summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/core/arm/arm_interface.cpp3
-rw-r--r--src/core/cpu_manager.cpp161
-rw-r--r--src/core/cpu_manager.h14
-rw-r--r--src/core/hle/kernel/global_scheduler_context.cpp2
-rw-r--r--src/core/hle/kernel/k_interrupt_manager.cpp7
-rw-r--r--src/core/hle/kernel/k_scheduler.cpp723
-rw-r--r--src/core/hle/kernel/k_scheduler.h220
-rw-r--r--src/core/hle/kernel/k_scheduler_lock.h2
-rw-r--r--src/core/hle/kernel/k_thread.cpp11
-rw-r--r--src/core/hle/kernel/k_thread.h5
-rw-r--r--src/core/hle/kernel/kernel.cpp10
-rw-r--r--src/core/hle/kernel/svc.cpp7
12 files changed, 563 insertions, 602 deletions
diff --git a/src/core/arm/arm_interface.cpp b/src/core/arm/arm_interface.cpp
index cef79b245..cdf388fb9 100644
--- a/src/core/arm/arm_interface.cpp
+++ b/src/core/arm/arm_interface.cpp
@@ -155,9 +155,10 @@ void ARM_Interface::Run() {
155 break; 155 break;
156 } 156 }
157 157
158 // Handle syscalls and scheduling (this may change the current thread) 158 // Handle syscalls and scheduling (this may change the current thread/core)
159 if (Has(hr, svc_call)) { 159 if (Has(hr, svc_call)) {
160 Kernel::Svc::Call(system, GetSvcNumber()); 160 Kernel::Svc::Call(system, GetSvcNumber());
161 break;
161 } 162 }
162 if (Has(hr, break_loop) || !uses_wall_clock) { 163 if (Has(hr, break_loop) || !uses_wall_clock) {
163 break; 164 break;
diff --git a/src/core/cpu_manager.cpp b/src/core/cpu_manager.cpp
index 37d3d83b9..428194129 100644
--- a/src/core/cpu_manager.cpp
+++ b/src/core/cpu_manager.cpp
@@ -8,6 +8,7 @@
8#include "core/core.h" 8#include "core/core.h"
9#include "core/core_timing.h" 9#include "core/core_timing.h"
10#include "core/cpu_manager.h" 10#include "core/cpu_manager.h"
11#include "core/hle/kernel/k_interrupt_manager.h"
11#include "core/hle/kernel/k_scheduler.h" 12#include "core/hle/kernel/k_scheduler.h"
12#include "core/hle/kernel/k_thread.h" 13#include "core/hle/kernel/k_thread.h"
13#include "core/hle/kernel/kernel.h" 14#include "core/hle/kernel/kernel.h"
@@ -41,44 +42,65 @@ void CpuManager::Shutdown() {
41 } 42 }
42} 43}
43 44
44void CpuManager::GuestThreadFunction() { 45void CpuManager::GuestActivateFunction() {
45 if (is_multicore) { 46 if (is_multicore) {
46 MultiCoreRunGuestThread(); 47 MultiCoreGuestActivate();
47 } else { 48 } else {
48 SingleCoreRunGuestThread(); 49 SingleCoreGuestActivate();
49 } 50 }
50} 51}
51 52
52void CpuManager::GuestRewindFunction() { 53void CpuManager::GuestThreadFunction() {
53 if (is_multicore) { 54 if (is_multicore) {
54 MultiCoreRunGuestLoop(); 55 MultiCoreRunGuestThread();
55 } else { 56 } else {
56 SingleCoreRunGuestLoop(); 57 SingleCoreRunGuestThread();
57 } 58 }
58} 59}
59 60
60void CpuManager::IdleThreadFunction() { 61void CpuManager::ShutdownThreadFunction() {
61 if (is_multicore) { 62 ShutdownThread();
62 MultiCoreRunIdleThread(); 63}
63 } else { 64
64 SingleCoreRunIdleThread(); 65void CpuManager::WaitForAndHandleInterrupt() {
66 auto& kernel = system.Kernel();
67 auto& physical_core = kernel.CurrentPhysicalCore();
68
69 ASSERT(Kernel::GetCurrentThread(kernel).GetDisableDispatchCount() == 1);
70
71 if (!physical_core.IsInterrupted()) {
72 physical_core.Idle();
65 } 73 }
74
75 HandleInterrupt();
66} 76}
67 77
68void CpuManager::ShutdownThreadFunction() { 78void CpuManager::HandleInterrupt() {
69 ShutdownThread(); 79 auto& kernel = system.Kernel();
80 auto core_index = kernel.CurrentPhysicalCoreIndex();
81
82 Kernel::KInterruptManager::HandleInterrupt(kernel, static_cast<s32>(core_index));
70} 83}
71 84
72/////////////////////////////////////////////////////////////////////////////// 85///////////////////////////////////////////////////////////////////////////////
73/// MultiCore /// 86/// MultiCore ///
74/////////////////////////////////////////////////////////////////////////////// 87///////////////////////////////////////////////////////////////////////////////
75 88
89void CpuManager::MultiCoreGuestActivate() {
90 // Similar to the HorizonKernelMain callback in HOS
91 auto& kernel = system.Kernel();
92 auto* scheduler = kernel.CurrentScheduler();
93
94 scheduler->Activate();
95 UNREACHABLE();
96}
97
76void CpuManager::MultiCoreRunGuestThread() { 98void CpuManager::MultiCoreRunGuestThread() {
99 // Similar to UserModeThreadStarter in HOS
77 auto& kernel = system.Kernel(); 100 auto& kernel = system.Kernel();
78 kernel.CurrentScheduler()->OnThreadStart(); 101 auto* thread = kernel.GetCurrentEmuThread();
79 auto* thread = kernel.CurrentScheduler()->GetSchedulerCurrentThread(); 102 thread->EnableDispatch();
80 auto& host_context = thread->GetHostContext(); 103
81 host_context->SetRewindPoint([this] { GuestRewindFunction(); });
82 MultiCoreRunGuestLoop(); 104 MultiCoreRunGuestLoop();
83} 105}
84 106
@@ -91,18 +113,8 @@ void CpuManager::MultiCoreRunGuestLoop() {
91 physical_core->Run(); 113 physical_core->Run();
92 physical_core = &kernel.CurrentPhysicalCore(); 114 physical_core = &kernel.CurrentPhysicalCore();
93 } 115 }
94 {
95 Kernel::KScopedDisableDispatch dd(kernel);
96 physical_core->ArmInterface().ClearExclusiveState();
97 }
98 }
99}
100 116
101void CpuManager::MultiCoreRunIdleThread() { 117 HandleInterrupt();
102 auto& kernel = system.Kernel();
103 while (true) {
104 Kernel::KScopedDisableDispatch dd(kernel);
105 kernel.CurrentPhysicalCore().Idle();
106 } 118 }
107} 119}
108 120
@@ -110,83 +122,20 @@ void CpuManager::MultiCoreRunIdleThread() {
110/// SingleCore /// 122/// SingleCore ///
111/////////////////////////////////////////////////////////////////////////////// 123///////////////////////////////////////////////////////////////////////////////
112 124
113void CpuManager::SingleCoreRunGuestThread() { 125void CpuManager::SingleCoreGuestActivate() {}
114 auto& kernel = system.Kernel();
115 kernel.CurrentScheduler()->OnThreadStart();
116 auto* thread = kernel.CurrentScheduler()->GetSchedulerCurrentThread();
117 auto& host_context = thread->GetHostContext();
118 host_context->SetRewindPoint([this] { GuestRewindFunction(); });
119 SingleCoreRunGuestLoop();
120}
121
122void CpuManager::SingleCoreRunGuestLoop() {
123 auto& kernel = system.Kernel();
124 while (true) {
125 auto* physical_core = &kernel.CurrentPhysicalCore();
126 if (!physical_core->IsInterrupted()) {
127 physical_core->Run();
128 physical_core = &kernel.CurrentPhysicalCore();
129 }
130 kernel.SetIsPhantomModeForSingleCore(true);
131 system.CoreTiming().Advance();
132 kernel.SetIsPhantomModeForSingleCore(false);
133 physical_core->ArmInterface().ClearExclusiveState();
134 PreemptSingleCore();
135 auto& scheduler = kernel.Scheduler(current_core);
136 scheduler.RescheduleCurrentCore();
137 }
138}
139
140void CpuManager::SingleCoreRunIdleThread() {
141 auto& kernel = system.Kernel();
142 while (true) {
143 auto& physical_core = kernel.CurrentPhysicalCore();
144 PreemptSingleCore(false);
145 system.CoreTiming().AddTicks(1000U);
146 idle_count++;
147 auto& scheduler = physical_core.Scheduler();
148 scheduler.RescheduleCurrentCore();
149 }
150}
151 126
152void CpuManager::PreemptSingleCore(bool from_running_enviroment) { 127void CpuManager::SingleCoreRunGuestThread() {}
153 {
154 auto& kernel = system.Kernel();
155 auto& scheduler = kernel.Scheduler(current_core);
156 Kernel::KThread* current_thread = scheduler.GetSchedulerCurrentThread();
157 if (idle_count >= 4 || from_running_enviroment) {
158 if (!from_running_enviroment) {
159 system.CoreTiming().Idle();
160 idle_count = 0;
161 }
162 kernel.SetIsPhantomModeForSingleCore(true);
163 system.CoreTiming().Advance();
164 kernel.SetIsPhantomModeForSingleCore(false);
165 }
166 current_core.store((current_core + 1) % Core::Hardware::NUM_CPU_CORES);
167 system.CoreTiming().ResetTicks();
168 scheduler.Unload(scheduler.GetSchedulerCurrentThread());
169 128
170 auto& next_scheduler = kernel.Scheduler(current_core); 129void CpuManager::SingleCoreRunGuestLoop() {}
171 Common::Fiber::YieldTo(current_thread->GetHostContext(), *next_scheduler.ControlContext());
172 }
173 130
174 // May have changed scheduler 131void CpuManager::PreemptSingleCore(bool from_running_enviroment) {}
175 {
176 auto& scheduler = system.Kernel().Scheduler(current_core);
177 scheduler.Reload(scheduler.GetSchedulerCurrentThread());
178 if (!scheduler.IsIdle()) {
179 idle_count = 0;
180 }
181 }
182}
183 132
184void CpuManager::ShutdownThread() { 133void CpuManager::ShutdownThread() {
185 auto& kernel = system.Kernel(); 134 auto& kernel = system.Kernel();
135 auto* thread = kernel.GetCurrentEmuThread();
186 auto core = is_multicore ? kernel.CurrentPhysicalCoreIndex() : 0; 136 auto core = is_multicore ? kernel.CurrentPhysicalCoreIndex() : 0;
187 auto* current_thread = kernel.GetCurrentEmuThread();
188 137
189 Common::Fiber::YieldTo(current_thread->GetHostContext(), *core_data[core].host_context); 138 Common::Fiber::YieldTo(thread->GetHostContext(), *core_data[core].host_context);
190 UNREACHABLE(); 139 UNREACHABLE();
191} 140}
192 141
@@ -218,9 +167,21 @@ void CpuManager::RunThread(std::size_t core) {
218 system.GPU().ObtainContext(); 167 system.GPU().ObtainContext();
219 } 168 }
220 169
221 auto* current_thread = system.Kernel().CurrentScheduler()->GetIdleThread(); 170 auto& kernel = system.Kernel();
222 Kernel::SetCurrentThread(system.Kernel(), current_thread); 171
