diff options
Diffstat (limited to 'src/video_core/swrasterizer/rasterizer.cpp')
| -rw-r--r-- | src/video_core/swrasterizer/rasterizer.cpp | 1299 |
1 files changed, 1299 insertions, 0 deletions
diff --git a/src/video_core/swrasterizer/rasterizer.cpp b/src/video_core/swrasterizer/rasterizer.cpp new file mode 100644 index 000000000..17ba59144 --- /dev/null +++ b/src/video_core/swrasterizer/rasterizer.cpp | |||
| @@ -0,0 +1,1299 @@ | |||
| 1 | // Copyright 2014 Citra Emulator Project | ||
| 2 | // Licensed under GPLv2 or any later version | ||
| 3 | // Refer to the license.txt file included. | ||
| 4 | |||
| 5 | #include <algorithm> | ||
| 6 | #include <array> | ||
| 7 | #include <cmath> | ||
| 8 | #include "common/assert.h" | ||
| 9 | #include "common/bit_field.h" | ||
| 10 | #include "common/color.h" | ||
| 11 | #include "common/common_types.h" | ||
| 12 | #include "common/logging/log.h" | ||
| 13 | #include "common/math_util.h" | ||
| 14 | #include "common/microprofile.h" | ||
| 15 | #include "common/vector_math.h" | ||
| 16 | #include "core/hw/gpu.h" | ||
| 17 | #include "core/memory.h" | ||
| 18 | #include "video_core/debug_utils/debug_utils.h" | ||
| 19 | #include "video_core/pica_state.h" | ||
| 20 | #include "video_core/pica_types.h" | ||
| 21 | #include "video_core/regs_framebuffer.h" | ||
| 22 | #include "video_core/regs_rasterizer.h" | ||
| 23 | #include "video_core/regs_texturing.h" | ||
| 24 | #include "video_core/shader/shader.h" | ||
| 25 | #include "video_core/swrasterizer/rasterizer.h" | ||
| 26 | #include "video_core/texture/texture_decode.h" | ||
| 27 | #include "video_core/utils.h" | ||
| 28 | |||
| 29 | namespace Pica { | ||
| 30 | |||
| 31 | namespace Rasterizer { | ||
| 32 | |||
| 33 | static void DrawPixel(int x, int y, const Math::Vec4<u8>& color) { | ||
| 34 | const auto& framebuffer = g_state.regs.framebuffer.framebuffer; | ||
| 35 | const PAddr addr = framebuffer.GetColorBufferPhysicalAddress(); | ||
| 36 | |||
| 37 | // Similarly to textures, the render framebuffer is laid out from bottom to top, too. | ||
| 38 | // NOTE: The framebuffer height register contains the actual FB height minus one. | ||
| 39 | y = framebuffer.height - y; | ||
| 40 | |||
| 41 | const u32 coarse_y = y & ~7; | ||
| 42 | u32 bytes_per_pixel = | ||
| 43 | GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(framebuffer.color_format.Value())); | ||
| 44 | u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + | ||
| 45 | coarse_y * framebuffer.width * bytes_per_pixel; | ||
| 46 | u8* dst_pixel = Memory::GetPhysicalPointer(addr) + dst_offset; | ||
| 47 | |||
| 48 | switch (framebuffer.color_format) { | ||
| 49 | case FramebufferRegs::ColorFormat::RGBA8: | ||
| 50 | Color::EncodeRGBA8(color, dst_pixel); | ||
| 51 | break; | ||
| 52 | |||
| 53 | case FramebufferRegs::ColorFormat::RGB8: | ||
| 54 | Color::EncodeRGB8(color, dst_pixel); | ||
| 55 | break; | ||
| 56 | |||
| 57 | case FramebufferRegs::ColorFormat::RGB5A1: | ||
| 58 | Color::EncodeRGB5A1(color, dst_pixel); | ||
| 59 | break; | ||
| 60 | |||
| 61 | case FramebufferRegs::ColorFormat::RGB565: | ||
| 62 | Color::EncodeRGB565(color, dst_pixel); | ||
| 63 | break; | ||
| 64 | |||
| 65 | case FramebufferRegs::ColorFormat::RGBA4: | ||
| 66 | Color::EncodeRGBA4(color, dst_pixel); | ||
| 67 | break; | ||
| 68 | |||
| 69 | default: | ||
| 70 | LOG_CRITICAL(Render_Software, "Unknown framebuffer color format %x", | ||
| 71 | framebuffer.color_format.Value()); | ||
| 72 | UNIMPLEMENTED(); | ||
| 73 | } | ||
| 74 | } | ||
| 75 | |||
| 76 | static const Math::Vec4<u8> GetPixel(int x, int y) { | ||
| 77 | const auto& framebuffer = g_state.regs.framebuffer.framebuffer; | ||
| 78 | const PAddr addr = framebuffer.GetColorBufferPhysicalAddress(); | ||
| 79 | |||
| 80 | y = framebuffer.height - y; | ||
| 81 | |||
| 82 | const u32 coarse_y = y & ~7; | ||
| 83 | u32 bytes_per_pixel = | ||
| 84 | GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(framebuffer.color_format.Value())); | ||
| 85 | u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + | ||
| 86 | coarse_y * framebuffer.width * bytes_per_pixel; | ||
| 87 | u8* src_pixel = Memory::GetPhysicalPointer(addr) + src_offset; | ||
| 88 | |||
| 89 | switch (framebuffer.color_format) { | ||
| 90 | case FramebufferRegs::ColorFormat::RGBA8: | ||
| 91 | return Color::DecodeRGBA8(src_pixel); | ||
| 92 | |||
| 93 | case FramebufferRegs::ColorFormat::RGB8: | ||
| 94 | return Color::DecodeRGB8(src_pixel); | ||
| 95 | |||
| 96 | case FramebufferRegs::ColorFormat::RGB5A1: | ||
| 97 | return Color::DecodeRGB5A1(src_pixel); | ||
| 98 | |||
| 99 | case FramebufferRegs::ColorFormat::RGB565: | ||
| 100 | return Color::DecodeRGB565(src_pixel); | ||
| 101 | |||
| 102 | case FramebufferRegs::ColorFormat::RGBA4: | ||
| 103 | return Color::DecodeRGBA4(src_pixel); | ||
| 104 | |||
| 105 | default: | ||
| 106 | LOG_CRITICAL(Render_Software, "Unknown framebuffer color format %x", | ||
| 107 | framebuffer.color_format.Value()); | ||
| 108 | UNIMPLEMENTED(); | ||
| 109 | } | ||
| 110 | |||
| 111 | return {0, 0, 0, 0}; | ||
| 112 | } | ||
| 113 | |||
| 114 | static u32 GetDepth(int x, int y) { | ||
| 115 | const auto& framebuffer = g_state.regs.framebuffer.framebuffer; | ||
| 116 | const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress(); | ||
| 117 | u8* depth_buffer = Memory::GetPhysicalPointer(addr); | ||
| 118 | |||
| 119 | y = framebuffer.height - y; | ||
| 120 | |||
| 121 | const u32 coarse_y = y & ~7; | ||
| 122 | u32 bytes_per_pixel = FramebufferRegs::BytesPerDepthPixel(framebuffer.depth_format); | ||
| 123 | u32 stride = framebuffer.width * bytes_per_pixel; | ||
| 124 | |||
| 125 | u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride; | ||
| 126 | u8* src_pixel = depth_buffer + src_offset; | ||
| 127 | |||
| 128 | switch (framebuffer.depth_format) { | ||
| 129 | case FramebufferRegs::DepthFormat::D16: | ||
| 130 | return Color::DecodeD16(src_pixel); | ||
| 131 | case FramebufferRegs::DepthFormat::D24: | ||
| 132 | return Color::DecodeD24(src_pixel); | ||
| 133 | case FramebufferRegs::DepthFormat::D24S8: | ||
| 134 | return Color::DecodeD24S8(src_pixel).x; | ||
| 135 | default: | ||
| 136 | LOG_CRITICAL(HW_GPU, "Unimplemented depth format %u", framebuffer.depth_format); | ||
| 137 | UNIMPLEMENTED(); | ||
| 138 | return 0; | ||
| 139 | } | ||
| 140 | } | ||
| 141 | |||
| 142 | static u8 GetStencil(int x, int y) { | ||
| 143 | const auto& framebuffer = g_state.regs.framebuffer.framebuffer; | ||
| 144 | const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress(); | ||
| 145 | u8* depth_buffer = Memory::GetPhysicalPointer(addr); | ||
| 146 | |||
| 147 | y = framebuffer.height - y; | ||
| 148 | |||
| 149 | const u32 coarse_y = y & ~7; | ||
| 150 | u32 bytes_per_pixel = Pica::FramebufferRegs::BytesPerDepthPixel(framebuffer.depth_format); | ||
| 151 | u32 stride = framebuffer.width * bytes_per_pixel; | ||
| 152 | |||
| 153 | u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride; | ||
