diff options
Diffstat (limited to 'src/video_core/swrasterizer/rasterizer.cpp')
| -rw-r--r-- | src/video_core/swrasterizer/rasterizer.cpp | 853 |
1 files changed, 0 insertions, 853 deletions
diff --git a/src/video_core/swrasterizer/rasterizer.cpp b/src/video_core/swrasterizer/rasterizer.cpp deleted file mode 100644 index 862135614..000000000 --- a/src/video_core/swrasterizer/rasterizer.cpp +++ /dev/null | |||
| @@ -1,853 +0,0 @@ | |||
| 1 | // Copyright 2014 Citra Emulator Project | ||
| 2 | // Licensed under GPLv2 or any later version | ||
| 3 | // Refer to the license.txt file included. | ||
| 4 | |||
| 5 | #include <algorithm> | ||
| 6 | #include <array> | ||
| 7 | #include <cmath> | ||
| 8 | #include <tuple> | ||
| 9 | #include "common/assert.h" | ||
| 10 | #include "common/bit_field.h" | ||
| 11 | #include "common/color.h" | ||
| 12 | #include "common/common_types.h" | ||
| 13 | #include "common/logging/log.h" | ||
| 14 | #include "common/math_util.h" | ||
| 15 | #include "common/microprofile.h" | ||
| 16 | #include "common/quaternion.h" | ||
| 17 | #include "common/vector_math.h" | ||
| 18 | #include "core/hw/gpu.h" | ||
| 19 | #include "core/memory.h" | ||
| 20 | #include "video_core/debug_utils/debug_utils.h" | ||
| 21 | #include "video_core/pica_state.h" | ||
| 22 | #include "video_core/pica_types.h" | ||
| 23 | #include "video_core/regs_framebuffer.h" | ||
| 24 | #include "video_core/regs_rasterizer.h" | ||
| 25 | #include "video_core/regs_texturing.h" | ||
| 26 | #include "video_core/shader/shader.h" | ||
| 27 | #include "video_core/swrasterizer/framebuffer.h" | ||
| 28 | #include "video_core/swrasterizer/lighting.h" | ||
| 29 | #include "video_core/swrasterizer/proctex.h" | ||
| 30 | #include "video_core/swrasterizer/rasterizer.h" | ||
| 31 | #include "video_core/swrasterizer/texturing.h" | ||
| 32 | #include "video_core/texture/texture_decode.h" | ||
| 33 | #include "video_core/utils.h" | ||
| 34 | |||
| 35 | namespace Pica { | ||
| 36 | namespace Rasterizer { | ||
| 37 | |||
| 38 | // NOTE: Assuming that rasterizer coordinates are 12.4 fixed-point values | ||
| 39 | struct Fix12P4 { | ||
| 40 | Fix12P4() {} | ||
| 41 | Fix12P4(u16 val) : val(val) {} | ||
| 42 | |||
| 43 | static u16 FracMask() { | ||
| 44 | return 0xF; | ||
| 45 | } | ||
| 46 | static u16 IntMask() { | ||
| 47 | return (u16)~0xF; | ||
| 48 | } | ||
| 49 | |||
| 50 | operator u16() const { | ||
| 51 | return val; | ||
| 52 | } | ||
| 53 | |||
| 54 | bool operator<(const Fix12P4& oth) const { | ||
| 55 | return (u16) * this < (u16)oth; | ||
| 56 | } | ||
| 57 | |||
| 58 | private: | ||
| 59 | u16 val; | ||
| 60 | }; | ||
| 61 | |||
| 62 | /** | ||
| 63 | * Calculate signed area of the triangle spanned by the three argument vertices. | ||
| 64 | * The sign denotes an orientation. | ||
| 65 | * | ||
| 66 | * @todo define orientation concretely. | ||
| 67 | */ | ||
| 68 | static int SignedArea(const Math::Vec2<Fix12P4>& vtx1, const Math::Vec2<Fix12P4>& vtx2, | ||
| 69 | const Math::Vec2<Fix12P4>& vtx3) { | ||
| 70 | const auto vec1 = Math::MakeVec(vtx2 - vtx1, 0); | ||
| 71 | const auto vec2 = Math::MakeVec(vtx3 - vtx1, 0); | ||