223 Common::Fiber::YieldTo(data.host_context, *current_thread->GetHostContext()); 172 auto* main_thread = Kernel::KThread::Create(kernel);
173 main_thread->SetName(fmt::format("MainThread:{}", core));
174 ASSERT(Kernel::KThread::InitializeMainThread(system, main_thread, static_cast<s32>(core))
175 .IsSuccess());
176
177 auto* idle_thread = Kernel::KThread::Create(kernel);
178 ASSERT(Kernel::KThread::InitializeIdleThread(system, idle_thread, static_cast<s32>(core))
179 .IsSuccess());
180
181 kernel.SetCurrentEmuThread(main_thread);
182 kernel.CurrentScheduler()->Initialize(idle_thread);
183
184 Common::Fiber::YieldTo(data.host_context, *main_thread->GetHostContext());
224} 185}
225 186
226} // namespace Core 187} // namespace Core
diff --git a/src/core/cpu_manager.h b/src/core/cpu_manager.h
index 76dc58ee1..8143424af 100644
--- a/src/core/cpu_manager.h
+++ b/src/core/cpu_manager.h
@@ -5,6 +5,7 @@
5 5
6#include <array> 6#include <array>
7#include <atomic> 7#include <atomic>
8#include <csetjmp>
8#include <functional> 9#include <functional>
9#include <memory> 10#include <memory>
10#include <thread> 11#include <thread>
@@ -47,10 +48,14 @@ public:
47 gpu_barrier->Sync(); 48 gpu_barrier->Sync();
48 } 49 }
49 50
51 void WaitForAndHandleInterrupt();
50 void Initialize(); 52 void Initialize();
51 void Shutdown(); 53 void Shutdown();
52 54
53 std::function<void()> GetGuestThreadStartFunc() { 55 std::function<void()> GetGuestActivateFunc() {
56 return [this] { GuestActivateFunction(); };
57 }
58 std::function<void()> GetGuestThreadFunc() {
54 return [this] { GuestThreadFunction(); }; 59 return [this] { GuestThreadFunction(); };
55 } 60 }
56 std::function<void()> GetIdleThreadStartFunc() { 61 std::function<void()> GetIdleThreadStartFunc() {
@@ -67,21 +72,22 @@ public:
67 } 72 }
68 73
69private: 74private:
75 void GuestActivateFunction();
70 void GuestThreadFunction(); 76 void GuestThreadFunction();
71 void GuestRewindFunction();
72 void IdleThreadFunction(); 77 void IdleThreadFunction();
73 void ShutdownThreadFunction(); 78 void ShutdownThreadFunction();
74 79
80 void MultiCoreGuestActivate();
75 void MultiCoreRunGuestThread(); 81 void MultiCoreRunGuestThread();
76 void MultiCoreRunGuestLoop(); 82 void MultiCoreRunGuestLoop();
77 void MultiCoreRunIdleThread();
78 83
84 void SingleCoreGuestActivate();
79 void SingleCoreRunGuestThread(); 85 void SingleCoreRunGuestThread();
80 void SingleCoreRunGuestLoop(); 86 void SingleCoreRunGuestLoop();
81 void SingleCoreRunIdleThread();
82 87
83 static void ThreadStart(std::stop_token stop_token, CpuManager& cpu_manager, std::size_t core); 88 static void ThreadStart(std::stop_token stop_token, CpuManager& cpu_manager, std::size_t core);
84 89
90 void HandleInterrupt();
85 void ShutdownThread(); 91 void ShutdownThread();
86 void RunThread(std::size_t core); 92 void RunThread(std::size_t core);
87 93
diff --git a/src/core/hle/kernel/global_scheduler_context.cpp b/src/core/hle/kernel/global_scheduler_context.cpp
index 164436b26..21fd5cb67 100644
--- a/src/core/hle/kernel/global_scheduler_context.cpp
+++ b/src/core/hle/kernel/global_scheduler_context.cpp
@@ -41,7 +41,7 @@ void GlobalSchedulerContext::PreemptThreads() {
41 ASSERT(IsLocked()); 41 ASSERT(IsLocked());
42 for (u32 core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) { 42 for (u32 core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
43 const u32 priority = preemption_priorities[core_id]; 43 const u32 priority = preemption_priorities[core_id];
44 kernel.Scheduler(core_id).RotateScheduledQueue(core_id, priority); 44 KScheduler::RotateScheduledQueue(kernel, core_id, priority);
45 45
46 // Signal an interrupt occurred. For core 3, this is a certainty, as preemption will result 46 // Signal an interrupt occurred. For core 3, this is a certainty, as preemption will result
47 // in the rotator thread being scheduled. For cores 0-2, this is to simulate or system 47 // in the rotator thread being scheduled. For cores 0-2, this is to simulate or system
diff --git a/src/core/hle/kernel/k_interrupt_manager.cpp b/src/core/hle/kernel/k_interrupt_manager.cpp
index d606a7f86..1b577a5b3 100644
--- a/src/core/hle/kernel/k_interrupt_manager.cpp
+++ b/src/core/hle/kernel/k_interrupt_manager.cpp
@@ -6,6 +6,7 @@
6#include "core/hle/kernel/k_scheduler.h" 6#include "core/hle/kernel/k_scheduler.h"
7#include "core/hle/kernel/k_thread.h" 7#include "core/hle/kernel/k_thread.h"
8#include "core/hle/kernel/kernel.h" 8#include "core/hle/kernel/kernel.h"
9#include "core/hle/kernel/physical_core.h"
9 10
10namespace Kernel::KInterruptManager { 11namespace Kernel::KInterruptManager {
11 12
@@ -15,6 +16,9 @@ void HandleInterrupt(KernelCore& kernel, s32 core_id) {
15 return; 16 return;
16 } 17 }
17 18
19 // Acknowledge the interrupt.
20 kernel.PhysicalCore(core_id).ClearInterrupt();
21
18 auto& current_thread = GetCurrentThread(kernel); 22 auto& current_thread = GetCurrentThread(kernel);
19 23
20 // If the user disable count is set, we may need to pin the current thread. 24 // If the user disable count is set, we may need to pin the current thread.
@@ -27,6 +31,9 @@ void HandleInterrupt(KernelCore& kernel, s32 core_id) {
27 // Set the interrupt flag for the thread. 31 // Set the interrupt flag for the thread.
28 GetCurrentThread(kernel).SetInterruptFlag(); 32 GetCurrentThread(kernel).SetInterruptFlag();
29 } 33 }
34
35 // Request interrupt scheduling.
36 kernel.CurrentScheduler()->RequestScheduleOnInterrupt();
30} 37}
31 38
32} // namespace Kernel::KInterruptManager 39} // namespace Kernel::KInterruptManager
diff --git a/src/core/hle/kernel/k_scheduler.cpp b/src/core/hle/kernel/k_scheduler.cpp
index d599d2bcb..13915dbd9 100644
--- a/src/core/hle/kernel/k_scheduler.cpp
+++ b/src/core/hle/kernel/k_scheduler.cpp
@@ -27,69 +27,162 @@ static void IncrementScheduledCount(Kernel::KThread* thread) {
27 } 27 }
28} 28}
29 29
30void KScheduler::RescheduleCores(KernelCore& kernel, u64 cores_pending_reschedule) { 30KScheduler::KScheduler(KernelCore& kernel_) : kernel{kernel_} {
31 auto scheduler = kernel.CurrentScheduler(); 31 m_idle_stack = std::make_shared<Common::Fiber>([this] {
32 32 while (true) {
33 u32 current_core{0xF}; 33 ScheduleImplOffStack();
34 bool must_context_switch{};
35 if (scheduler) {
36 current_core = scheduler->core_id;
37 // TODO(bunnei): Should be set to true when we deprecate single core
38 must_context_switch = !kernel.IsPhantomModeForSingleCore();
39 }
40
41 while (cores_pending_reschedule != 0) {
42 const auto core = static_cast<u32>(std::countr_zero(cores_pending_reschedule));
43 ASSERT(core < Core::Hardware::NUM_CPU_CORES);
44 if (!must_context_switch || core != current_core) {
45 auto& phys_core = kernel.PhysicalCore(core);
46 phys_core.Interrupt();
47 } 34 }
48 cores_pending_reschedule &= ~(1ULL << core); 35 });
36
37 m_state.needs_scheduling = true;
38}
39
40KScheduler::~KScheduler() = default;
41
42void KScheduler::SetInterruptTaskRunnable() {
43 m_state.interrupt_task_runnable = true;
44 m_state.needs_scheduling = true;
45}
46
47void KScheduler::RequestScheduleOnInterrupt() {
48 m_state.needs_scheduling = true;
49
50 if (CanSchedule(kernel)) {
51 ScheduleOnInterrupt();
49 } 52 }
53}
50 54
51 for (std::size_t core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; ++core_id) { 55void KScheduler::DisableScheduling(KernelCore& kernel) {
52 if (kernel.PhysicalCore(core_id).IsInterrupted()) { 56 ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() >= 0);
53 KInterruptManager::HandleInterrupt(kernel, static_cast<s32>(core_id)); 57 GetCurrentThread(kernel).DisableDispatch();
58}
59
60void KScheduler::EnableScheduling(KernelCore& kernel, u64 cores_needing_scheduling) {
61 ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() >= 1);
62
63 auto* scheduler = kernel.CurrentScheduler();
64
65 if (!scheduler) {
66 // HACK: we cannot schedule from this thread, it is not a core thread
67 RescheduleCores(kernel, cores_needing_scheduling);
68 if (GetCurrentThread(kernel).GetDisableDispatchCount() == 1) {
69 // Special case to ensure dummy threads that are waiting block
70 GetCurrentThread(kernel).IfDummyThreadTryWait();
54 } 71 }
72 GetCurrentThread(kernel).EnableDispatch();
73 return;
74 }
75
76 scheduler->RescheduleOtherCores(cores_needing_scheduling);
77
78 if (GetCurrentThread(kernel).GetDisableDispatchCount() > 1) {
79 GetCurrentThread(kernel).EnableDispatch();
80 } else {
81 scheduler->RescheduleCurrentCore();
82 }
83}
84
85u64 KScheduler::UpdateHighestPriorityThreads(KernelCore& kernel) {
86 if (IsSchedulerUpdateNeeded(kernel)) {
87 return UpdateHighestPriorityThreadsImpl(kernel);
88 } else {
89 return 0;
90 }
91}
92
93void KScheduler::Schedule() {
94 ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() == 1);
95 ASSERT(m_core_id == GetCurrentCoreId(kernel));
96
97 ScheduleImpl();
98}
99
100void KScheduler::ScheduleOnInterrupt() {
101 GetCurrentThread(kernel).DisableDispatch();
102 Schedule();
103 GetCurrentThread(kernel).EnableDispatch();
104}
105
106void KScheduler::RescheduleCurrentCore() {
107 ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() == 1);
108
109 GetCurrentThread(kernel).EnableDispatch();
110
111 if (m_state.needs_scheduling.load()) {
112 // Disable interrupts, and then check again if rescheduling is needed.