| 154 | u8* src_pixel = depth_buffer + src_offset; | ||
| 155 | |||
| 156 | switch (framebuffer.depth_format) { | ||
| 157 | case FramebufferRegs::DepthFormat::D24S8: | ||
| 158 | return Color::DecodeD24S8(src_pixel).y; | ||
| 159 | |||
| 160 | default: | ||
| 161 | LOG_WARNING( | ||
| 162 | HW_GPU, | ||
| 163 | "GetStencil called for function which doesn't have a stencil component (format %u)", | ||
| 164 | framebuffer.depth_format); | ||
| 165 | return 0; | ||
| 166 | } | ||
| 167 | } | ||
| 168 | |||
| 169 | static void SetDepth(int x, int y, u32 value) { | ||
| 170 | const auto& framebuffer = g_state.regs.framebuffer.framebuffer; | ||
| 171 | const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress(); | ||
| 172 | u8* depth_buffer = Memory::GetPhysicalPointer(addr); | ||
| 173 | |||
| 174 | y = framebuffer.height - y; | ||
| 175 | |||
| 176 | const u32 coarse_y = y & ~7; | ||
| 177 | u32 bytes_per_pixel = FramebufferRegs::BytesPerDepthPixel(framebuffer.depth_format); | ||
| 178 | u32 stride = framebuffer.width * bytes_per_pixel; | ||
| 179 | |||
| 180 | u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride; | ||
| 181 | u8* dst_pixel = depth_buffer + dst_offset; | ||
| 182 | |||
| 183 | switch (framebuffer.depth_format) { | ||
| 184 | case FramebufferRegs::DepthFormat::D16: | ||
| 185 | Color::EncodeD16(value, dst_pixel); | ||
| 186 | break; | ||
| 187 | |||
| 188 | case FramebufferRegs::DepthFormat::D24: | ||
| 189 | Color::EncodeD24(value, dst_pixel); | ||
| 190 | break; | ||
| 191 | |||
| 192 | case FramebufferRegs::DepthFormat::D24S8: | ||
| 193 | Color::EncodeD24X8(value, dst_pixel); | ||
| 194 | break; | ||
| 195 | |||
| 196 | default: | ||
| 197 | LOG_CRITICAL(HW_GPU, "Unimplemented depth format %u", framebuffer.depth_format); | ||
| 198 | UNIMPLEMENTED(); | ||
| 199 | break; | ||
| 200 | } | ||
| 201 | } | ||
| 202 | |||
| 203 | static void SetStencil(int x, int y, u8 value) { | ||
| 204 | const auto& framebuffer = g_state.regs.framebuffer.framebuffer; | ||
| 205 | const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress(); | ||
| 206 | u8* depth_buffer = Memory::GetPhysicalPointer(addr); | ||
| 207 | |||
| 208 | y = framebuffer.height - y; | ||
| 209 | |||
| 210 | const u32 coarse_y = y & ~7; | ||
| 211 | u32 bytes_per_pixel = Pica::FramebufferRegs::BytesPerDepthPixel(framebuffer.depth_format); | ||
| 212 | u32 stride = framebuffer.width * bytes_per_pixel; | ||
| 213 | |||
| 214 | u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride; | ||
| 215 | u8* dst_pixel = depth_buffer + dst_offset; | ||
| 216 | |||
| 217 | switch (framebuffer.depth_format) { | ||
| 218 | case Pica::FramebufferRegs::DepthFormat::D16: | ||
| 219 | case Pica::FramebufferRegs::DepthFormat::D24: | ||
| 220 | // Nothing to do | ||
| 221 | break; | ||
| 222 | |||
| 223 | case Pica::FramebufferRegs::DepthFormat::D24S8: | ||
| 224 | Color::EncodeX24S8(value, dst_pixel); | ||
| 225 | break; | ||
| 226 | |||
| 227 | default: | ||
| 228 | LOG_CRITICAL(HW_GPU, "Unimplemented depth format %u", framebuffer.depth_format); | ||
| 229 | UNIMPLEMENTED(); | ||
| 230 | break; | ||
| 231 | } | ||
| 232 | } | ||
| 233 | |||
| 234 | static u8 PerformStencilAction(FramebufferRegs::StencilAction action, u8 old_stencil, u8 ref) { | ||
| 235 | switch (action) { | ||
| 236 | case FramebufferRegs::StencilAction::Keep: | ||
| 237 | return old_stencil; | ||
| 238 | |||
| 239 | case FramebufferRegs::StencilAction::Zero: | ||
| 240 | return 0; | ||
| 241 | |||
| 242 | case FramebufferRegs::StencilAction::Replace: | ||
| 243 | return ref; | ||
| 244 | |||
| 245 | case FramebufferRegs::StencilAction::Increment: | ||
| 246 | // Saturated increment | ||
| 247 | return std::min<u8>(old_stencil, 254) + 1; | ||
| 248 | |||
| 249 | case FramebufferRegs::StencilAction::Decrement: | ||
| 250 | // Saturated decrement | ||
| 251 | return std::max<u8>(old_stencil, 1) - 1; | ||
| 252 | |||
| 253 | case FramebufferRegs::StencilAction::Invert: | ||
| 254 | return ~old_stencil; | ||
| 255 | |||
| 256 | case FramebufferRegs::StencilAction::IncrementWrap: | ||
| 257 | return old_stencil + 1; | ||
| 258 | |||
| 259 | case FramebufferRegs::StencilAction::DecrementWrap: | ||
| 260 | return old_stencil - 1; | ||
| 261 | |||
| 262 | default: | ||
| 263 | LOG_CRITICAL(HW_GPU, "Unknown stencil action %x", (int)action); | ||
| 264 | UNIMPLEMENTED(); | ||
| 265 | return 0; | ||
| 266 | } | ||
| 267 | } | ||
| 268 | |||
| 269 | // NOTE: Assuming that rasterizer coordinates are 12.4 fixed-point values | ||
| 270 | struct Fix12P4 { | ||
| 271 | Fix12P4() {} | ||
| 272 | Fix12P4(u16 val) : val(val) {} | ||
| 273 | |||
| 274 | static u16 FracMask() { | ||
| 275 | return 0xF; | ||
| 276 | } | ||
| 277 | static u16 IntMask() { | ||
| 278 | return (u16)~0xF; | ||
| 279 | } | ||
| 280 | |||
| 281 | operator u16() const { | ||
| 282 | return val; | ||
| 283 | } | ||
| 284 | |||
| 285 | bool operator<(const Fix12P4& oth) const { | ||
| 286 | return (u16) * this < (u16)oth; | ||
| 287 | } | ||
| 288 | |||
| 289 | private: | ||
| 290 | u16 val; | ||
| 291 | }; | ||
| 292 | |||
| 293 | /** | ||
| 294 | * Calculate signed area of the triangle spanned by the three argument vertices. | ||
| 295 | * The sign denotes an orientation. | ||
| 296 | * | ||
| 297 | * @todo define orientation concretely. | ||
| 298 | */ | ||
| 299 | static int SignedArea(const Math::Vec2<Fix12P4>& vtx1, const Math::Vec2<Fix12P4>& vtx2, | ||
| 300 | const Math::Vec2<Fix12P4>& vtx3) { | ||
| 301 | const auto vec1 = Math::MakeVec(vtx2 - vtx1, 0); | ||
| 302 | const auto vec2 = Math::MakeVec(vtx3 - vtx1, 0); | ||
| 303 | // TODO: There is a very small chance this will overflow for sizeof(int) == 4 | ||
| 304 | return Math::Cross(vec1, vec2).z; | ||
| 305 | }; | ||
| 306 | |||
| 307 | MICROPROFILE_DEFINE(GPU_Rasterization, "GPU", "Rasterization", MP_RGB(50, 50, 240)); | ||
| 308 | |||
| 309 | /** | ||
| 310 | * Helper function for ProcessTriangle with the "reversed" flag to allow for implementing | ||
| 311 | * culling via recursion. | ||
| 312 | */ | ||
| 313 | static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Vertex& v2, | ||
| 314 | bool reversed = false) { | ||
| 315 | const auto& regs = g_state.regs; | ||
| 316 | MICROPROFILE_SCOPE(GPU_Rasterization); | ||
| 317 | |||
| 318 | // vertex positions in rasterizer coordinates | ||
| 319 | static auto FloatToFix = [](float24 flt) { | ||
| 320 | // TODO: Rounding here is necessary to prevent garbage pixels at | ||
| 321 | // triangle borders. Is it that the correct solution, though? | ||
| 322 | return Fix12P4(static_cast<unsigned short>(round(flt.ToFloat32() * 16.0f))); | ||
| 323 | }; | ||
| 324 | static auto ScreenToRasterizerCoordinates = [](const Math::Vec3<float24>& vec) { | ||
| 325 | return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)}; | ||
| 326 | }; | ||
| 327 | |||
| 328 | Math::Vec3<Fix12P4> vtxpos[3]{ScreenToRasterizerCoordinates(v0.screenpos), | ||
| 329 | ScreenToRasterizerCoordinates(v1.screenpos), | ||