| 72 | // TODO: There is a very small chance this will overflow for sizeof(int) == 4 | ||
| 73 | return Math::Cross(vec1, vec2).z; | ||
| 74 | }; | ||
| 75 | |||
| 76 | /// Convert a 3D vector for cube map coordinates to 2D texture coordinates along with the face name | ||
| 77 | static std::tuple<float24, float24, PAddr> ConvertCubeCoord(float24 u, float24 v, float24 w, | ||
| 78 | const TexturingRegs& regs) { | ||
| 79 | const float abs_u = std::abs(u.ToFloat32()); | ||
| 80 | const float abs_v = std::abs(v.ToFloat32()); | ||
| 81 | const float abs_w = std::abs(w.ToFloat32()); | ||
| 82 | float24 x, y, z; | ||
| 83 | PAddr addr; | ||
| 84 | if (abs_u > abs_v && abs_u > abs_w) { | ||
| 85 | if (u > float24::FromFloat32(0)) { | ||
| 86 | addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::PositiveX); | ||
| 87 | y = -v; | ||
| 88 | } else { | ||
| 89 | addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::NegativeX); | ||
| 90 | y = v; | ||
| 91 | } | ||
| 92 | x = -w; | ||
| 93 | z = u; | ||
| 94 | } else if (abs_v > abs_w) { | ||
| 95 | if (v > float24::FromFloat32(0)) { | ||
| 96 | addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::PositiveY); | ||
| 97 | x = u; | ||
| 98 | } else { | ||
| 99 | addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::NegativeY); | ||
| 100 | x = -u; | ||
| 101 | } | ||
| 102 | y = w; | ||
| 103 | z = v; | ||
| 104 | } else { | ||
| 105 | if (w > float24::FromFloat32(0)) { | ||
| 106 | addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::PositiveZ); | ||
| 107 | y = -v; | ||
| 108 | } else { | ||
| 109 | addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::NegativeZ); | ||
| 110 | y = v; | ||
| 111 | } | ||
| 112 | x = u; | ||
| 113 | z = w; | ||
| 114 | } | ||
| 115 | const float24 half = float24::FromFloat32(0.5f); | ||
| 116 | return std::make_tuple(x / z * half + half, y / z * half + half, addr); | ||
| 117 | } | ||
| 118 | |||
| 119 | MICROPROFILE_DEFINE(GPU_Rasterization, "GPU", "Rasterization", MP_RGB(50, 50, 240)); | ||
| 120 | |||
| 121 | /** | ||
| 122 | * Helper function for ProcessTriangle with the "reversed" flag to allow for implementing | ||
| 123 | * culling via recursion. | ||
| 124 | */ | ||
| 125 | static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Vertex& v2, | ||
| 126 | bool reversed = false) { | ||
| 127 | const auto& regs = g_state.regs; | ||
| 128 | MICROPROFILE_SCOPE(GPU_Rasterization); | ||
| 129 | |||
| 130 | // vertex positions in rasterizer coordinates | ||
| 131 | static auto FloatToFix = [](float24 flt) { | ||
| 132 | // TODO: Rounding here is necessary to prevent garbage pixels at | ||
| 133 | // triangle borders. Is it that the correct solution, though? | ||
| 134 | return Fix12P4(static_cast<unsigned short>(round(flt.ToFloat32() * 16.0f))); | ||
| 135 | }; | ||
| 136 | static auto ScreenToRasterizerCoordinates = [](const Math::Vec3<float24>& vec) { | ||
| 137 | return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)}; | ||
| 138 | }; | ||
| 139 | |||
| 140 | Math::Vec3<Fix12P4> vtxpos[3]{ScreenToRasterizerCoordinates(v0.screenpos), | ||
| 141 | ScreenToRasterizerCoordinates(v1.screenpos), | ||
| 142 | ScreenToRasterizerCoordinates(v2.screenpos)}; | ||