113 // KScopedInterruptDisable intr_disable;
114
115 kernel.CurrentScheduler()->RescheduleCurrentCoreImpl();
55 } 116 }
117}
56 118
57 if (must_context_switch) { 119void KScheduler::RescheduleCurrentCoreImpl() {
58 auto core_scheduler = kernel.CurrentScheduler(); 120 // Check that scheduling is needed.
59 kernel.ExitSVCProfile(); 121 if (m_state.needs_scheduling.load()) [[likely]] {
60 core_scheduler->RescheduleCurrentCore(); 122 GetCurrentThread(kernel).DisableDispatch();
61 kernel.EnterSVCProfile(); 123 Schedule();
124 GetCurrentThread(kernel).EnableDispatch();
62 } 125 }
63} 126}
64 127
128void KScheduler::Initialize(KThread* idle_thread) {
129 // Set core ID/idle thread/interrupt task manager.
130 m_core_id = GetCurrentCoreId(kernel);
131 m_idle_thread = idle_thread;
132 // m_state.idle_thread_stack = m_idle_thread->GetStackTop();
133 // m_state.interrupt_task_manager = &kernel.GetInterruptTaskManager();
134
135 // Insert the main thread into the priority queue.
136 // {
137 // KScopedSchedulerLock lk{kernel};
138 // GetPriorityQueue(kernel).PushBack(GetCurrentThreadPointer(kernel));
139 // SetSchedulerUpdateNeeded(kernel);
140 // }
141
142 // Bind interrupt handler.
143 // kernel.GetInterruptManager().BindHandler(
144 // GetSchedulerInterruptHandler(kernel), KInterruptName::Scheduler, m_core_id,
145 // KInterruptController::PriorityLevel_Scheduler, false, false);
146
147 // Set the current thread.
148 m_current_thread = GetCurrentThreadPointer(kernel);
149}
150
151void KScheduler::Activate() {
152 ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() == 1);
153
154 // m_state.should_count_idle = KTargetSystem::IsDebugMode();
155 m_is_active = true;
156 RescheduleCurrentCore();
157}
158
65u64 KScheduler::UpdateHighestPriorityThread(KThread* highest_thread) { 159u64 KScheduler::UpdateHighestPriorityThread(KThread* highest_thread) {
66 KScopedSpinLock lk{guard}; 160 if (KThread* prev_highest_thread = m_state.highest_priority_thread;
67 if (KThread* prev_highest_thread = state.highest_priority_thread; 161 prev_highest_thread != highest_thread) [[likely]] {
68 prev_highest_thread != highest_thread) { 162 if (prev_highest_thread != nullptr) [[likely]] {
69 if (prev_highest_thread != nullptr) {
70 IncrementScheduledCount(prev_highest_thread); 163 IncrementScheduledCount(prev_highest_thread);
71 prev_highest_thread->SetLastScheduledTick(system.CoreTiming().GetCPUTicks()); 164 prev_highest_thread->SetLastScheduledTick(kernel.System().CoreTiming().GetCPUTicks());
72 } 165 }
73 if (state.should_count_idle) { 166 if (m_state.should_count_idle) {
74 if (highest_thread != nullptr) { 167 if (highest_thread != nullptr) [[likely]] {
75 if (KProcess* process = highest_thread->GetOwnerProcess(); process != nullptr) { 168 if (KProcess* process = highest_thread->GetOwnerProcess(); process != nullptr) {
76 process->SetRunningThread(core_id, highest_thread, state.idle_count); 169 process->SetRunningThread(m_core_id, highest_thread, m_state.idle_count);
77 } 170 }
78 } else { 171 } else {
79 state.idle_count++; 172 m_state.idle_count++;
80 } 173 }
81 } 174 }
82 175
83 state.highest_priority_thread = highest_thread; 176 m_state.highest_priority_thread = highest_thread;
84 state.needs_scheduling.store(true); 177 m_state.needs_scheduling = true;
85 return (1ULL << core_id); 178 return (1ULL << m_core_id);
86 } else { 179 } else {
87 return 0; 180 return 0;
88 } 181 }
89} 182}
90 183
91u64 KScheduler::UpdateHighestPriorityThreadsImpl(KernelCore& kernel) { 184u64 KScheduler::UpdateHighestPriorityThreadsImpl(KernelCore& kernel) {
92 ASSERT(kernel.GlobalSchedulerContext().IsLocked()); 185 ASSERT(IsSchedulerLockedByCurrentThread(kernel));
93 186
94 // Clear that we need to update. 187 // Clear that we need to update.
95 ClearSchedulerUpdateNeeded(kernel); 188 ClearSchedulerUpdateNeeded(kernel);
@@ -98,18 +191,20 @@ u64 KScheduler::UpdateHighestPriorityThreadsImpl(KernelCore& kernel) {
98 KThread* top_threads[Core::Hardware::NUM_CPU_CORES]; 191 KThread* top_threads[Core::Hardware::NUM_CPU_CORES];
99 auto& priority_queue = GetPriorityQueue(kernel); 192 auto& priority_queue = GetPriorityQueue(kernel);
100 193
101 /// We want to go over all cores, finding the highest priority thread and determining if 194 // We want to go over all cores, finding the highest priority thread and determining if
102 /// scheduling is needed for that core. 195 // scheduling is needed for that core.
103 for (size_t core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) { 196 for (size_t core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
104 KThread* top_thread = priority_queue.GetScheduledFront(static_cast<s32>(core_id)); 197 KThread* top_thread = priority_queue.GetScheduledFront(static_cast<s32>(core_id));
105 if (top_thread != nullptr) { 198 if (top_thread != nullptr) {
106 // If the thread has no waiters, we need to check if the process has a thread pinned. 199 // We need to check if the thread's process has a pinned thread.
107 if (top_thread->GetNumKernelWaiters() == 0) { 200 if (KProcess* parent = top_thread->GetOwnerProcess()) {
108 if (KProcess* parent = top_thread->GetOwnerProcess(); parent != nullptr) { 201 // Check that there's a pinned thread other than the current top thread.
109 if (KThread* pinned = parent->GetPinnedThread(static_cast<s32>(core_id)); 202 if (KThread* pinned = parent->GetPinnedThread(static_cast<s32>(core_id));
110 pinned != nullptr && pinned != top_thread) { 203 pinned != nullptr && pinned != top_thread) {
111 // We prefer our parent's pinned thread if possible. However, we also don't 204 // We need to prefer threads with kernel waiters to the pinned thread.
112 // want to schedule un-runnable threads. 205 if (top_thread->GetNumKernelWaiters() ==
206 0 /* && top_thread != parent->GetExceptionThread() */) {
207 // If the pinned thread is runnable, use it.
113 if (pinned->GetRawState() == ThreadState::Runnable) { 208 if (pinned->GetRawState() == ThreadState::Runnable) {
114 top_thread = pinned; 209 top_thread = pinned;
115 } else { 210 } else {
@@ -129,7 +224,8 @@ u64 KScheduler::UpdateHighestPriorityThreadsImpl(KernelCore& kernel) {
129 224
130 // Idle cores are bad. We're going to try to migrate threads to each idle core in turn. 225 // Idle cores are bad. We're going to try to migrate threads to each idle core in turn.
131 while (idle_cores != 0) { 226 while (idle_cores != 0) {
132 const auto core_id = static_cast<u32>(std::countr_zero(idle_cores)); 227 const s32 core_id = static_cast<s32>(std::countr_zero(idle_cores));
228
133 if (KThread* suggested = priority_queue.GetSuggestedFront(core_id); suggested != nullptr) { 229 if (KThread* suggested = priority_queue.GetSuggestedFront(core_id); suggested != nullptr) {
134 s32 migration_candidates[Core::Hardware::NUM_CPU_CORES]; 230 s32 migration_candidates[Core::Hardware::NUM_CPU_CORES];
135 size_t num_candidates = 0; 231 size_t num_candidates = 0;
@@ -150,7 +246,6 @@ u64 KScheduler::UpdateHighestPriorityThreadsImpl(KernelCore& kernel) {
150 // The suggested thread isn't bound to its core, so we can migrate it! 246 // The suggested thread isn't bound to its core, so we can migrate it!
151 suggested->SetActiveCore(core_id); 247 suggested->SetActiveCore(core_id);
152 priority_queue.ChangeCore(suggested_core, suggested); 248 priority_queue.ChangeCore(suggested_core, suggested);
153
154 top_threads[core_id] = suggested; 249 top_threads[core_id] = suggested;
155 cores_needing_scheduling |= 250 cores_needing_scheduling |=
156 kernel.Scheduler(core_id).UpdateHighestPriorityThread(top_threads[core_id]); 251 kernel.Scheduler(core_id).UpdateHighestPriorityThread(top_threads[core_id]);
@@ -183,7 +278,6 @@ u64 KScheduler::UpdateHighestPriorityThreadsImpl(KernelCore& kernel) {
183 // Perform the migration. 278 // Perform the migration.
184 suggested->SetActiveCore(core_id); 279 suggested->SetActiveCore(core_id);
185 priority_queue.ChangeCore(candidate_core, suggested); 280 priority_queue.ChangeCore(candidate_core, suggested);
186
187 top_threads[core_id] = suggested; 281 top_threads[core_id] = suggested;
188 cores_needing_scheduling |= 282 cores_needing_scheduling |=
189 kernel.Scheduler(core_id).UpdateHighestPriorityThread( 283 kernel.Scheduler(core_id).UpdateHighestPriorityThread(
@@ -200,24 +294,223 @@ u64 KScheduler::UpdateHighestPriorityThreadsImpl(KernelCore& kernel) {
200 return cores_needing_scheduling; 294 return cores_needing_scheduling;
201} 295}
202 296
297void KScheduler::SwitchThread(KThread* next_thread) {
298 KProcess* const cur_process = kernel.CurrentProcess();
299 KThread* const cur_thread = GetCurrentThreadPointer(kernel);
300
301 // We never want to schedule a null thread, so use the idle thread if we don't have a next.
302 if (next_thread == nullptr) {
303 next_thread = m_idle_thread;
304 }
305
306 if (next_thread->GetCurrentCore() != m_core_id) {
307 next_thread->SetCurrentCore(m_core_id);
308 }
309
310 // If we're not actually switching thread, there's nothing to do.
311 if (next_thread == cur_thread) {
312 return;
313 }
314
315 // Next thread is now known not to be nullptr, and must not be dispatchable.
316 ASSERT(next_thread->GetDisableDispatchCount() == 1);
317 ASSERT(!next_thread->IsDummyThread());
318
319 // Update the CPU time tracking variables.