| 330 | ScreenToRasterizerCoordinates(v2.screenpos)}; | ||
| 331 | |||
| 332 | if (regs.rasterizer.cull_mode == RasterizerRegs::CullMode::KeepAll) { | ||
| 333 | // Make sure we always end up with a triangle wound counter-clockwise | ||
| 334 | if (!reversed && SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0) { | ||
| 335 | ProcessTriangleInternal(v0, v2, v1, true); | ||
| 336 | return; | ||
| 337 | } | ||
| 338 | } else { | ||
| 339 | if (!reversed && regs.rasterizer.cull_mode == RasterizerRegs::CullMode::KeepClockWise) { | ||
| 340 | // Reverse vertex order and use the CCW code path. | ||
| 341 | ProcessTriangleInternal(v0, v2, v1, true); | ||
| 342 | return; | ||
| 343 | } | ||
| 344 | |||
| 345 | // Cull away triangles which are wound clockwise. | ||
| 346 | if (SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0) | ||
| 347 | return; | ||
| 348 | } | ||
| 349 | |||
| 350 | u16 min_x = std::min({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x}); | ||
| 351 | u16 min_y = std::min({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y}); | ||
| 352 | u16 max_x = std::max({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x}); | ||
| 353 | u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y}); | ||
| 354 | |||
| 355 | // Convert the scissor box coordinates to 12.4 fixed point | ||
| 356 | u16 scissor_x1 = (u16)(regs.rasterizer.scissor_test.x1 << 4); | ||
| 357 | u16 scissor_y1 = (u16)(regs.rasterizer.scissor_test.y1 << 4); | ||
| 358 | // x2,y2 have +1 added to cover the entire sub-pixel area | ||
| 359 | u16 scissor_x2 = (u16)((regs.rasterizer.scissor_test.x2 + 1) << 4); | ||
| 360 | u16 scissor_y2 = (u16)((regs.rasterizer.scissor_test.y2 + 1) << 4); | ||
| 361 | |||
| 362 | if (regs.rasterizer.scissor_test.mode == RasterizerRegs::ScissorMode::Include) { | ||
| 363 | // Calculate the new bounds | ||
| 364 | min_x = std::max(min_x, scissor_x1); | ||
| 365 | min_y = std::max(min_y, scissor_y1); | ||
| 366 | max_x = std::min(max_x, scissor_x2); | ||
| 367 | max_y = std::min(max_y, scissor_y2); | ||
| 368 | } | ||
| 369 | |||
| 370 | min_x &= Fix12P4::IntMask(); | ||
| 371 | min_y &= Fix12P4::IntMask(); | ||
| 372 | max_x = ((max_x + Fix12P4::FracMask()) & Fix12P4::IntMask()); | ||
| 373 | max_y = ((max_y + Fix12P4::FracMask()) & Fix12P4::IntMask()); | ||
| 374 | |||
| 375 | // Triangle filling rules: Pixels on the right-sided edge or on flat bottom edges are not | ||
| 376 | // drawn. Pixels on any other triangle border are drawn. This is implemented with three bias | ||
| 377 | // values which are added to the barycentric coordinates w0, w1 and w2, respectively. | ||
| 378 | // NOTE: These are the PSP filling rules. Not sure if the 3DS uses the same ones... | ||
| 379 | auto IsRightSideOrFlatBottomEdge = [](const Math::Vec2<Fix12P4>& vtx, | ||
| 380 | const Math::Vec2<Fix12P4>& line1, | ||
| 381 | const Math::Vec2<Fix12P4>& line2) { | ||
| 382 | if (line1.y == line2.y) { | ||
| 383 | // just check if vertex is above us => bottom line parallel to x-axis | ||
| 384 | return vtx.y < line1.y; | ||
| 385 | } else { | ||
| 386 | // check if vertex is on our left => right side | ||
| 387 | // TODO: Not sure how likely this is to overflow | ||
| 388 | return (int)vtx.x < (int)line1.x + | ||
| 389 | ((int)line2.x - (int)line1.x) * ((int)vtx.y - (int)line1.y) / | ||
| 390 | ((int)line2.y - (int)line1.y); | ||
| 391 | } | ||
| 392 | }; | ||
| 393 | int bias0 = | ||
| 394 | IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0; | ||
| 395 | int bias1 = | ||
| 396 | IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0; | ||
| 397 | int bias2 = | ||
| 398 | IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0; | ||
| 399 | |||
| 400 | auto w_inverse = Math::MakeVec(v0.pos.w, v1.pos.w, v2.pos.w); | ||
| 401 | |||
| 402 | auto textures = regs.texturing.GetTextures(); | ||
| 403 | auto tev_stages = regs.texturing.GetTevStages(); | ||
| 404 | |||
| 405 | bool stencil_action_enable = | ||
| 406 | g_state.regs.framebuffer.output_merger.stencil_test.enable && | ||
| 407 | g_state.regs.framebuffer.framebuffer.depth_format == FramebufferRegs::DepthFormat::D24S8; | ||
| 408 | const auto stencil_test = g_state.regs.framebuffer.output_merger.stencil_test; | ||
| 409 | |||
| 410 | // Enter rasterization loop, starting at the center of the topleft bounding box corner. | ||
| 411 | // TODO: Not sure if looping through x first might be faster | ||
| 412 | for (u16 y = min_y + 8; y < max_y; y += 0x10) { | ||
| 413 | for (u16 x = min_x + 8; x < max_x; x += 0x10) { | ||
| 414 | |||
| 415 | // Do not process the pixel if it's inside the scissor box and the scissor mode is set | ||
| 416 | // to Exclude | ||
| 417 | if (regs.rasterizer.scissor_test.mode == RasterizerRegs::ScissorMode::Exclude) { | ||
| 418 | if (x >= scissor_x1 && x < scissor_x2 && y >= scissor_y1 && y < scissor_y2) | ||
| 419 | continue; | ||
| 420 | } | ||
| 421 | |||
| 422 | // Calculate the barycentric coordinates w0, w1 and w2 | ||
| 423 | int w0 = bias0 + SignedArea(vtxpos[1].xy(), vtxpos[2].xy(), {x, y}); | ||
| 424 | int w1 = bias1 + SignedArea(vtxpos[2].xy(), vtxpos[0].xy(), {x, y}); | ||
| 425 | int w2 = bias2 + SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), {x, y}); | ||
| 426 | int wsum = w0 + w1 + w2; | ||
| 427 | |||
| 428 | // If current pixel is not covered by the current primitive | ||
| 429 | if (w0 < 0 || w1 < 0 || w2 < 0) | ||
| 430 | continue; | ||
| 431 | |||
| 432 | auto baricentric_coordinates = | ||
| 433 | Math::MakeVec(float24::FromFloat32(static_cast<float>(w0)), | ||
| 434 | float24::FromFloat32(static_cast<float>(w1)), | ||
| 435 | float24::FromFloat32(static_cast<float>(w2))); | ||
| 436 | float24 interpolated_w_inverse = | ||
| 437 | float24::FromFloat32(1.0f) / Math::Dot(w_inverse, baricentric_coordinates); | ||
| 438 | |||
| 439 | // interpolated_z = z / w | ||
| 440 | float interpolated_z_over_w = | ||
| 441 | (v0.screenpos[2].ToFloat32() * w0 + v1.screenpos[2].ToFloat32() * w1 + | ||
| 442 | v2.screenpos[2].ToFloat32() * w2) / | ||
| 443 | wsum; | ||
| 444 | |||
| 445 | // Not fully accurate. About 3 bits in precision are missing. | ||
| 446 | // Z-Buffer (z / w * scale + offset) | ||
| 447 | float depth_scale = float24::FromRaw(regs.rasterizer.viewport_depth_range).ToFloat32(); | ||
| 448 | float depth_offset = | ||
| 449 | float24::FromRaw(regs.rasterizer.viewport_depth_near_plane).ToFloat32(); | ||
| 450 | float depth = interpolated_z_over_w * depth_scale + depth_offset; | ||
| 451 | |||
| 452 | // Potentially switch to W-Buffer | ||
| 453 | if (regs.rasterizer.depthmap_enable == | ||
| 454 | Pica::RasterizerRegs::DepthBuffering::WBuffering) { | ||
| 455 | // W-Buffer (z * scale + w * offset = (z / w * scale + offset) * w) | ||
| 456 | depth *= interpolated_w_inverse.ToFloat32() * wsum; | ||
| 457 | } | ||
| 458 | |||
| 459 | // Clamp the result | ||
| 460 | depth = MathUtil::Clamp(depth, 0.0f, 1.0f); | ||
| 461 | |||
| 462 | // Perspective correct attribute interpolation: | ||
