void InitMemoryMap();
18 * @param size The amount of bytes to map. Must be page-aligned. 18 * @param size The amount of bytes to map. Must be page-aligned.
19 * @param target Buffer with the memory backing the mapping. Must be of length at least `size`. 19 * @param target Buffer with the memory backing the mapping. Must be of length at least `size`.
20 */ 20 */
21void MapMemoryRegion(VAddr base, u32 size, u8* target); 21void MapMemoryRegion(VAddr base, u64 size, u8* target);
22 22
23/** 23/**
24 * Maps a region of the emulated process address space as a IO region. 24 * Maps a region of the emulated process address space as a IO region.
@@ -26,7 +26,7 @@ void MapMemoryRegion(VAddr base, u32 size, u8* target);
26 * @param size The amount of bytes to map. Must be page-aligned. 26 * @param size The amount of bytes to map. Must be page-aligned.
27 * @param mmio_handler The handler that backs the mapping. 27 * @param mmio_handler The handler that backs the mapping.
28 */ 28 */
29void MapIoRegion(VAddr base, u32 size, MMIORegionPointer mmio_handler); 29void MapIoRegion(VAddr base, u64 size, MMIORegionPointer mmio_handler);
30 30
31void UnmapRegion(VAddr base, u32 size); 31void UnmapRegion(VAddr base, u64 size);
32} 32}