320 const s64 prev_tick = m_last_context_switch_time;
321 const s64 cur_tick = kernel.System().CoreTiming().GetCPUTicks();
322 const s64 tick_diff = cur_tick - prev_tick;
323 cur_thread->AddCpuTime(m_core_id, tick_diff);
324 if (cur_process != nullptr) {
325 cur_process->UpdateCPUTimeTicks(tick_diff);
326 }
327 m_last_context_switch_time = cur_tick;
328
329 // Update our previous thread.
330 if (cur_process != nullptr) {
331 if (!cur_thread->IsTerminationRequested() && cur_thread->GetActiveCore() == m_core_id)
332 [[likely]] {
333 m_state.prev_thread = cur_thread;
334 } else {
335 m_state.prev_thread = nullptr;
336 }
337 }
338
339 // Switch the current process, if we're switching processes.
340 // if (KProcess *next_process = next_thread->GetOwnerProcess(); next_process != cur_process) {
341 // KProcess::Switch(cur_process, next_process);
342 // }
343
344 // Set the new thread.
345 SetCurrentThread(kernel, next_thread);
346 m_current_thread = next_thread;
347
348 // Set the new Thread Local region.
349 // cpu::SwitchThreadLocalRegion(GetInteger(next_thread->GetThreadLocalRegionAddress()));
350}
351
352void KScheduler::ScheduleImpl() {
353 // First, clear the needs scheduling bool.
354 m_state.needs_scheduling.store(false, std::memory_order_seq_cst);
355
356 // Load the appropriate thread pointers for scheduling.
357 KThread* const cur_thread{GetCurrentThreadPointer(kernel)};
358 KThread* highest_priority_thread{m_state.highest_priority_thread};
359
360 // Check whether there are runnable interrupt tasks.
361 if (m_state.interrupt_task_runnable) {
362 // The interrupt task is runnable.
363 // We want to switch to the interrupt task/idle thread.
364 highest_priority_thread = nullptr;
365 }
366
367 // If there aren't, we want to check if the highest priority thread is the same as the current
368 // thread.
369 if (highest_priority_thread == cur_thread) {
370 // If they're the same, then we can just return.
371 return;
372 }
373
374 // The highest priority thread is not the same as the current thread.
375 // Switch to the idle thread stack and continue executing from there.
376 m_idle_cur_thread = cur_thread;
377 m_idle_highest_priority_thread = highest_priority_thread;
378 Common::Fiber::YieldTo(cur_thread->host_context, *m_idle_stack);
379
380 // Returning from ScheduleImpl occurs after this thread has been scheduled again.
381}
382
383void KScheduler::ScheduleImplOffStack() {
384 KThread* const cur_thread{m_idle_cur_thread};
385 KThread* highest_priority_thread{m_idle_highest_priority_thread};
386
387 // Get a reference to the current thread's stack parameters.
388 auto& sp{cur_thread->GetStackParameters()};
389
390 // Save the original thread context.
391 {
392 auto& physical_core = kernel.System().CurrentPhysicalCore();
393 auto& cpu_core = physical_core.ArmInterface();
394 cpu_core.SaveContext(cur_thread->GetContext32());
395 cpu_core.SaveContext(cur_thread->GetContext64());
396 // Save the TPIDR_EL0 system register in case it was modified.
397 cur_thread->SetTPIDR_EL0(cpu_core.GetTPIDR_EL0());
398 cpu_core.ClearExclusiveState();
399 }
400
401 // Check if the thread is terminated by checking the DPC flags.
402 if ((sp.dpc_flags & static_cast<u32>(DpcFlag::Terminated)) == 0) {
403 // The thread isn't terminated, so we want to unlock it.
404 sp.m_lock.store(false, std::memory_order_seq_cst);
405 }
406
407 // The current thread's context has been entirely taken care of.
408 // Now we want to loop until we successfully switch the thread context.
409 while (true) {
410 // We're starting to try to do the context switch.
411 // Check if the highest priority thread is null.
412 if (!highest_priority_thread) {
413 // The next thread is nullptr!
414 // Switch to nullptr. This will actually switch to the idle thread.
415 SwitchThread(nullptr);
416
417 // We've switched to the idle thread, so we want to process interrupt tasks until we
418 // schedule a non-idle thread.
419 while (!m_state.interrupt_task_runnable) {
420 // Check if we need scheduling.
421 if (m_state.needs_scheduling.load(std::memory_order_seq_cst)) {
422 goto retry;
423 }
424
425 // Clear the previous thread.
426 m_state.prev_thread = nullptr;
427
428 // Wait for an interrupt before checking again.
429 kernel.System().GetCpuManager().WaitForAndHandleInterrupt();
430 }
431
432 // Execute any pending interrupt tasks.
433 // m_state.interrupt_task_manager->DoTasks();
434
435 // Clear the interrupt task thread as runnable.
436 m_state.interrupt_task_runnable = false;
437
438 // Retry the scheduling loop.
439 goto retry;
440 } else {
441 // We want to try to lock the highest priority thread's context.
442 // Try to take it.
443 bool expected{false};
444 while (!highest_priority_thread->stack_parameters.m_lock.compare_exchange_strong(
445 expected, true, std::memory_order_seq_cst)) {
446 // The highest priority thread's context is already locked.
447 // Check if we need scheduling. If we don't, we can retry directly.
448 if (m_state.needs_scheduling.load(std::memory_order_seq_cst)) {
449 // If we do, another core is interfering, and we must start again.
450 goto retry;
451 }
452 expected = false;
453 }
454
455 // It's time to switch the thread.
456 // Switch to the highest priority thread.
457 SwitchThread(highest_priority_thread);
458
459 // Check if we need scheduling. If we do, then we can't complete the switch and should
460 // retry.
461 if (m_state.needs_scheduling.load(std::memory_order_seq_cst)) {
462 // Our switch failed.
463 // We should unlock the thread context, and then retry.
464 highest_priority_thread->stack_parameters.m_lock.store(false,
465 std::memory_order_seq_cst);
466 goto retry;
467 } else {
468 break;
469 }
470 }
471
472 retry:
473
474 // We failed to successfully do the context switch, and need to retry.
475 // Clear needs_scheduling.
476 m_state.needs_scheduling.store(false, std::memory_order_seq_cst);
477
478 // Refresh the highest priority thread.
479 highest_priority_thread = m_state.highest_priority_thread;
480 }
481
482 // Reload the guest thread context.
483 {
484 auto& cpu_core = kernel.System().CurrentArmInterface();
485 cpu_core.LoadContext(highest_priority_thread->GetContext32());
486 cpu_core.LoadContext(highest_priority_thread->GetContext64());
487 cpu_core.SetTlsAddress(highest_priority_thread->GetTLSAddress());
488 cpu_core.SetTPIDR_EL0(highest_priority_thread->GetTPIDR_EL0());
489 cpu_core.LoadWatchpointArray(highest_priority_thread->GetOwnerProcess()->GetWatchpoints());
490 cpu_core.ClearExclusiveState();
491 }
492
493 // Reload the host thread.
494 Common::Fiber::YieldTo(m_idle_stack, *highest_priority_thread->host_context);
495}
496
203void KScheduler::ClearPreviousThread(KernelCore& kernel, KThread* thread) { 497void KScheduler::ClearPreviousThread(KernelCore& kernel, KThread* thread) {
204 ASSERT(kernel.GlobalSchedulerContext().IsLocked()); 498 ASSERT(IsSchedulerLockedByCurrentThread(kernel));
205 for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; ++i) { 499 for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; ++i) {
206 // Get an atomic reference to the core scheduler's previous thread. 500 // Get an atomic reference to the core scheduler's previous thread.
207 std::atomic_ref<KThread*> prev_thread(kernel.Scheduler(static_cast<s32>(i)).prev_thread); 501 auto& prev_thread{kernel.Scheduler(i).m_state.prev_thread};
208 static_assert(std::atomic_ref<KThread*>::is_always_lock_free);
209 502
210 // Atomically clear the previous thread if it's our target. 503 // Atomically clear the previous thread if it's our target.
211 KThread* compare = thread; 504 KThread* compare = thread;
212 prev_thread.compare_exchange_strong(compare, nullptr); 505 prev_thread.compare_exchange_strong(compare, nullptr, std::memory_order_seq_cst);
213 } 506 }
214} 507}
215 508
216void KScheduler::OnThreadStateChanged(KernelCore& kernel, KThread* thread, ThreadState old_state) { 509void KScheduler::OnThreadStateChanged(KernelCore& kernel, KThread* thread, ThreadState old_state) {
217 ASSERT(kernel.GlobalSchedulerContext().IsLocked()); 510 ASSERT(IsSchedulerLockedByCurrentThread(kernel));
218 511
219 // Check if the state has changed, because if it hasn't there's nothing to do. 512 // Check if the state has changed, because if it hasn't there's nothing to do.
220 const auto cur_state = thread->GetRawState(); 513 const ThreadState cur_state = thread->GetRawState();
221 if (cur_state == old_state) { 514 if (cur_state == old_state) {
222 return; 515 return;
223 } 516 }
@@ -237,12 +530,12 @@ void KScheduler::OnThreadStateChanged(KernelCore& kernel, KThread* thread, Threa
237} 530}
238 531
239void KScheduler::OnThreadPriorityChanged(KernelCore& kernel, KThread* thread, s32 old_priority) { 532void KScheduler::OnThreadPriorityChanged(KernelCore& kernel, KThread* thread, s32 old_priority) {
240 ASSERT(kernel.GlobalSchedulerContext().IsLocked()); 533 ASSERT(IsSchedulerLockedByCurrentThread(kernel));
241 534
242 // If the thread is runnable, we want to change its priority in the queue. 535 // If the thread is runnable, we want to change its priority in the queue.
243 if (thread->GetRawState() == ThreadState::Runnable) { 536 if (thread->GetRawState() == ThreadState::Runnable) {
244 GetPriorityQueue(kernel).ChangePriority(old_priority, 537 GetPriorityQueue(kernel).ChangePriority(old_priority,
245 thread == kernel.GetCurrentEmuThread(), thread); 538 thread == GetCurrentThreadPointer(kernel), thread);
246 IncrementScheduledCount(thread); 539 IncrementScheduledCount(thread);
247 SetSchedulerUpdateNeeded(kernel); 540 SetSchedulerUpdateNeeded(kernel);
248 } 541 }
@@ -250,7 +543,7 @@ void KScheduler::OnThreadPriorityChanged(KernelCore& kernel, KThread* thread, s3
250 543
251void KScheduler::OnThreadAffinityMaskChanged(KernelCore& kernel, KThread* thread, 544void KScheduler::OnThreadAffinityMaskChanged(KernelCore& kernel, KThread* thread,
252 const KAffinityMask& old_affinity, s32 old_core) { 545 const KAffinityMask& old_affinity, s32 old_core) {
253 ASSERT(kernel.GlobalSchedulerContext().IsLocked()); 546 ASSERT(IsSchedulerLockedByCurrentThread(kernel));
254 547
255 // If the thread is runnable, we want to change its affinity in the queue. 548 // If the thread is runnable, we want to change its affinity in the queue.