| 463 | // Attribute values cannot be calculated by simple linear interpolation since | ||
| 464 | // they are not linear in screen space. For example, when interpolating a | ||
| 465 | // texture coordinate across two vertices, something simple like | ||
| 466 | // u = (u0*w0 + u1*w1)/(w0+w1) | ||
| 467 | // will not work. However, the attribute value divided by the | ||
| 468 | // clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear | ||
| 469 | // in screenspace. Hence, we can linearly interpolate these two independently and | ||
| 470 | // calculate the interpolated attribute by dividing the results. | ||
| 471 | // I.e. | ||
| 472 | // u_over_w = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1) | ||
| 473 | // one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1) | ||
| 474 | // u = u_over_w / one_over_w | ||
| 475 | // | ||
| 476 | // The generalization to three vertices is straightforward in baricentric coordinates. | ||
| 477 | auto GetInterpolatedAttribute = [&](float24 attr0, float24 attr1, float24 attr2) { | ||
| 478 | auto attr_over_w = Math::MakeVec(attr0, attr1, attr2); | ||
| 479 | float24 interpolated_attr_over_w = Math::Dot(attr_over_w, baricentric_coordinates); | ||
| 480 | return interpolated_attr_over_w * interpolated_w_inverse; | ||
| 481 | }; | ||
| 482 | |||
| 483 | Math::Vec4<u8> primary_color{ | ||
| 484 | (u8)( | ||
| 485 | GetInterpolatedAttribute(v0.color.r(), v1.color.r(), v2.color.r()).ToFloat32() * | ||
| 486 | 255), | ||
| 487 | (u8)( | ||
| 488 | GetInterpolatedAttribute(v0.color.g(), v1.color.g(), v2.color.g()).ToFloat32() * | ||
| 489 | 255), | ||
| 490 | (u8)( | ||
| 491 | GetInterpolatedAttribute(v0.color.b(), v1.color.b(), v2.color.b()).ToFloat32() * | ||
| 492 | 255), | ||
| 493 | (u8)( | ||
| 494 | GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() * | ||
| 495 | 255), | ||
| 496 | }; | ||
| 497 | |||
| 498 | Math::Vec2<float24> uv[3]; | ||
| 499 | uv[0].u() = GetInterpolatedAttribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u()); | ||
| 500 | uv[0].v() = GetInterpolatedAttribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v()); | ||
| 501 | uv[1].u() = GetInterpolatedAttribute(v0.tc1.u(), v1.tc1.u(), v2.tc1.u()); | ||
| 502 | uv[1].v() = GetInterpolatedAttribute(v0.tc1.v(), v1.tc1.v(), v2.tc1.v()); | ||
| 503 | uv[2].u() = GetInterpolatedAttribute(v0.tc2.u(), v1.tc2.u(), v2.tc2.u()); | ||
| 504 | uv[2].v() = GetInterpolatedAttribute(v0.tc2.v(), v1.tc2.v(), v2.tc2.v()); | ||
| 505 | |||
| 506 | Math::Vec4<u8> texture_color[3]{}; | ||
| 507 | for (int i = 0; i < 3; ++i) { | ||
| 508 | const auto& texture = textures[i]; | ||
| 509 | if (!texture.enabled) | ||
| 510 | continue; | ||
| 511 | |||
| 512 | DEBUG_ASSERT(0 != texture.config.address); | ||
| 513 | |||
| 514 | float24 u = uv[i].u(); | ||
| 515 | float24 v = uv[i].v(); | ||
| 516 | |||
| 517 | // Only unit 0 respects the texturing type (according to 3DBrew) | ||
| 518 | // TODO: Refactor so cubemaps and shadowmaps can be handled | ||
| 519 | if (i == 0) { | ||
| 520 | switch (texture.config.type) { | ||
| 521 | case TexturingRegs::TextureConfig::Texture2D: | ||
| 522 | break; | ||
| 523 | case TexturingRegs::TextureConfig::Projection2D: { | ||
| 524 | auto tc0_w = GetInterpolatedAttribute(v0.tc0_w, v1.tc0_w, v2.tc0_w); | ||
| 525 | u /= tc0_w; | ||
| 526 | v /= tc0_w; | ||
| 527 | break; | ||
| 528 | } | ||
| 529 | default: | ||
| 530 | // TODO: Change to LOG_ERROR when more types are handled. | ||
| 531 | LOG_DEBUG(HW_GPU, "Unhandled texture type %x", (int)texture.config.type); | ||
| 532 | UNIMPLEMENTED(); | ||
| 533 | break; | ||
| 534 | } | ||
| 535 | } | ||
| 536 | |||
| 537 | int s = (int)(u * float24::FromFloat32(static_cast<float>(texture.config.width))) | ||
| 538 | .ToFloat32(); | ||
| 539 | int t = (int)(v * float24::FromFloat32(static_cast<float>(texture.config.height))) | ||
| 540 | .ToFloat32(); | ||
| 541 | |||
| 542 | static auto GetWrappedTexCoord = [](TexturingRegs::TextureConfig::WrapMode mode, | ||
| 543 | int val, unsigned size) { | ||
| 544 | switch (mode) { | ||
| 545 | case TexturingRegs::TextureConfig::ClampToEdge: | ||
| 546 | val = std::max(val, 0); | ||
| 547 | val = std::min(val, (int)size - 1); | ||
| 548 | return val; | ||
| 549 | |||
| 550 | case TexturingRegs::TextureConfig::ClampToBorder: | ||
| 551 | return val; | ||
| 552 | |||
| 553 | case TexturingRegs::TextureConfig::Repeat: | ||
| 554 | return (int)((unsigned)val % size); | ||
| 555 | |||
| 556 | case TexturingRegs::TextureConfig::MirroredRepeat: { | ||
| 557 | unsigned int coord = ((unsigned)val % (2 * size)); | ||
| 558 | if (coord >= size) | ||
| 559 | coord = 2 * size - 1 - coord; | ||
| 560 | return (int)coord; | ||
| 561 | } | ||
| 562 | |||
| 563 | default: | ||
| 564 | LOG_ERROR(HW_GPU, "Unknown texture coordinate wrapping mode %x", (int)mode); | ||
| 565 | UNIMPLEMENTED(); | ||
| 566 | return 0; | ||
| 567 | } | ||
| 568 | }; | ||
| 569 | |||
| 570 | if ((texture.config.wrap_s == TexturingRegs::TextureConfig::ClampToBorder && | ||
| 571 | (s < 0 || static_cast<u32>(s) >= texture.config.width)) || | ||
| 572 | (texture.config.wrap_t == TexturingRegs::TextureConfig::ClampToBorder && | ||
| 573 | (t < 0 || static_cast<u32>(t) >= texture.config.height))) { | ||
| 574 | auto border_color = texture.config.border_color; | ||
| 575 | texture_color[i] = {border_color.r, border_color.g, border_color.b, | ||
| 576 | border_color.a}; | ||
| 577 | } else { | ||
| 578 | // Textures are laid out from bottom to top, hence we invert the t coordinate. | ||
| 579 | // NOTE: This may not be the right place for the inversion. | ||
| 580 | // TODO: Check if this applies to ETC textures, too. | ||
| 581 | s = GetWrappedTexCoord(texture.config.wrap_s, s, texture.config.width); | ||
| 582 | t = texture.config.height - 1 - | ||
| 583 | GetWrappedTexCoord(texture.config.wrap_t, t, texture.config.height); | ||
| 584 | |||
| 585 | u8* texture_data = | ||
| 586 | Memory::GetPhysicalPointer(texture.config.GetPhysicalAddress()); | ||
| 587 | auto info = | ||
| 588 | Texture::TextureInfo::FromPicaRegister(texture.config, texture.format); | ||
| 589 | |||
| 590 | // TODO: Apply the min and mag filters to the texture | ||
| 591 | texture_color[i] = Texture::LookupTexture(texture_data, s, t, info); | ||
| 592 | #if PICA_DUMP_TEXTURES | ||
| 593 | DebugUtils::DumpTexture(texture.config, texture_data); | ||
| 594 | #endif | ||
| 595 | } | ||
| 596 | } | ||
| 597 | |||
| 598 | // Texture environment - consists of 6 stages of color and alpha combining. | ||
| 599 | // | ||
| 600 | // Color combiners take three input color values from some source (e.g. interpolated | ||
| 601 | // vertex color, texture color, previous stage, etc), perform some very simple | ||
| 602 | // operations on each of them (e.g. inversion) and then calculate the output color | ||
| 603 | // with some basic arithmetic. Alpha combiners can be configured separately but work | ||
| 604 | // analogously. | ||
| 605 | Math::Vec4<u8> combiner_output; | ||