| 143 | |||
| 144 | if (regs.rasterizer.cull_mode == RasterizerRegs::CullMode::KeepAll) { | ||
| 145 | // Make sure we always end up with a triangle wound counter-clockwise | ||
| 146 | if (!reversed && SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0) { | ||
| 147 | ProcessTriangleInternal(v0, v2, v1, true); | ||
| 148 | return; | ||
| 149 | } | ||
| 150 | } else { | ||
| 151 | if (!reversed && regs.rasterizer.cull_mode == RasterizerRegs::CullMode::KeepClockWise) { | ||
| 152 | // Reverse vertex order and use the CCW code path. | ||
| 153 | ProcessTriangleInternal(v0, v2, v1, true); | ||
| 154 | return; | ||
| 155 | } | ||
| 156 | |||
| 157 | // Cull away triangles which are wound clockwise. | ||
| 158 | if (SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0) | ||
| 159 | return; | ||
| 160 | } | ||
| 161 | |||
| 162 | u16 min_x = std::min({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x}); | ||
| 163 | u16 min_y = std::min({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y}); | ||
| 164 | u16 max_x = std::max({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x}); | ||
| 165 | u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y}); | ||
| 166 | |||
| 167 | // Convert the scissor box coordinates to 12.4 fixed point | ||
| 168 | u16 scissor_x1 = (u16)(regs.rasterizer.scissor_test.x1 << 4); | ||
| 169 | u16 scissor_y1 = (u16)(regs.rasterizer.scissor_test.y1 << 4); | ||
| 170 | // x2,y2 have +1 added to cover the entire sub-pixel area | ||
| 171 | u16 scissor_x2 = (u16)((regs.rasterizer.scissor_test.x2 + 1) << 4); | ||
| 172 | u16 scissor_y2 = (u16)((regs.rasterizer.scissor_test.y2 + 1) << 4); | ||
| 173 | |||
| 174 | if (regs.rasterizer.scissor_test.mode == RasterizerRegs::ScissorMode::Include) { | ||
| 175 | // Calculate the new bounds | ||
| 176 | min_x = std::max(min_x, scissor_x1); | ||
| 177 | min_y = std::max(min_y, scissor_y1); | ||
| 178 | max_x = std::min(max_x, scissor_x2); | ||
| 179 | max_y = std::min(max_y, scissor_y2); | ||
| 180 | } | ||
| 181 | |||
| 182 | min_x &= Fix12P4::IntMask(); | ||
| 183 | min_y &= Fix12P4::IntMask(); | ||
| 184 | max_x = ((max_x + Fix12P4::FracMask()) & Fix12P4::IntMask()); | ||
| 185 | max_y = ((max_y + Fix12P4::FracMask()) & Fix12P4::IntMask()); | ||
| 186 | |||
| 187 | // Triangle filling rules: Pixels on the right-sided edge or on flat bottom edges are not | ||
| 188 | // drawn. Pixels on any other triangle border are drawn. This is implemented with three bias | ||
| 189 | // values which are added to the barycentric coordinates w0, w1 and w2, respectively. | ||
| 190 | // NOTE: These are the PSP filling rules. Not sure if the 3DS uses the same ones... | ||
| 191 | auto IsRightSideOrFlatBottomEdge = [](const Math::Vec2<Fix12P4>& vtx, | ||
| 192 | const Math::Vec2<Fix12P4>& line1, | ||
| 193 | const Math::Vec2<Fix12P4>& line2) { | ||
| 194 | if (line1.y == line2.y) { | ||
| 195 | // just check if vertex is above us => bottom line parallel to x-axis | ||
| 196 | return vtx.y < line1.y; | ||
| 197 | } else { | ||
| 198 | // check if vertex is on our left => right side | ||
| 199 | // TODO: Not sure how likely this is to overflow | ||