256 if (thread->GetRawState() == ThreadState::Runnable) { 549 if (thread->GetRawState() == ThreadState::Runnable) {
@@ -260,15 +553,14 @@ void KScheduler::OnThreadAffinityMaskChanged(KernelCore& kernel, KThread* thread
260 } 553 }
261} 554}
262 555
263void KScheduler::RotateScheduledQueue(s32 cpu_core_id, s32 priority) { 556void KScheduler::RotateScheduledQueue(KernelCore& kernel, s32 core_id, s32 priority) {
264 ASSERT(system.GlobalSchedulerContext().IsLocked()); 557 ASSERT(IsSchedulerLockedByCurrentThread(kernel));
265 558
266 // Get a reference to the priority queue. 559 // Get a reference to the priority queue.
267 auto& kernel = system.Kernel();
268 auto& priority_queue = GetPriorityQueue(kernel); 560 auto& priority_queue = GetPriorityQueue(kernel);
269 561
270 // Rotate the front of the queue to the end. 562 // Rotate the front of the queue to the end.
271 KThread* top_thread = priority_queue.GetScheduledFront(cpu_core_id, priority); 563 KThread* top_thread = priority_queue.GetScheduledFront(core_id, priority);
272 KThread* next_thread = nullptr; 564 KThread* next_thread = nullptr;
273 if (top_thread != nullptr) { 565 if (top_thread != nullptr) {
274 next_thread = priority_queue.MoveToScheduledBack(top_thread); 566 next_thread = priority_queue.MoveToScheduledBack(top_thread);
@@ -280,7 +572,7 @@ void KScheduler::RotateScheduledQueue(s32 cpu_core_id, s32 priority) {
280 572
281 // While we have a suggested thread, try to migrate it! 573 // While we have a suggested thread, try to migrate it!
282 { 574 {
283 KThread* suggested = priority_queue.GetSuggestedFront(cpu_core_id, priority); 575 KThread* suggested = priority_queue.GetSuggestedFront(core_id, priority);
284 while (suggested != nullptr) { 576 while (suggested != nullptr) {
285 // Check if the suggested thread is the top thread on its core. 577 // Check if the suggested thread is the top thread on its core.
286 const s32 suggested_core = suggested->GetActiveCore(); 578 const s32 suggested_core = suggested->GetActiveCore();
@@ -301,7 +593,7 @@ void KScheduler::RotateScheduledQueue(s32 cpu_core_id, s32 priority) {
301 // to the front of the queue. 593 // to the front of the queue.
302 if (top_on_suggested_core == nullptr || 594 if (top_on_suggested_core == nullptr ||
303 top_on_suggested_core->GetPriority() >= HighestCoreMigrationAllowedPriority) { 595 top_on_suggested_core->GetPriority() >= HighestCoreMigrationAllowedPriority) {
304 suggested->SetActiveCore(cpu_core_id); 596 suggested->SetActiveCore(core_id);
305 priority_queue.ChangeCore(suggested_core, suggested, true); 597 priority_queue.ChangeCore(suggested_core, suggested, true);
306 IncrementScheduledCount(suggested); 598 IncrementScheduledCount(suggested);
307 break; 599 break;
@@ -309,22 +601,21 @@ void KScheduler::RotateScheduledQueue(s32 cpu_core_id, s32 priority) {
309 } 601 }
310 602
311 // Get the next suggestion. 603 // Get the next suggestion.
312 suggested = priority_queue.GetSamePriorityNext(cpu_core_id, suggested); 604 suggested = priority_queue.GetSamePriorityNext(core_id, suggested);
313 } 605 }
314 } 606 }
315 607
316 // Now that we might have migrated a thread with the same priority, check if we can do better. 608 // Now that we might have migrated a thread with the same priority, check if we can do better.
317
318 { 609 {
319 KThread* best_thread = priority_queue.GetScheduledFront(cpu_core_id); 610 KThread* best_thread = priority_queue.GetScheduledFront(core_id);
320 if (best_thread == GetCurrentThreadPointer(kernel)) { 611 if (best_thread == GetCurrentThreadPointer(kernel)) {
321 best_thread = priority_queue.GetScheduledNext(cpu_core_id, best_thread); 612 best_thread = priority_queue.GetScheduledNext(core_id, best_thread);
322 } 613 }
323 614
324 // If the best thread we can choose has a priority the same or worse than ours, try to 615 // If the best thread we can choose has a priority the same or worse than ours, try to
325 // migrate a higher priority thread. 616 // migrate a higher priority thread.
326 if (best_thread != nullptr && best_thread->GetPriority() >= priority) { 617 if (best_thread != nullptr && best_thread->GetPriority() >= priority) {
327 KThread* suggested = priority_queue.GetSuggestedFront(cpu_core_id); 618 KThread* suggested = priority_queue.GetSuggestedFront(core_id);
328 while (suggested != nullptr) { 619 while (suggested != nullptr) {
329 // If the suggestion's priority is the same as ours, don't bother. 620 // If the suggestion's priority is the same as ours, don't bother.
330 if (suggested->GetPriority() >= best_thread->GetPriority()) { 621 if (suggested->GetPriority() >= best_thread->GetPriority()) {
@@ -343,7 +634,7 @@ void KScheduler::RotateScheduledQueue(s32 cpu_core_id, s32 priority) {
343 if (top_on_suggested_core == nullptr || 634 if (top_on_suggested_core == nullptr ||
344 top_on_suggested_core->GetPriority() >= 635 top_on_suggested_core->GetPriority() >=
345 HighestCoreMigrationAllowedPriority) { 636 HighestCoreMigrationAllowedPriority) {
346 suggested->SetActiveCore(cpu_core_id); 637 suggested->SetActiveCore(core_id);
347 priority_queue.ChangeCore(suggested_core, suggested, true); 638 priority_queue.ChangeCore(suggested_core, suggested, true);
348 IncrementScheduledCount(suggested); 639 IncrementScheduledCount(suggested);
349 break; 640 break;
@@ -351,7 +642,7 @@ void KScheduler::RotateScheduledQueue(s32 cpu_core_id, s32 priority) {
351 } 642 }
352 643
353 // Get the next suggestion. 644 // Get the next suggestion.
354 suggested = priority_queue.GetSuggestedNext(cpu_core_id, suggested); 645 suggested = priority_queue.GetSuggestedNext(core_id, suggested);
355 } 646 }
356 } 647 }
357 } 648 }
@@ -360,64 +651,6 @@ void KScheduler::RotateScheduledQueue(s32 cpu_core_id, s32 priority) {
360 SetSchedulerUpdateNeeded(kernel); 651 SetSchedulerUpdateNeeded(kernel);
361} 652}
362 653
363bool KScheduler::CanSchedule(KernelCore& kernel) {
364 return kernel.GetCurrentEmuThread()->GetDisableDispatchCount() <= 1;
365}
366
367bool KScheduler::IsSchedulerUpdateNeeded(const KernelCore& kernel) {
368 return kernel.GlobalSchedulerContext().scheduler_update_needed.load(std::memory_order_acquire);
369}
370
371void KScheduler::SetSchedulerUpdateNeeded(KernelCore& kernel) {
372 kernel.GlobalSchedulerContext().scheduler_update_needed.store(true, std::memory_order_release);
373}
374
375void KScheduler::ClearSchedulerUpdateNeeded(KernelCore& kernel) {
376 kernel.GlobalSchedulerContext().scheduler_update_needed.store(false, std::memory_order_release);
377}
378
379void KScheduler::DisableScheduling(KernelCore& kernel) {
380 // If we are shutting down the kernel, none of this is relevant anymore.
381 if (kernel.IsShuttingDown()) {
382 return;
383 }
384
385 ASSERT(GetCurrentThreadPointer(kernel)->GetDisableDispatchCount() >= 0);
386 GetCurrentThreadPointer(kernel)->DisableDispatch();
387}
388
389void KScheduler::EnableScheduling(KernelCore& kernel, u64 cores_needing_scheduling) {
390 // If we are shutting down the kernel, none of this is relevant anymore.
391 if (kernel.IsShuttingDown()) {
392 return;
393 }
394
395 auto* current_thread = GetCurrentThreadPointer(kernel);
396
397 ASSERT(current_thread->GetDisableDispatchCount() >= 1);
398
399 if (current_thread->GetDisableDispatchCount() > 1) {
400 current_thread->EnableDispatch();
401 } else {
402 RescheduleCores(kernel, cores_needing_scheduling);
403 }
404
405 // Special case to ensure dummy threads that are waiting block.
406 current_thread->IfDummyThreadTryWait();
407}
408
409u64 KScheduler::UpdateHighestPriorityThreads(KernelCore& kernel) {
410 if (IsSchedulerUpdateNeeded(kernel)) {
411 return UpdateHighestPriorityThreadsImpl(kernel);
412 } else {
413 return 0;
414 }
415}
416
417KSchedulerPriorityQueue& KScheduler::GetPriorityQueue(KernelCore& kernel) {
418 return kernel.GlobalSchedulerContext().priority_queue;
419}
420
421void KScheduler::YieldWithoutCoreMigration(KernelCore& kernel) { 654void KScheduler::YieldWithoutCoreMigration(KernelCore& kernel) {
422 // Validate preconditions. 655 // Validate preconditions.
423 ASSERT(CanSchedule(kernel)); 656 ASSERT(CanSchedule(kernel));
@@ -437,7 +670,7 @@ void KScheduler::YieldWithoutCoreMigration(KernelCore& kernel) {
437 670
438 // Perform the yield. 671 // Perform the yield.
439 { 672 {
440 KScopedSchedulerLock lock(kernel); 673 KScopedSchedulerLock sl{kernel};
441 674
442 const auto cur_state = cur_thread.GetRawState(); 675 const auto cur_state = cur_thread.GetRawState();
443 if (cur_state == ThreadState::Runnable) { 676 if (cur_state == ThreadState::Runnable) {
@@ -476,7 +709,7 @@ void KScheduler::YieldWithCoreMigration(KernelCore& kernel) {
476 709
477 // Perform the yield. 710 // Perform the yield.
478 { 711 {
479 KScopedSchedulerLock lock(kernel); 712 KScopedSchedulerLock sl{kernel};
480 713
481 const auto cur_state = cur_thread.GetRawState(); 714 const auto cur_state = cur_thread.GetRawState();
482 if (cur_state == ThreadState::Runnable) { 715 if (cur_state == ThreadState::Runnable) {
@@ -496,7 +729,7 @@ void KScheduler::YieldWithCoreMigration(KernelCore& kernel) {
496 729
497 if (KThread* running_on_suggested_core = 730 if (KThread* running_on_suggested_core =
498 (suggested_core >= 0) 731 (suggested_core >= 0)
499 ? kernel.Scheduler(suggested_core).state.highest_priority_thread 732 ? kernel.Scheduler(suggested_core).m_state.highest_priority_thread
500 : nullptr; 733 : nullptr;
501 running_on_suggested_core != suggested) { 734 running_on_suggested_core != suggested) {
502 // If the current thread's priority is higher than our suggestion's we prefer 735 // If the current thread's priority is higher than our suggestion's we prefer
@@ -564,7 +797,7 @@ void KScheduler::YieldToAnyThread(KernelCore& kernel) {
564 797
565 // Perform the yield. 798 // Perform the yield.