| 606 | Math::Vec4<u8> combiner_buffer = {0, 0, 0, 0}; | ||
| 607 | Math::Vec4<u8> next_combiner_buffer = { | ||
| 608 | regs.texturing.tev_combiner_buffer_color.r, | ||
| 609 | regs.texturing.tev_combiner_buffer_color.g, | ||
| 610 | regs.texturing.tev_combiner_buffer_color.b, | ||
| 611 | regs.texturing.tev_combiner_buffer_color.a, | ||
| 612 | }; | ||
| 613 | |||
| 614 | for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size(); | ||
| 615 | ++tev_stage_index) { | ||
| 616 | const auto& tev_stage = tev_stages[tev_stage_index]; | ||
| 617 | using Source = TexturingRegs::TevStageConfig::Source; | ||
| 618 | using ColorModifier = TexturingRegs::TevStageConfig::ColorModifier; | ||
| 619 | using AlphaModifier = TexturingRegs::TevStageConfig::AlphaModifier; | ||
| 620 | using Operation = TexturingRegs::TevStageConfig::Operation; | ||
| 621 | |||
| 622 | auto GetSource = [&](Source source) -> Math::Vec4<u8> { | ||
| 623 | switch (source) { | ||
| 624 | case Source::PrimaryColor: | ||
| 625 | |||
| 626 | // HACK: Until we implement fragment lighting, use primary_color | ||
| 627 | case Source::PrimaryFragmentColor: | ||
| 628 | return primary_color; | ||
| 629 | |||
| 630 | // HACK: Until we implement fragment lighting, use zero | ||
| 631 | case Source::SecondaryFragmentColor: | ||
| 632 | return {0, 0, 0, 0}; | ||
| 633 | |||
| 634 | case Source::Texture0: | ||
| 635 | return texture_color[0]; | ||
| 636 | |||
| 637 | case Source::Texture1: | ||
| 638 | return texture_color[1]; | ||
| 639 | |||
| 640 | case Source::Texture2: | ||
| 641 | return texture_color[2]; | ||
| 642 | |||
| 643 | case Source::PreviousBuffer: | ||
| 644 | return combiner_buffer; | ||
| 645 | |||
| 646 | case Source::Constant: | ||
| 647 | return {tev_stage.const_r, tev_stage.const_g, tev_stage.const_b, | ||
| 648 | tev_stage.const_a}; | ||
| 649 | |||
| 650 | case Source::Previous: | ||
| 651 | return combiner_output; | ||
| 652 | |||
| 653 | default: | ||
| 654 | LOG_ERROR(HW_GPU, "Unknown color combiner source %d", (int)source); | ||
| 655 | UNIMPLEMENTED(); | ||
| 656 | return {0, 0, 0, 0}; | ||
| 657 | } | ||
| 658 | }; | ||
| 659 | |||
| 660 | static auto GetColorModifier = [](ColorModifier factor, | ||
| 661 | const Math::Vec4<u8>& values) -> Math::Vec3<u8> { | ||
| 662 | switch (factor) { | ||
| 663 | case ColorModifier::SourceColor: | ||
| 664 | return values.rgb(); | ||
| 665 | |||
| 666 | case ColorModifier::OneMinusSourceColor: | ||
| 667 | return (Math::Vec3<u8>(255, 255, 255) - values.rgb()).Cast<u8>(); | ||
| 668 | |||
| 669 | case ColorModifier::SourceAlpha: | ||
| 670 | return values.aaa(); | ||
| 671 | |||
| 672 | case ColorModifier::OneMinusSourceAlpha: | ||
| 673 | return (Math::Vec3<u8>(255, 255, 255) - values.aaa()).Cast<u8>(); | ||
| 674 | |||
| 675 | case ColorModifier::SourceRed: | ||
| 676 | return values.rrr(); | ||
| 677 | |||
| 678 | case ColorModifier::OneMinusSourceRed: | ||
| 679 | return (Math::Vec3<u8>(255, 255, 255) - values.rrr()).Cast<u8>(); | ||
| 680 | |||
| 681 | case ColorModifier::SourceGreen: | ||
| 682 | return values.ggg(); | ||
| 683 | |||
| 684 | case ColorModifier::OneMinusSourceGreen: | ||
| 685 | return (Math::Vec3<u8>(255, 255, 255) - values.ggg()).Cast<u8>(); | ||
| 686 | |||
| 687 | case ColorModifier::SourceBlue: | ||
| 688 | return values.bbb(); | ||
| 689 | |||
| 690 | case ColorModifier::OneMinusSourceBlue: | ||
| 691 | return (Math::Vec3<u8>(255, 255, 255) - values.bbb()).Cast<u8>(); | ||
| 692 | } | ||
| 693 | }; | ||
| 694 | |||
| 695 | static auto GetAlphaModifier = [](AlphaModifier factor, | ||
| 696 | const Math::Vec4<u8>& values) -> u8 { | ||
| 697 | switch (factor) { | ||
| 698 | case AlphaModifier::SourceAlpha: | ||
| 699 | return values.a(); | ||
| 700 | |||
| 701 | case AlphaModifier::OneMinusSourceAlpha: | ||
| 702 | return 255 - values.a(); | ||
| 703 | |||
| 704 | case AlphaModifier::SourceRed: | ||
| 705 | return values.r(); | ||
| 706 | |||
| 707 | case AlphaModifier::OneMinusSourceRed: | ||
| 708 | return 255 - values.r(); | ||
| 709 | |||
| 710 | case AlphaModifier::SourceGreen: | ||
| 711 | return values.g(); | ||
| 712 | |||
| 713 | case AlphaModifier::OneMinusSourceGreen: | ||
| 714 | return 255 - values.g(); | ||
| 715 | |||
| 716 | case AlphaModifier::SourceBlue: | ||
| 717 | return values.b(); | ||
| 718 | |||
| 719 | case AlphaModifier::OneMinusSourceBlue: | ||
| 720 | return 255 - values.b(); | ||
| 721 | } | ||
| 722 | }; | ||
| 723 | |||
| 724 | static auto ColorCombine = [](Operation op, | ||
| 725 | const Math::Vec3<u8> input[3]) -> Math::Vec3<u8> { | ||
| 726 | switch (op) { | ||
| 727 | case Operation::Replace: | ||
| 728 | return input[0]; | ||
| 729 | |||
| 730 | case Operation::Modulate: | ||
| 731 | return ((input[0] * input[1]) / 255).Cast<u8>(); | ||
| 732 | |||
| 733 | case Operation::Add: { | ||
| 734 | auto result = input[0] + input[1]; | ||
| 735 | result.r() = std::min(255, result.r()); | ||
| 736 | result.g() = std::min(255, result.g()); | ||
| 737 | result.b() = std::min(255, result.b()); | ||
| 738 | return result.Cast<u8>(); | ||
| 739 | } | ||
| 740 | |||
| 741 | case Operation::AddSigned: { | ||
| 742 | // TODO(bunnei): Verify that the color conversion from (float) 0.5f to | ||
| 743 | // (byte) 128 is correct | ||
| 744 | auto result = input[0].Cast<int>() + input[1].Cast<int>() - | ||
| 745 | Math::MakeVec<int>(128, 128, 128); | ||
| 746 | result.r() = MathUtil::Clamp<int>(result.r(), 0, 255); | ||
| 747 | result.g() = MathUtil::Clamp<int>(result.g(), 0, 255); | ||
| 748 | result.b() = MathUtil::Clamp<int>(result.b(), 0, 255); | ||
| 749 | return result.Cast<u8>(); | ||
| 750 | } | ||
| 751 | |||
| 752 | case Operation::Lerp: | ||
| 753 | return ((input[0] * input[2] + | ||
| 754 | input[1] * | ||
| 755 | (Math::MakeVec<u8>(255, 255, 255) - input[2]).Cast<u8>()) / | ||
| 756 | 255) | ||
| 757 | .Cast<u8>(); | ||
| 758 | |||
| 759 | case Operation::Subtract: { | ||
| 760 | auto result = input[0].Cast<int>() - input[1].Cast<int>(); | ||
| 761 | result.r() = std::max(0, result.r()); | ||
| 762 | result.g() = std::max(0, result.g()); | ||
| 763 | result.b() = std::max(0, result.b()); | ||
| 764 | return result.Cast<u8>(); | ||
| 765 | } | ||
| 766 | |||
| 767 | case Operation::MultiplyThenAdd: { | ||
| 768 | auto result = (input[0] * input[1] + 255 * input[2].Cast<int>()) / 255; | ||
| 769 | result.r() = std::min(255, result.r()); | ||
| 770 | result.g() = std::min(255, result.g()); | ||
| 771 | result.b() = std::min(255, result.b()); | ||
| 772 | return result.Cast<u8>(); | ||
| 773 | } | ||
| 774 | |||
| 775 | case Operation::AddThenMultiply: { | ||
| 776 | auto result = input[0] + input[1]; | ||
| 777 | result.r() = std::min(255, result.r()); | ||
| 778 | result.g() = std::min(255, result.g()); | ||
| 779 | result.b() = std::min(255, result.b()); | ||
| 780 | result = (result * input[2].Cast<int>()) / 255; | ||
| 781 | return result.Cast<u8>(); | ||
| 782 | } | ||
| 783 | case Operation::Dot3_RGB: { | ||
| 784 | // Not fully accurate. | ||
| 785 | // Worst case scenario seems to yield a +/-3 error | ||
| 786 | // Some HW results indicate that the per-component computation can't have a | ||
| 787 | // higher precision than 1/256, | ||
| 788 | // while dot3_rgb( (0x80,g0,b0),(0x7F,g1,b1) ) and dot3_rgb( | ||
| 789 | // (0x80,g0,b0),(0x80,g1,b1) ) give different results | ||
| 790 | int result = | ||
| 791 | ((input[0].r() * 2 - 255) * (input[1].r() * 2 - 255) + 128) / 256 + | ||
| 792 | ((input[0].g() * 2 - 255) * (input[1].g() * 2 - 255) + 128) / 256 + | ||
| 793 | ((input[0].b() * 2 - 255) * (input[1].b() * 2 - 255) + 128) / 256; | ||
| 794 | result = std::max(0, std::min(255, result)); | ||
| 795 | return {(u8)result, (u8)result, (u8)result}; | ||
| 796 | } | ||
| 797 | default: | ||
| 798 | LOG_ERROR(HW_GPU, "Unknown color combiner operation %d", (int)op); | ||
| 799 | UNIMPLEMENTED(); | ||
| 800 | return {0, 0, 0}; | ||
| 801 | } | ||
| 802 | }; | ||
| 803 | |||
| 804 | static auto AlphaCombine = [](Operation op, const std::array<u8, 3>& input) -> u8 { | ||
| 805 | switch (op) { | ||
| 806 | case Operation::Replace: | ||
| 807 | return input[0]; | ||
| 808 | |||
| 809 | case Operation::Modulate: | ||
| 810 | return input[0] * input[1] / 255; | ||
| 811 | |||
| 812 | case Operation::Add: | ||
| 813 | return std::min(255, input[0] + input[1]); | ||
| 814 | |||
| 815 | case Operation::AddSigned: { | ||
| 816 | // TODO(bunnei): Verify that the color conversion from (float) 0.5f to | ||
| 817 | // (byte) 128 is correct | ||
| 818 | auto result = static_cast<int>(input[0]) + static_cast<int>(input[1]) - 128; | ||
| 819 | return static_cast<u8>(MathUtil::Clamp<int>(result, 0, 255)); | ||
| 820 | } | ||
| 821 | |||
| 822 | case Operation::Lerp: | ||
| 823 | return (input[0] * input[2] + input[1] * (255 - input[2])) / 255; | ||
| 824 | |||
| 825 | case Operation::Subtract: | ||
| 826 | return std::max(0, (int)input[0] - (int)input[1]); | ||
| 827 | |||
| 828 | case Operation::MultiplyThenAdd: | ||
| 829 | return std::min(255, (input[0] * input[1] + 255 * input[2]) / 255); | ||
| 830 | |||
| 831 | case Operation::AddThenMultiply: | ||
| 832 | return (std::min(255, (input[0] + input[1])) * input[2]) / 255; | ||
| 833 | |||
| 834 | default: | ||
| 835 | LOG_ERROR(HW_GPU, "Unknown alpha combiner operation %d", (int)op); | ||
| 836 | UNIMPLEMENTED(); | ||
| 837 | return 0; | ||
| 838 | } | ||
| 839 | }; | ||
| 840 | |||
| 841 | // color combiner | ||
| 842 | // NOTE: Not sure if the alpha combiner might use the color output of the previous | ||
| 843 | // stage as input. Hence, we currently don't directly write the result to | ||
| 844 | // combiner_output.rgb(), but instead store it in a temporary variable until | ||
| 845 | // alpha combining has been done. | ||
| 846 | Math::Vec3<u8> color_result[3] = { | ||
| 847 | GetColorModifier(tev_stage.color_modifier1, GetSource(tev_stage.color_source1)), | ||
| 848 | GetColorModifier(tev_stage.color_modifier2, GetSource(tev_stage.color_source2)), | ||
| 849 | GetColorModifier(tev_stage.color_modifier3, GetSource(tev_stage.color_source3)), | ||
| 850 | }; | ||
| 851 | auto color_output = ColorCombine(tev_stage.color_op, color_result); | ||
| 852 | |||
| 853 | // alpha combiner | ||
| 854 | std::array<u8, 3> alpha_result = {{ | ||
| 855 | GetAlphaModifier(tev_stage.alpha_modifier1, GetSource(tev_stage.alpha_source1)), | ||
| 856 | GetAlphaModifier(tev_stage.alpha_modifier2, GetSource(tev_stage.alpha_source2)), | ||
| 857 | GetAlphaModifier(tev_stage.alpha_modifier3, GetSource(tev_stage.alpha_source3)), | ||
| 858 | }}; | ||
| 859 | auto alpha_output = AlphaCombine(tev_stage.alpha_op, alpha_result); | ||
| 860 | |||
| 861 | combiner_output[0] = | ||
| 862 | std::min((unsigned)255, color_output.r() * tev_stage.GetColorMultiplier()); | ||
| 863 | combiner_output[1] = | ||
| 864 | std::min((unsigned)255, color_output.g() * tev_stage.GetColorMultiplier()); | ||
| 865 | combiner_output[2] = | ||
| 866 | std::min((unsigned)255, color_output.b() * tev_stage.GetColorMultiplier()); | ||
| 867 | combiner_output[3] = | ||
| 868 | std::min((unsigned)255, alpha_output * tev_stage.GetAlphaMultiplier()); | ||
| 869 | |||
| 870 | combiner_buffer = next_combiner_buffer; | ||
| 871 | |||
| 872 | if (regs.texturing.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferColor( | ||
| 873 | tev_stage_index)) { | ||
| 874 | next_combiner_buffer.r() = combiner_output.r(); | ||
| 875 | next_combiner_buffer.g() = combiner_output.g(); | ||
| 876 | next_combiner_buffer.b() = combiner_output.b(); | ||
| 877 | } | ||
| 878 | |||
| 879 | if (regs.texturing.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferAlpha( | ||
| 880 | tev_stage_index)) { | ||
| 881 | next_combiner_buffer.a() = combiner_output.a(); | ||
| 882 | } | ||
| 883 | } | ||
| 884 | |||
| 885 | const auto& output_merger = regs.framebuffer.output_merger; | ||
| 886 | // TODO: Does alpha testing happen before or after stencil? | ||
| 887 | if (output_merger.alpha_test.enable) { | ||
| 888 | bool pass = false; | ||
| 889 | |||
| 890 | switch (output_merger.alpha_test.func) { | ||
| 891 | case FramebufferRegs::CompareFunc::Never: | ||
| 892 | pass = false; | ||
| 893 | break; | ||
| 894 | |||
| 895 | case FramebufferRegs::CompareFunc::Always: | ||
| 896 | pass = true; | ||
| 897 | break; | ||
| 898 | |||
| 899 | case FramebufferRegs::CompareFunc::Equal: | ||
| 900 | pass = combiner_output.a() == output_merger.alpha_test.ref; | ||
| 901 | break; | ||
| 902 | |||
| 903 | case FramebufferRegs::CompareFunc::NotEqual: | ||
| 904 | pass = combiner_output.a() != output_merger.alpha_test.ref; | ||
| 905 | break; | ||
| 906 | |||
| 907 | case FramebufferRegs::CompareFunc::LessThan: | ||
| 908 | pass = combiner_output.a() < output_merger.alpha_test.ref; | ||
| 909 | break; | ||
| 910 | |||
| 911 | case FramebufferRegs::CompareFunc::LessThanOrEqual: | ||
| 912 | pass = combiner_output.a() <= output_merger.alpha_test.ref; | ||
| 913 | break; | ||
| 914 | |||
| 915 | case FramebufferRegs::CompareFunc::GreaterThan: | ||
| 916 | pass = combiner_output.a() > output_merger.alpha_test.ref; | ||
| 917 | break; | ||
| 918 | |||
| 919 | case FramebufferRegs::CompareFunc::GreaterThanOrEqual: | ||
| 920 | pass = combiner_output.a() >= output_merger.alpha_test.ref; | ||
| 921 | break; | ||
| 922 | } | ||
| 923 | |||
| 924 | if (!pass) | ||
| 925 | continue; | ||
| 926 | } | ||
| 927 | |||
| 928 | // Apply fog combiner | ||
| 929 | // Not fully accurate. We'd have to know what data type is used to | ||
| 930 | // store the depth etc. Using float for now until we know more | ||
| 931 | // about Pica datatypes | ||
| 932 | if (regs.texturing.fog_mode == TexturingRegs::FogMode::Fog) { | ||
| 933 | const Math::Vec3<u8> fog_color = { | ||
| 934 | static_cast<u8>(regs.texturing.fog_color.r.Value()), | ||
| 935 | static_cast<u8>(regs.texturing.fog_color.g.Value()), | ||
| 936 | static_cast<u8>(regs.texturing.fog_color.b.Value()), | ||
| 937 | }; | ||
| 938 | |||