566 { 799 {
567 KScopedSchedulerLock lock(kernel); 800 KScopedSchedulerLock sl{kernel};
568 801
569 const auto cur_state = cur_thread.GetRawState(); 802 const auto cur_state = cur_thread.GetRawState();
570 if (cur_state == ThreadState::Runnable) { 803 if (cur_state == ThreadState::Runnable) {
@@ -621,223 +854,19 @@ void KScheduler::YieldToAnyThread(KernelCore& kernel) {
621 } 854 }
622} 855}
623 856
624KScheduler::KScheduler(Core::System& system_, s32 core_id_) : system{system_}, core_id{core_id_} { 857void KScheduler::RescheduleOtherCores(u64 cores_needing_scheduling) {
625 switch_fiber = std::make_shared<Common::Fiber>([this] { SwitchToCurrent(); }); 858 if (const u64 core_mask = cores_needing_scheduling & ~(1ULL << m_core_id); core_mask != 0) {
626 state.needs_scheduling.store(true); 859 RescheduleCores(kernel, core_mask);
627 state.interrupt_task_thread_runnable = false;
628 state.should_count_idle = false;
629 state.idle_count = 0;
630 state.idle_thread_stack = nullptr;
631 state.highest_priority_thread = nullptr;
632}
633
634void KScheduler::Finalize() {
635 if (idle_thread) {
636 idle_thread->Close();
637 idle_thread = nullptr;
638 }
639}
640
641KScheduler::~KScheduler() {
642 ASSERT(!idle_thread);
643}
644
645KThread* KScheduler::GetSchedulerCurrentThread() const {
646 if (auto result = current_thread.load(); result) {
647 return result;
648 } 860 }
649 return idle_thread;
650}
651
652u64 KScheduler::GetLastContextSwitchTicks() const {
653 return last_context_switch_time;
654} 861}
655 862
656void KScheduler::RescheduleCurrentCore() { 863void KScheduler::RescheduleCores(KernelCore& kernel, u64 core_mask) {
657 ASSERT(GetCurrentThread(system.Kernel()).GetDisableDispatchCount() == 1); 864 // Send IPI
658 865 for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
659 auto& phys_core = system.Kernel().PhysicalCore(core_id); 866 if (core_mask & (1ULL << i)) {
660 if (phys_core.IsInterrupted()) { 867 kernel.PhysicalCore(i).Interrupt();
661 phys_core.ClearInterrupt();
662 }
663
664 guard.Lock();
665 if (state.needs_scheduling.load()) {
666 Schedule();
667 } else {
668 GetCurrentThread(system.Kernel()).EnableDispatch();
669 guard.Unlock();
670 }
671}
672
673void KScheduler::OnThreadStart() {
674 SwitchContextStep2();
675}
676
677void KScheduler::Unload(KThread* thread) {
678 ASSERT(thread);
679
680 LOG_TRACE(Kernel, "core {}, unload thread {}", core_id, thread ? thread->GetName() : "nullptr");
681
682 if (thread->IsCallingSvc()) {
683 thread->ClearIsCallingSvc();
684 }
685
686 auto& physical_core = system.Kernel().PhysicalCore(core_id);
687 if (!physical_core.IsInitialized()) {
688 return;
689 }
690
691 Core::ARM_Interface& cpu_core = physical_core.ArmInterface();
692 cpu_core.SaveContext(thread->GetContext32());
693 cpu_core.SaveContext(thread->GetContext64());
694 // Save the TPIDR_EL0 system register in case it was modified.
695 thread->SetTPIDR_EL0(cpu_core.GetTPIDR_EL0());
696 cpu_core.ClearExclusiveState();
697
698 if (!thread->IsTerminationRequested() && thread->GetActiveCore() == core_id) {
699 prev_thread = thread;
700 } else {
701 prev_thread = nullptr;
702 }
703
704 thread->context_guard.unlock();
705}
706
707void KScheduler::Reload(KThread* thread) {
708 LOG_TRACE(Kernel, "core {}, reload thread {}", core_id, thread->GetName());
709
710 Core::ARM_Interface& cpu_core = system.ArmInterface(core_id);
711 cpu_core.LoadContext(thread->GetContext32());
712 cpu_core.LoadContext(thread->GetContext64());
713 cpu_core.LoadWatchpointArray(thread->GetOwnerProcess()->GetWatchpoints());
714 cpu_core.SetTlsAddress(thread->GetTLSAddress());
715 cpu_core.SetTPIDR_EL0(thread->GetTPIDR_EL0());
716 cpu_core.ClearExclusiveState();
717}
718
719void KScheduler::SwitchContextStep2() {
720 // Load context of new thread
721 Reload(GetCurrentThreadPointer(system.Kernel()));
722
723 RescheduleCurrentCore();
724}
725
726void KScheduler::Schedule() {
727 ASSERT(GetCurrentThread(system.Kernel()).GetDisableDispatchCount() == 1);
728 this->ScheduleImpl();
729}
730
731void KScheduler::ScheduleImpl() {
732 KThread* previous_thread = GetCurrentThreadPointer(system.Kernel());
733 KThread* next_thread = state.highest_priority_thread;
734
735 state.needs_scheduling.store(false);
736
737 // We never want to schedule a null thread, so use the idle thread if we don't have a next.
738 if (next_thread == nullptr) {
739 next_thread = idle_thread;
740 }
741
742 if (next_thread->GetCurrentCore() != core_id) {
743 next_thread->SetCurrentCore(core_id);
744 }
745
746 // We never want to schedule a dummy thread, as these are only used by host threads for locking.
747 if (next_thread->GetThreadType() == ThreadType::Dummy) {
748 ASSERT_MSG(false, "Dummy threads should never be scheduled!");
749 next_thread = idle_thread;
750 }
751
752 // If we're not actually switching thread, there's nothing to do.
753 if (next_thread == current_thread.load()) {
754 previous_thread->EnableDispatch();
755 guard.Unlock();
756 return;
757 }
758
759 // Update the CPU time tracking variables.
760 KProcess* const previous_process = system.Kernel().CurrentProcess();
761 UpdateLastContextSwitchTime(previous_thread, previous_process);
762
763 // Save context for previous thread
764 Unload(previous_thread);
765
766 std::shared_ptr<Common::Fiber>* old_context;
767 old_context = &previous_thread->GetHostContext();
768
769 // Set the new thread.
770 SetCurrentThread(system.Kernel(), next_thread);
771 current_thread.store(next_thread);
772
773 guard.Unlock();
774
775 Common::Fiber::YieldTo(*old_context, *switch_fiber);
776 /// When a thread wakes up, the scheduler may have changed to other in another core.
777 auto& next_scheduler = *system.Kernel().CurrentScheduler();
778 next_scheduler.SwitchContextStep2();
779}
780
781void KScheduler::SwitchToCurrent() {
782 while (true) {
783 {
784 KScopedSpinLock lk{guard};
785 current_thread.store(state.highest_priority_thread);
786 state.needs_scheduling.store(false);
787 } 868 }
788 const auto is_switch_pending = [this] {
789 KScopedSpinLock lk{guard};
790 return state.needs_scheduling.load();
791 };
792 do {
793 auto next_thread = current_thread.load();
794 if (next_thread != nullptr) {
795 const auto locked = next_thread->context_guard.try_lock();
796 if (state.needs_scheduling.load()) {
797 next_thread->context_guard.unlock();
798 break;
799 }
800 if (next_thread->GetActiveCore() != core_id) {
801 next_thread->context_guard.unlock();
802 break;
803 }
804 if (!locked) {
805 continue;
806 }
807 }
808 auto thread = next_thread ? next_thread : idle_thread;
809 SetCurrentThread(system.Kernel(), thread);
810 Common::Fiber::YieldTo(switch_fiber, *thread->GetHostContext());
811 } while (!is_switch_pending());
812 } 869 }
813} 870}
814 871
815void KScheduler::UpdateLastContextSwitchTime(KThread* thread, KProcess* process) {
816 const u64 prev_switch_ticks = last_context_switch_time;
817 const u64 most_recent_switch_ticks = system.CoreTiming().GetCPUTicks();
818 const u64 update_ticks = most_recent_switch_ticks - prev_switch_ticks;
819
820 if (thread != nullptr) {
821 thread->AddCpuTime(core_id, update_ticks);
822 }
823
824 if (process != nullptr) {
825 process->UpdateCPUTimeTicks(update_ticks);
826 }
827
828 last_context_switch_time = most_recent_switch_ticks;
829}
830
831void KScheduler::Initialize() {
832 idle_thread = KThread::Create(system.Kernel());
833 ASSERT(KThread::InitializeIdleThread(system, idle_thread, core_id).IsSuccess());
834 idle_thread->SetName(fmt::format("IdleThread:{}", core_id));
835 idle_thread->EnableDispatch();
836}
837
838KScopedSchedulerLock::KScopedSchedulerLock(KernelCore& kernel)
839 : KScopedLock(kernel.GlobalSchedulerContext().SchedulerLock()) {}
840
841KScopedSchedulerLock::~KScopedSchedulerLock() = default;
842
843} // namespace Kernel 872} // namespace Kernel
diff --git a/src/core/hle/kernel/k_scheduler.h b/src/core/hle/kernel/k_scheduler.h
index 6a4760eca..8f4eebf6a 100644
--- a/src/core/hle/kernel/k_scheduler.h
+++ b/src/core/hle/kernel/k_scheduler.h
@@ -11,6 +11,7 @@
11#include "core/hle/kernel/k_scheduler_lock.h" 11#include "core/hle/kernel/k_scheduler_lock.h"
12#include "core/hle/kernel/k_scoped_lock.h" 12#include "core/hle/kernel/k_scoped_lock.h"
13#include "core/hle/kernel/k_spin_lock.h" 13#include "core/hle/kernel/k_spin_lock.h"
14#include "core/hle/kernel/k_thread.h"
14 15
15namespace Common { 16namespace Common {
16class Fiber; 17class Fiber;
@@ -23,184 +24,139 @@ class System;
23namespace Kernel { 24namespace Kernel {
24 25
25class KernelCore; 26class KernelCore;
27class KInterruptTaskManager;
26class KProcess; 28class KProcess;
27class SchedulerLock;
28class KThread; 29class KThread;
30class KScopedDisableDispatch;
31class KScopedSchedulerLock;
32class KScopedSchedulerLockAndSleep;
29 33
30class KScheduler final { 34class KScheduler final {
31public: 35public:
32 explicit KScheduler(Core::System& system_, s32 core_id_); 36 YUZU_NON_COPYABLE(KScheduler);
33 ~KScheduler(); 37 YUZU_NON_MOVEABLE(KScheduler);
34
35 void Finalize();
36 38
37 /// Reschedules to the next available thread (call after current thread is suspended) 39 using LockType = KAbstractSchedulerLock<KScheduler>;
38 void RescheduleCurrentCore();
39 40
40 /// Reschedules cores pending reschedule, to be called on EnableScheduling. 41 explicit KScheduler(KernelCore& kernel);
41 static void RescheduleCores(KernelCore& kernel, u64 cores_pending_reschedule); 42 ~KScheduler();
42
43 /// The next two are for SingleCore Only.
44 /// Unload current thread before preempting core.
45 void Unload(KThread* thread);
46 43
47 /// Reload current thread after core preemption. 44 void Initialize(KThread* idle_thread);
48 void Reload(KThread* thread); 45 void Activate();
49 46
50 /// Gets the current running thread 47 void SetInterruptTaskRunnable();
51 [[nodiscard]] KThread* GetSchedulerCurrentThread() const; 48 void RequestScheduleOnInterrupt();
52 49
53 /// Gets the idle thread 50 u64 GetIdleCount() {
54 [[nodiscard]] KThread* GetIdleThread() const { 51 return m_state.idle_count;
55 return idle_thread;
56 } 52 }
57 53
58 /// Returns true if the scheduler is idle 54 KThread* GetIdleThread() const {
59 [[nodiscard]] bool IsIdle() const { 55 return m_idle_thread;
60 return GetSchedulerCurrentThread() == idle_thread;
61 } 56 }
62 57
63 /// Gets the timestamp for the last context switch in ticks. 58 KThread* GetPreviousThread() const {
64 [[nodiscard]] u64 GetLastContextSwitchTicks() const; 59 return m_state.prev_thread;
65
66 [[nodiscard]] bool ContextSwitchPending() const {
67 return state.needs_scheduling.load(std::memory_order_relaxed);
68 } 60 }
69 61
70 void Initialize(); 62 KThread* GetSchedulerCurrentThread() const {
71 63 return m_current_thread.load();
72 void OnThreadStart();
73
74 [[nodiscard]] std::shared_ptr<Common::Fiber>& ControlContext() {
75 return switch_fiber;
76 } 64 }
77 65
78 [[nodiscard]] const std::shared_ptr<Common::Fiber>& ControlContext() const { 66 s64 GetLastContextSwitchTime() const {
79 return switch_fiber; 67 return m_last_context_switch_time;
80 } 68 }
81 69
82 [[nodiscard]] u64 UpdateHighestPriorityThread(KThread* highest_thread); 70 // Static public API.
71 static bool CanSchedule(KernelCore& kernel) {
72 return kernel.GetCurrentEmuThread()->GetDisableDispatchCount() == 0;
73 }
74 static bool IsSchedulerLockedByCurrentThread(KernelCore& kernel) {
75 return kernel.GlobalSchedulerContext().scheduler_lock.IsLockedByCurrentThread();
76 }
83 77
84 /** 78 static bool IsSchedulerUpdateNeeded(KernelCore& kernel) {
85 * Takes a thread and moves it to the back of the it's priority list. 79 return kernel.GlobalSchedulerContext().scheduler_update_needed;
86 * 80 }
87 * @note This operation can be redundant and no scheduling is changed if marked as so. 81 static void SetSchedulerUpdateNeeded(KernelCore& kernel) {
88 */ 82 kernel.GlobalSchedulerContext().scheduler_update_needed = true;
89 static void YieldWithoutCoreMigration(KernelCore& kernel); 83 }
84 static void ClearSchedulerUpdateNeeded(KernelCore& kernel) {
85 kernel.GlobalSchedulerContext().scheduler_update_needed = false;
86 }
90 87
91 /** 88 static void DisableScheduling(KernelCore& kernel);
92 * Takes a thread and moves it to the back of the it's priority list. 89 static void EnableScheduling(KernelCore& kernel, u64 cores_needing_scheduling);
93 * Afterwards, tries to pick a suggested thread from the suggested queue that has worse time or
94 * a better priority than the next thread in the core.
95 *
96 * @note This operation can be redundant and no scheduling is changed if marked as so.
97 */
98 static void YieldWithCoreMigration(KernelCore& kernel);
99 90
100 /** 91 static u64 UpdateHighestPriorityThreads(KernelCore& kernel);
101 * Takes a thread and moves it out of the scheduling queue.
102 * and into the suggested queue. If no thread can be scheduled afterwards in that core,
103 * a suggested thread is obtained instead.
104 *
105 * @note This operation can be redundant and no scheduling is changed if marked as so.
106 */
107 static void YieldToAnyThread(KernelCore& kernel);
108 92
109 static void ClearPreviousThread(KernelCore& kernel, KThread* thread); 93 static void ClearPreviousThread(KernelCore& kernel, KThread* thread);
110 94
111 /// Notify the scheduler a thread's status has changed.
112 static void OnThreadStateChanged(KernelCore& kernel, KThread* thread, ThreadState old_state); 95 static void OnThreadStateChanged(KernelCore& kernel, KThread* thread, ThreadState old_state);
113
114 /// Notify the scheduler a thread's priority has changed.
115 static void OnThreadPriorityChanged(KernelCore& kernel, KThread* thread, s32 old_priority); 96 static void OnThreadPriorityChanged(KernelCore& kernel, KThread* thread, s32 old_priority);
116
117 /// Notify the scheduler a thread's core and/or affinity mask has changed.
118 static void OnThreadAffinityMaskChanged(KernelCore& kernel, KThread* thread, 97 static void OnThreadAffinityMaskChanged(KernelCore& kernel, KThread* thread,
119 const KAffinityMask& old_affinity, s32 old_core); 98 const KAffinityMask& old_affinity, s32 old_core);
120 99
121 static bool CanSchedule(KernelCore& kernel); 100 static void RotateScheduledQueue(KernelCore& kernel, s32 core_id, s32 priority);
122 static bool IsSchedulerUpdateNeeded(const KernelCore& kernel); 101 static void RescheduleCores(KernelCore& kernel, u64 cores_needing_scheduling);
123 static void SetSchedulerUpdateNeeded(KernelCore& kernel);
124 static void ClearSchedulerUpdateNeeded(KernelCore& kernel);
125 static void DisableScheduling(KernelCore& kernel);
126 static void EnableScheduling(KernelCore& kernel, u64 cores_needing_scheduling);
127 [[nodiscard]] static u64 UpdateHighestPriorityThreads(KernelCore& kernel);
128 102
129private: 103 static void YieldWithoutCoreMigration(KernelCore& kernel);
130 friend class GlobalSchedulerContext; 104 static void YieldWithCoreMigration(KernelCore& kernel);
131 105 static void YieldToAnyThread(KernelCore& kernel);
132 /**
133 * Takes care of selecting the new scheduled threads in three steps:
134 *
135 * 1. First a thread is selected from the top of the priority queue. If no thread
136 * is obtained then we move to step two, else we are done.
137 *
138 * 2. Second we try to get a suggested thread that's not assigned to any core or
139 * that is not the top thread in that core.
140 *
141 * 3. Third is no suggested thread is found, we do a second pass and pick a running
142 * thread in another core and swap it with its current thread.
143 *
144 * returns the cores needing scheduling.
145 */
146 [[nodiscard]] static u64 UpdateHighestPriorityThreadsImpl(KernelCore& kernel);
147
148 [[nodiscard]] static KSchedulerPriorityQueue& GetPriorityQueue(KernelCore& kernel);
149
150 void RotateScheduledQueue(s32 cpu_core_id, s32 priority);
151 106
152 void Schedule(); 107private:
108 // Static private API.
109 static KSchedulerPriorityQueue& GetPriorityQueue(KernelCore& kernel) {
110 return kernel.GlobalSchedulerContext().priority_queue;
111 }
112 static u64 UpdateHighestPriorityThreadsImpl(KernelCore& kernel);
153 113
154 /// Switches the CPU's active thread context to that of the specified thread 114 // Instanced private API.
155 void ScheduleImpl(); 115 void ScheduleImpl();
116 void ScheduleImplOffStack();
117 void SwitchThread(KThread* next_thread);
156 118
157 /// When a thread wakes up, it must run this through it's new scheduler 119 void Schedule();
158 void SwitchContextStep2(); 120 void ScheduleOnInterrupt();
159
160 /**
161 * Called on every context switch to update the internal timestamp
162 * This also updates the running time ticks for the given thread and
163 * process using the following difference:
164 *
165 * ticks += most_recent_ticks - last_context_switch_ticks
166 *
167 * The internal tick timestamp for the scheduler is simply the
168 * most recent tick count retrieved. No special arithmetic is
169 * applied to it.