| 939 | // Get index into fog LUT | ||
| 940 | float fog_index; | ||
| 941 | if (g_state.regs.texturing.fog_flip) { | ||
| 942 | fog_index = (1.0f - depth) * 128.0f; | ||
| 943 | } else { | ||
| 944 | fog_index = depth * 128.0f; | ||
| 945 | } | ||
| 946 | |||
| 947 | // Generate clamped fog factor from LUT for given fog index | ||
| 948 | float fog_i = MathUtil::Clamp(floorf(fog_index), 0.0f, 127.0f); | ||
| 949 | float fog_f = fog_index - fog_i; | ||
| 950 | const auto& fog_lut_entry = g_state.fog.lut[static_cast<unsigned int>(fog_i)]; | ||
| 951 | float fog_factor = (fog_lut_entry.value + fog_lut_entry.difference * fog_f) / | ||
| 952 | 2047.0f; // This is signed fixed point 1.11 | ||
| 953 | fog_factor = MathUtil::Clamp(fog_factor, 0.0f, 1.0f); | ||
| 954 | |||
| 955 | // Blend the fog | ||
| 956 | for (unsigned i = 0; i < 3; i++) { | ||
| 957 | combiner_output[i] = static_cast<u8>(fog_factor * combiner_output[i] + | ||
| 958 | (1.0f - fog_factor) * fog_color[i]); | ||
| 959 | } | ||
| 960 | } | ||
| 961 | |||
| 962 | u8 old_stencil = 0; | ||
| 963 | |||
| 964 | auto UpdateStencil = [stencil_test, x, y, | ||
| 965 | &old_stencil](Pica::FramebufferRegs::StencilAction action) { | ||
| 966 | u8 new_stencil = | ||
| 967 | PerformStencilAction(action, old_stencil, stencil_test.reference_value); | ||
| 968 | if (g_state.regs.framebuffer.framebuffer.allow_depth_stencil_write != 0) | ||
| 969 | SetStencil(x >> 4, y >> 4, (new_stencil & stencil_test.write_mask) | | ||
| 970 | (old_stencil & ~stencil_test.write_mask)); | ||
| 971 | }; | ||
| 972 | |||
| 973 | if (stencil_action_enable) { | ||
| 974 | old_stencil = GetStencil(x >> 4, y >> 4); | ||
| 975 | u8 dest = old_stencil & stencil_test.input_mask; | ||
| 976 | u8 ref = stencil_test.reference_value & stencil_test.input_mask; | ||
| 977 | |||
| 978 | bool pass = false; | ||
| 979 | switch (stencil_test.func) { | ||
| 980 | case FramebufferRegs::CompareFunc::Never: | ||
| 981 | pass = false; | ||
| 982 | break; | ||
| 983 | |||
| 984 | case FramebufferRegs::CompareFunc::Always: | ||
| 985 | pass = true; | ||
| 986 | break; | ||
| 987 | |||
| 988 | case FramebufferRegs::CompareFunc::Equal: | ||
| 989 | pass = (ref == dest); | ||
| 990 | break; | ||
| 991 | |||
| 992 | case FramebufferRegs::CompareFunc::NotEqual: | ||
| 993 | pass = (ref != dest); | ||
| 994 | break; | ||
| 995 | |||
| 996 | case FramebufferRegs::CompareFunc::LessThan: | ||
| 997 | pass = (ref < dest); | ||
| 998 | break; | ||
| 999 | |||
| 1000 | case FramebufferRegs::CompareFunc::LessThanOrEqual: | ||
| 1001 | pass = (ref <= dest); | ||
| 1002 | break; | ||
| 1003 | |||
| 1004 | case FramebufferRegs::CompareFunc::GreaterThan: | ||
| 1005 | pass = (ref > dest); | ||
| 1006 | break; | ||
| 1007 | |||
| 1008 | case FramebufferRegs::CompareFunc::GreaterThanOrEqual: | ||
| 1009 | pass = (ref >= dest); | ||
| 1010 | break; | ||
| 1011 | } | ||
| 1012 | |||
| 1013 | if (!pass) { | ||
| 1014 | UpdateStencil(stencil_test.action_stencil_fail); | ||
| 1015 | continue; | ||
| 1016 | } | ||
| 1017 | } | ||
| 1018 | |||
| 1019 | // Convert float to integer | ||
| 1020 | unsigned num_bits = | ||
| 1021 | FramebufferRegs::DepthBitsPerPixel(regs.framebuffer.framebuffer.depth_format); | ||
| 1022 | u32 z = (u32)(depth * ((1 << num_bits) - 1)); | ||
| 1023 | |||
| 1024 | if (output_merger.depth_test_enable) { | ||
| 1025 | u32 ref_z = GetDepth(x >> 4, y >> 4); | ||
| 1026 | |||
| 1027 | bool pass = false; | ||
| 1028 | |||
| 1029 | switch (output_merger.depth_test_func) { | ||
| 1030 | case FramebufferRegs::CompareFunc::Never: | ||
| 1031 | pass = false; | ||
| 1032 | break; | ||
| 1033 | |||
| 1034 | case FramebufferRegs::CompareFunc::Always: | ||
| 1035 | pass = true; | ||
| 1036 | break; | ||
| 1037 | |||
| 1038 | case FramebufferRegs::CompareFunc::Equal: | ||
| 1039 | pass = z == ref_z; | ||
| 1040 | break; | ||
| 1041 | |||
| 1042 | case FramebufferRegs::CompareFunc::NotEqual: | ||
| 1043 | pass = z != ref_z; | ||
| 1044 | break; | ||
| 1045 | |||
| 1046 | case FramebufferRegs::CompareFunc::LessThan: | ||
| 1047 | pass = z < ref_z; | ||
| 1048 | break; | ||
| 1049 | |||
| 1050 | case FramebufferRegs::CompareFunc::LessThanOrEqual: | ||
| 1051 | pass = z <= ref_z; | ||
| 1052 | break; | ||
| 1053 | |||
| 1054 | case FramebufferRegs::CompareFunc::GreaterThan: | ||
| 1055 | pass = z > ref_z; | ||
| 1056 | break; | ||
| 1057 | |||
| 1058 | case FramebufferRegs::CompareFunc::GreaterThanOrEqual: | ||
| 1059 | pass = z >= ref_z; | ||
| 1060 | break; | ||
| 1061 | } | ||
| 1062 | |||
| 1063 | if (!pass) { | ||
| 1064 | if (stencil_action_enable) | ||
| 1065 | UpdateStencil(stencil_test.action_depth_fail); | ||
| 1066 | continue; | ||
| 1067 | } | ||
| 1068 | } | ||
| 1069 | |||
| 1070 | if (regs.framebuffer.framebuffer.allow_depth_stencil_write != 0 && | ||
| 1071 | output_merger.depth_write_enable) { | ||
| 1072 | |||
| 1073 | SetDepth(x >> 4, y >> 4, z); | ||
| 1074 | } | ||
| 1075 | |||
| 1076 | // The stencil depth_pass action is executed even if depth testing is disabled | ||
| 1077 | if (stencil_action_enable) | ||
| 1078 | UpdateStencil(stencil_test.action_depth_pass); | ||
| 1079 | |||
| 1080 | auto dest = GetPixel(x >> 4, y >> 4); | ||
| 1081 | Math::Vec4<u8> blend_output = combiner_output; | ||
| 1082 | |||
| 1083 | if (output_merger.alphablend_enable) { | ||
| 1084 | auto params = output_merger.alpha_blending; | ||
| 1085 | |||
| 1086 | auto LookupFactor = [&](unsigned channel, | ||
| 1087 | FramebufferRegs::BlendFactor factor) -> u8 { | ||
| 1088 | DEBUG_ASSERT(channel < 4); | ||
| 1089 | |||
| 1090 | const Math::Vec4<u8> blend_const = { | ||
| 1091 | static_cast<u8>(output_merger.blend_const.r), | ||
| 1092 | static_cast<u8>(output_merger.blend_const.g), | ||
| 1093 | static_cast<u8>(output_merger.blend_const.b), | ||
| 1094 | static_cast<u8>(output_merger.blend_const.a), | ||
| 1095 | }; | ||
| 1096 | |||
| 1097 | switch (factor) { | ||
| 1098 | case FramebufferRegs::BlendFactor::Zero: | ||
| 1099 | return 0; | ||
| 1100 | |||
| 1101 | case FramebufferRegs::BlendFactor::One: | ||
| 1102 | return 255; | ||
| 1103 | |||
| 1104 | case FramebufferRegs::BlendFactor::SourceColor: | ||
| 1105 | return combiner_output[channel]; | ||
| 1106 | |||
| 1107 | case FramebufferRegs::BlendFactor::OneMinusSourceColor: | ||
| 1108 | return 255 - combiner_output[channel]; | ||
| 1109 | |||
| 1110 | case FramebufferRegs::BlendFactor::DestColor: | ||
| 1111 | return dest[channel]; | ||
| 1112 | |||
| 1113 | case FramebufferRegs::BlendFactor::OneMinusDestColor: | ||
| 1114 | return 255 - dest[channel]; | ||
| 1115 | |||
| 1116 | case FramebufferRegs::BlendFactor::SourceAlpha: | ||
| 1117 | return combiner_output.a(); | ||
| 1118 | |||
| 1119 | case FramebufferRegs::BlendFactor::OneMinusSourceAlpha: | ||
| 1120 | return 255 - combiner_output.a(); | ||
| 1121 | |||
| 1122 | case FramebufferRegs::BlendFactor::DestAlpha: | ||
| 1123 | return dest.a(); | ||
| 1124 | |||
| 1125 | case FramebufferRegs::BlendFactor::OneMinusDestAlpha: | ||
| 1126 | return 255 - dest.a(); | ||
| 1127 | |||
| 1128 | case FramebufferRegs::BlendFactor::ConstantColor: | ||
| 1129 | return blend_const[channel]; | ||
| 1130 | |||
| 1131 | case FramebufferRegs::BlendFactor::OneMinusConstantColor: | ||
| 1132 | return 255 - blend_const[channel]; | ||
| 1133 | |||
| 1134 | case FramebufferRegs::BlendFactor::ConstantAlpha: | ||
| 1135 | return blend_const.a(); | ||
| 1136 | |||
| 1137 | case FramebufferRegs::BlendFactor::OneMinusConstantAlpha: | ||
| 1138 | return 255 - blend_const.a(); | ||
| 1139 | |||
| 1140 | case FramebufferRegs::BlendFactor::SourceAlphaSaturate: | ||
| 1141 | // Returns 1.0 for the alpha channel | ||
| 1142 | if (channel == 3) | ||
| 1143 | return 255; | ||
| 1144 | return std::min(combiner_output.a(), static_cast<u8>(255 - dest.a())); | ||
| 1145 | |||
| 1146 | default: | ||
| 1147 | LOG_CRITICAL(HW_GPU, "Unknown blend factor %x", factor); | ||
| 1148 | UNIMPLEMENTED(); | ||
| 1149 | break; | ||
| 1150 | } | ||
| 1151 | |||
| 1152 | return combiner_output[channel]; | ||
| 1153 | }; | ||
| 1154 | |||
| 1155 | static auto EvaluateBlendEquation = []( | ||
| 1156 | const Math::Vec4<u8>& src, const Math::Vec4<u8>& srcfactor, | ||
| 1157 | const Math::Vec4<u8>& dest, const Math::Vec4<u8>& destfactor, | ||
| 1158 | FramebufferRegs::BlendEquation equation) { | ||
| 1159 | |||
| 1160 | Math::Vec4<int> result; | ||
| 1161 | |||
| 1162 | auto src_result = (src * srcfactor).Cast<int>(); | ||
| 1163 | auto dst_result = (dest * destfactor).Cast<int>(); | ||
| 1164 | |||
| 1165 | switch (equation) { | ||
| 1166 | case FramebufferRegs::BlendEquation::Add: | ||
| 1167 | result = (src_result + dst_result) / 255; | ||
| 1168 | break; | ||
| 1169 | |||
| 1170 | case FramebufferRegs::BlendEquation::Subtract: | ||
| 1171 | result = (src_result - dst_result) / 255; | ||
| 1172 | break; | ||
| 1173 | |||
| 1174 | case FramebufferRegs::BlendEquation::ReverseSubtract: | ||
| 1175 | result = (dst_result - src_result) / 255; | ||
| 1176 | break; | ||
| 1177 | |||
| 1178 | // TODO: How do these two actually work? | ||
| 1179 | // OpenGL doesn't include the blend factors in the min/max computations, | ||
| 1180 | // but is this what the 3DS actually does? | ||
| 1181 | case FramebufferRegs::BlendEquation::Min: | ||
| 1182 | result.r() = std::min(src.r(), dest.r()); | ||
| 1183 | result.g() = std::min(src.g(), dest.g()); | ||
| 1184 | result.b() = std::min(src.b(), dest.b()); | ||
| 1185 | result.a() = std::min(src.a(), dest.a()); | ||
| 1186 | break; | ||
| 1187 | |||
| 1188 | case FramebufferRegs::BlendEquation::Max: | ||
| 1189 | result.r() = std::max(src.r(), dest.r()); | ||
| 1190 | result.g() = std::max(src.g(), dest.g()); | ||
| 1191 | result.b() = std::max(src.b(), dest.b()); | ||
| 1192 | result.a() = std::max(src.a(), dest.a()); | ||
| 1193 | break; | ||
| 1194 | |||
| 1195 | default: | ||
| 1196 | LOG_CRITICAL(HW_GPU, "Unknown RGB blend equation %x", equation); | ||
| 1197 | UNIMPLEMENTED(); | ||
| 1198 | } | ||
| 1199 | |||
| 1200 | return Math::Vec4<u8>( | ||
| 1201 | MathUtil::Clamp(result.r(), 0, 255), MathUtil::Clamp(result.g(), 0, 255), | ||
| 1202 | MathUtil::Clamp(result.b(), 0, 255), MathUtil::Clamp(result.a(), 0, 255)); | ||
| 1203 | }; | ||
| 1204 | |||
| 1205 | auto srcfactor = Math::MakeVec(LookupFactor(0, params.factor_source_rgb), | ||
| 1206 | LookupFactor(1, params.factor_source_rgb), | ||
| 1207 | LookupFactor(2, params.factor_source_rgb), | ||
| 1208 | LookupFactor(3, params.factor_source_a)); | ||
| 1209 | |||
| 1210 | auto dstfactor = Math::MakeVec(LookupFactor(0, params.factor_dest_rgb), | ||
| 1211 | LookupFactor(1, params.factor_dest_rgb), | ||
| 1212 | LookupFactor(2, params.factor_dest_rgb), | ||
| 1213 | LookupFactor(3, params.factor_dest_a)); | ||
| 1214 | |||
| 1215 | blend_output = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor, | ||
| 1216 | params.blend_equation_rgb); | ||
| 1217 | blend_output.a() = EvaluateBlendEquation(combiner_output, srcfactor, dest, | ||
| 1218 | dstfactor, params.blend_equation_a) | ||
| 1219 | .a(); | ||
| 1220 | } else { | ||
| 1221 | static auto LogicOp = [](u8 src, u8 dest, FramebufferRegs::LogicOp op) -> u8 { | ||
| 1222 | switch (op) { | ||
| 1223 | case FramebufferRegs::LogicOp::Clear: | ||
| 1224 | return 0; | ||
| 1225 | |||
| 1226 | case FramebufferRegs::LogicOp::And: | ||
| 1227 | return src & dest; | ||
| 1228 | |||
| 1229 | case FramebufferRegs::LogicOp::AndReverse: | ||
| 1230 | return src & ~dest; | ||
| 1231 | |||
| 1232 | case FramebufferRegs::LogicOp::Copy: | ||
| 1233 | return src; | ||
| 1234 | |||
| 1235 | case FramebufferRegs::LogicOp::Set: | ||
| 1236 | return 255; | ||
| 1237 | |||
| 1238 | case FramebufferRegs::LogicOp::CopyInverted: | ||
| 1239 | return ~src; | ||
| 1240 | |||
| 1241 | case FramebufferRegs::LogicOp::NoOp: | ||
| 1242 | return dest; | ||
| 1243 | |||
| 1244 | case FramebufferRegs::LogicOp::Invert: | ||
| 1245 | return ~dest; | ||
| 1246 | |||
| 1247 | case FramebufferRegs::LogicOp::Nand: | ||
| 1248 | return ~(src & dest); | ||
| 1249 | |||
| 1250 | case FramebufferRegs::LogicOp::Or: | ||
| 1251 | return src | dest; | ||
| 1252 | |||
| 1253 | case FramebufferRegs::LogicOp::Nor: | ||
| 1254 | return ~(src | dest); | ||
| 1255 | |||
| 1256 | case FramebufferRegs::LogicOp::Xor: | ||
| 1257 | return src ^ dest; | ||
| 1258 | |||
| 1259 | case FramebufferRegs::LogicOp::Equiv: | ||
| 1260 | return ~(src ^ dest); | ||
| 1261 | |||
| 1262 | case FramebufferRegs::LogicOp::AndInverted: | ||
| 1263 | return ~src & dest; | ||
| 1264 | |||
| 1265 | case FramebufferRegs::LogicOp::OrReverse: | ||
| 1266 | return src | ~dest; | ||
| 1267 | |||
| 1268 | case FramebufferRegs::LogicOp::OrInverted: | ||
| 1269 | return ~src | dest; | ||
| 1270 | } | ||
| 1271 | }; | ||
| 1272 | |||
| 1273 | blend_output = | ||
| 1274 | Math::MakeVec(LogicOp(combiner_output.r(), dest.r(), output_merger.logic_op), | ||
| 1275 | LogicOp(combiner_output.g(), dest.g(), output_merger.logic_op), | ||
| 1276 | LogicOp(combiner_output.b(), dest.b(), output_merger.logic_op), | ||
| 1277 | LogicOp(combiner_output.a(), dest.a(), output_merger.logic_op)); | ||
| 1278 | } | ||
| 1279 | |||
| 1280 | const Math::Vec4<u8> result = { | ||
| 1281 | output_merger.red_enable ? blend_output.r() : dest.r(), | ||
| 1282 | output_merger.green_enable ? blend_output.g() : dest.g(), | ||
| 1283 | output_merger.blue_enable ? blend_output.b() : dest.b(), | ||
| 1284 | output_merger.alpha_enable ? blend_output.a() : dest.a(), | ||
| 1285 | }; | ||
| 1286 | |||
| 1287 | if (regs.framebuffer.framebuffer.allow_color_write != 0) | ||
| 1288 | DrawPixel(x >> 4, y >> 4, result); | ||
| 1289 | } | ||
| 1290 | } | ||
| 1291 | } | ||
| 1292 | |||
| 1293 | void ProcessTriangle(const Vertex& v0, const Vertex& v1, const Vertex& v2) { | ||
| 1294 | ProcessTriangleInternal(v0, v1, v2); | ||
| 1295 | } | ||
| 1296 | |||
| 1297 | } // namespace Rasterizer | ||
| 1298 | |||
| 1299 | } // namespace Pica | ||