170 */
171 void UpdateLastContextSwitchTime(KThread* thread, KProcess* process);
172
173 void SwitchToCurrent();
174 121
175 KThread* prev_thread{}; 122 void RescheduleOtherCores(u64 cores_needing_scheduling);
176 std::atomic<KThread*> current_thread{}; 123 void RescheduleCurrentCore();
124 void RescheduleCurrentCoreImpl();
177 125
178 KThread* idle_thread{}; 126 u64 UpdateHighestPriorityThread(KThread* thread);
179 127
180 std::shared_ptr<Common::Fiber> switch_fiber{}; 128private:
129 friend class KScopedDisableDispatch;
181 130
182 struct SchedulingState { 131 struct SchedulingState {
183 std::atomic<bool> needs_scheduling{}; 132 std::atomic<bool> needs_scheduling{false};
184 bool interrupt_task_thread_runnable{}; 133 bool interrupt_task_runnable{false};
185 bool should_count_idle{}; 134 bool should_count_idle{false};
186 u64 idle_count{}; 135 u64 idle_count{0};
187 KThread* highest_priority_thread{}; 136 KThread* highest_priority_thread{nullptr};
188 void* idle_thread_stack{}; 137 void* idle_thread_stack{nullptr};
138 std::atomic<KThread*> prev_thread{nullptr};
139 KInterruptTaskManager* interrupt_task_manager{nullptr};
189 }; 140 };
190 141
191 SchedulingState state; 142 KernelCore& kernel;
192 143 SchedulingState m_state;
193 Core::System& system; 144 bool m_is_active{false};
194 u64 last_context_switch_time{}; 145 s32 m_core_id{0};
195 const s32 core_id; 146 s64 m_last_context_switch_time{0};
196 147 KThread* m_idle_thread{nullptr};
197 KSpinLock guard{}; 148 std::atomic<KThread*> m_current_thread{nullptr};
149
150 std::shared_ptr<Common::Fiber> m_idle_stack{};
151 KThread* m_idle_cur_thread{};
152 KThread* m_idle_highest_priority_thread{};
198}; 153};
199 154
200class [[nodiscard]] KScopedSchedulerLock : KScopedLock<GlobalSchedulerContext::LockType> { 155class KScopedSchedulerLock : public KScopedLock<KScheduler::LockType> {
201public: 156public:
202 explicit KScopedSchedulerLock(KernelCore& kernel); 157 explicit KScopedSchedulerLock(KernelCore& kernel)
203 ~KScopedSchedulerLock(); 158 : KScopedLock(kernel.GlobalSchedulerContext().scheduler_lock) {}
159 ~KScopedSchedulerLock() = default;
204}; 160};
205 161
206} // namespace Kernel 162} // namespace Kernel
diff --git a/src/core/hle/kernel/k_scheduler_lock.h b/src/core/hle/kernel/k_scheduler_lock.h
index 4fa256970..73314b45e 100644
--- a/src/core/hle/kernel/k_scheduler_lock.h
+++ b/src/core/hle/kernel/k_scheduler_lock.h
@@ -5,9 +5,11 @@
5 5
6#include <atomic> 6#include <atomic>
7#include "common/assert.h" 7#include "common/assert.h"
8#include "core/hle/kernel/k_interrupt_manager.h"
8#include "core/hle/kernel/k_spin_lock.h" 9#include "core/hle/kernel/k_spin_lock.h"
9#include "core/hle/kernel/k_thread.h" 10#include "core/hle/kernel/k_thread.h"
10#include "core/hle/kernel/kernel.h" 11#include "core/hle/kernel/kernel.h"
12#include "core/hle/kernel/physical_core.h"
11 13
12namespace Kernel { 14namespace Kernel {
13 15
diff --git a/src/core/hle/kernel/k_thread.cpp b/src/core/hle/kernel/k_thread.cpp
index 90de86770..9daa589b5 100644
--- a/src/core/hle/kernel/k_thread.cpp
+++ b/src/core/hle/kernel/k_thread.cpp
@@ -261,9 +261,14 @@ Result KThread::InitializeDummyThread(KThread* thread) {
261 return thread->Initialize({}, {}, {}, DummyThreadPriority, 3, {}, ThreadType::Dummy); 261 return thread->Initialize({}, {}, {}, DummyThreadPriority, 3, {}, ThreadType::Dummy);
262} 262}
263 263
264Result KThread::InitializeMainThread(Core::System& system, KThread* thread, s32 virt_core) {
265 return InitializeThread(thread, {}, {}, {}, IdleThreadPriority, virt_core, {}, ThreadType::Main,
266 system.GetCpuManager().GetGuestActivateFunc());
267}
268
264Result KThread::InitializeIdleThread(Core::System& system, KThread* thread, s32 virt_core) { 269Result KThread::InitializeIdleThread(Core::System& system, KThread* thread, s32 virt_core) {
265 return InitializeThread(thread, {}, {}, {}, IdleThreadPriority, virt_core, {}, ThreadType::Main, 270 return InitializeThread(thread, {}, {}, {}, IdleThreadPriority, virt_core, {}, ThreadType::Main,
266 system.GetCpuManager().GetIdleThreadStartFunc()); 271 abort);
267} 272}
268 273
269Result KThread::InitializeHighPriorityThread(Core::System& system, KThread* thread, 274Result KThread::InitializeHighPriorityThread(Core::System& system, KThread* thread,
@@ -277,7 +282,7 @@ Result KThread::InitializeUserThread(Core::System& system, KThread* thread, KThr
277 KProcess* owner) { 282 KProcess* owner) {
278 system.Kernel().GlobalSchedulerContext().AddThread(thread); 283 system.Kernel().GlobalSchedulerContext().AddThread(thread);
279 return InitializeThread(thread, func, arg, user_stack_top, prio, virt_core, owner, 284 return InitializeThread(thread, func, arg, user_stack_top, prio, virt_core, owner,
280 ThreadType::User, system.GetCpuManager().GetGuestThreadStartFunc()); 285 ThreadType::User, system.GetCpuManager().GetGuestThreadFunc());
281} 286}
282 287
283void KThread::PostDestroy(uintptr_t arg) { 288void KThread::PostDestroy(uintptr_t arg) {
@@ -1058,6 +1063,8 @@ void KThread::Exit() {
1058 // Register the thread as a work task. 1063 // Register the thread as a work task.
1059 KWorkerTaskManager::AddTask(kernel, KWorkerTaskManager::WorkerType::Exit, this); 1064 KWorkerTaskManager::AddTask(kernel, KWorkerTaskManager::WorkerType::Exit, this);
1060 } 1065 }
1066
1067 UNREACHABLE_MSG("KThread::Exit() would return");
1061} 1068}
1062 1069
1063Result KThread::Sleep(s64 timeout) { 1070Result KThread::Sleep(s64 timeout) {
diff --git a/src/core/hle/kernel/k_thread.h b/src/core/hle/kernel/k_thread.h
index 28cd7ecb0..416a861a9 100644
--- a/src/core/hle/kernel/k_thread.h
+++ b/src/core/hle/kernel/k_thread.h
@@ -110,6 +110,7 @@ void SetCurrentThread(KernelCore& kernel, KThread* thread);
110[[nodiscard]] KThread* GetCurrentThreadPointer(KernelCore& kernel); 110[[nodiscard]] KThread* GetCurrentThreadPointer(KernelCore& kernel);
111[[nodiscard]] KThread& GetCurrentThread(KernelCore& kernel); 111[[nodiscard]] KThread& GetCurrentThread(KernelCore& kernel);
112[[nodiscard]] s32 GetCurrentCoreId(KernelCore& kernel); 112[[nodiscard]] s32 GetCurrentCoreId(KernelCore& kernel);
113size_t CaptureBacktrace(void** buffer, size_t max);
113 114
114class KThread final : public KAutoObjectWithSlabHeapAndContainer<KThread, KWorkerTask>, 115class KThread final : public KAutoObjectWithSlabHeapAndContainer<KThread, KWorkerTask>,
115 public boost::intrusive::list_base_hook<> { 116 public boost::intrusive::list_base_hook<> {
@@ -413,6 +414,9 @@ public:
413 414
414 [[nodiscard]] static Result InitializeDummyThread(KThread* thread); 415 [[nodiscard]] static Result InitializeDummyThread(KThread* thread);
415 416
417 [[nodiscard]] static Result InitializeMainThread(Core::System& system, KThread* thread,
418 s32 virt_core);
419
416 [[nodiscard]] static Result InitializeIdleThread(Core::System& system, KThread* thread, 420 [[nodiscard]] static Result InitializeIdleThread(Core::System& system, KThread* thread,
417 s32 virt_core); 421 s32 virt_core);
418 422
@@ -435,6 +439,7 @@ public:
435 bool is_pinned; 439 bool is_pinned;
436 s32 disable_count; 440 s32 disable_count;
437 KThread* cur_thread; 441 KThread* cur_thread;
442 std::atomic<bool> m_lock;
438 }; 443 };
439 444
440 [[nodiscard]] StackParameters& GetStackParameters() { 445 [[nodiscard]] StackParameters& GetStackParameters() {
diff --git a/src/core/hle/kernel/kernel.cpp b/src/core/hle/kernel/kernel.cpp
index 7307cf262..10e1f47f6 100644
--- a/src/core/hle/kernel/kernel.cpp
+++ b/src/core/hle/kernel/kernel.cpp
@@ -75,7 +75,6 @@ struct KernelCore::Impl {
75 InitializeSystemResourceLimit(kernel, system.CoreTiming()); 75 InitializeSystemResourceLimit(kernel, system.CoreTiming());
76 InitializeMemoryLayout(); 76 InitializeMemoryLayout();
77 Init::InitializeKPageBufferSlabHeap(system); 77 Init::InitializeKPageBufferSlabHeap(system);
78 InitializeSchedulers();
79 InitializeShutdownThreads(); 78 InitializeShutdownThreads();
80 InitializePreemption(kernel); 79 InitializePreemption(kernel);
81 80
@@ -148,7 +147,6 @@ struct KernelCore::Impl {
148 shutdown_threads[core_id] = nullptr; 147 shutdown_threads[core_id] = nullptr;
149 } 148 }
150 149
151 schedulers[core_id]->Finalize();
152 schedulers[core_id].reset(); 150 schedulers[core_id].reset();
153 } 151 }
154 152
@@ -195,17 +193,11 @@ struct KernelCore::Impl {
195 exclusive_monitor = 193 exclusive_monitor =
196 Core::MakeExclusiveMonitor(system.Memory(), Core::Hardware::NUM_CPU_CORES); 194 Core::MakeExclusiveMonitor(system.Memory(), Core::Hardware::NUM_CPU_CORES);
197 for (u32 i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) { 195 for (u32 i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
198 schedulers[i] = std::make_unique<Kernel::KScheduler>(system, i); 196 schedulers[i] = std::make_unique<Kernel::KScheduler>(system.Kernel());
199 cores.emplace_back(i, system, *schedulers[i], interrupts); 197 cores.emplace_back(i, system, *schedulers[i], interrupts);
200 } 198 }
201 } 199 }
202 200
203 void InitializeSchedulers() {
204 for (u32 i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
205 cores[i].Scheduler().Initialize();
206 }
207 }
208
209 // Creates the default system resource limit 201 // Creates the default system resource limit
210 void InitializeSystemResourceLimit(KernelCore& kernel, 202 void InitializeSystemResourceLimit(KernelCore& kernel,
211 const Core::Timing::CoreTiming& core_timing) { 203 const Core::Timing::CoreTiming& core_timing) {
diff --git a/src/core/hle/kernel/svc.cpp b/src/core/hle/kernel/svc.cpp
index 8655506b0..27e5a805d 100644
--- a/src/core/hle/kernel/svc.cpp
+++ b/src/core/hle/kernel/svc.cpp
@@ -887,7 +887,7 @@ static Result GetInfo(Core::System& system, u64* result, u64 info_id, Handle han
887 const auto* const current_thread = GetCurrentThreadPointer(system.Kernel()); 887 const auto* const current_thread = GetCurrentThreadPointer(system.Kernel());
888 const bool same_thread = current_thread == thread.GetPointerUnsafe(); 888 const bool same_thread = current_thread == thread.GetPointerUnsafe();
889 889
890 const u64 prev_ctx_ticks = scheduler.GetLastContextSwitchTicks(); 890 const u64 prev_ctx_ticks = scheduler.GetLastContextSwitchTime();
891 u64 out_ticks = 0; 891 u64 out_ticks = 0;
892 if (same_thread && info_sub_id == 0xFFFFFFFFFFFFFFFF) { 892 if (same_thread && info_sub_id == 0xFFFFFFFFFFFFFFFF) {
893 const u64 thread_ticks = current_thread->GetCpuTime(); 893 const u64 thread_ticks = current_thread->GetCpuTime();
@@ -3026,11 +3026,6 @@ void Call(Core::System& system, u32 immediate) {
3026 } 3026 }
3027 3027
3028 kernel.ExitSVCProfile(); 3028 kernel.ExitSVCProfile();
3029
3030 if (!thread->IsCallingSvc()) {
3031 auto* host_context = thread->GetHostContext().get();
3032 host_context->Rewind();
3033 }
3034} 3029}
3035 3030
3036} // namespace Kernel::Svc 3031} // namespace Kernel::Svc