| 200 | return (int)vtx.x < (int)line1.x + | ||
| 201 | ((int)line2.x - (int)line1.x) * ((int)vtx.y - (int)line1.y) / | ||
| 202 | ((int)line2.y - (int)line1.y); | ||
| 203 | } | ||
| 204 | }; | ||
| 205 | int bias0 = | ||
| 206 | IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0; | ||
| 207 | int bias1 = | ||
| 208 | IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0; | ||
| 209 | int bias2 = | ||
| 210 | IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0; | ||
| 211 | |||
| 212 | auto w_inverse = Math::MakeVec(v0.pos.w, v1.pos.w, v2.pos.w); | ||
| 213 | |||
| 214 | auto textures = regs.texturing.GetTextures(); | ||
| 215 | auto tev_stages = regs.texturing.GetTevStages(); | ||
| 216 | |||
| 217 | bool stencil_action_enable = | ||
| 218 | g_state.regs.framebuffer.output_merger.stencil_test.enable && | ||
| 219 | g_state.regs.framebuffer.framebuffer.depth_format == FramebufferRegs::DepthFormat::D24S8; | ||
| 220 | const auto stencil_test = g_state.regs.framebuffer.output_merger.stencil_test; | ||
| 221 | |||
| 222 | // Enter rasterization loop, starting at the center of the topleft bounding box corner. | ||
| 223 | // TODO: Not sure if looping through x first might be faster | ||
| 224 | for (u16 y = min_y + 8; y < max_y; y += 0x10) { | ||
| 225 | for (u16 x = min_x + 8; x < max_x; x += 0x10) { | ||
| 226 | |||
| 227 | // Do not process the pixel if it's inside the scissor box and the scissor mode is set | ||
| 228 | // to Exclude | ||
| 229 | if (regs.rasterizer.scissor_test.mode == RasterizerRegs::ScissorMode::Exclude) { | ||
| 230 | if (x >= scissor_x1 && x < scissor_x2 && y >= scissor_y1 && y < scissor_y2) | ||
| 231 | continue; | ||
| 232 | } | ||
| 233 | |||
| 234 | // Calculate the barycentric coordinates w0, w1 and w2 | ||
| 235 | int w0 = bias0 + SignedArea(vtxpos[1].xy(), vtxpos[2].xy(), {x, y}); | ||
| 236 | int w1 = bias1 + SignedArea(vtxpos[2].xy(), vtxpos[0].xy(), {x, y}); | ||
| 237 | int w2 = bias2 + SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), {x, y}); | ||
| 238 | int wsum = w0 + w1 + w2; | ||
| 239 | |||
| 240 | // If current pixel is not covered by the current primitive | ||
| 241 | if (w0 < 0 || w1 < 0 || w2 < 0) | ||
| 242 | continue; | ||
| 243 | |||
| 244 | auto baricentric_coordinates = | ||
| 245 | Math::MakeVec(float24::FromFloat32(static_cast<float>(w0)), | ||
| 246 | float24::FromFloat32(static_cast<float>(w1)), | ||
| 247 | float24::FromFloat32(static_cast<float>(w2))); | ||
| 248 | float24 interpolated_w_inverse = | ||
| 249 | float24::FromFloat32(1.0f) / Math::Dot(w_inverse, baricentric_coordinates); | ||
| 250 | |||
| 251 | // interpolated_z = z / w | ||
| 252 | float interpolated_z_over_w = | ||
| 253 | (v0.screenpos[2].ToFloat32() * w0 + v1.screenpos[2].ToFloat32() * w1 + | ||
| 254 | v2.screenpos[2].ToFloat32() * w2) / | ||
| 255 | wsum; | ||
| 256 | |||
| 257 | // Not fully accurate. About 3 bits in precision are missing. | ||
| 258 | // Z-Buffer (z / w * scale + offset) | ||
| 259 | float depth_scale = float24::FromRaw(regs.rasterizer.viewport_depth_range).ToFloat32(); | ||
| 260 | float depth_offset = | ||
| 261 | float24::FromRaw(regs.rasterizer.viewport_depth_near_plane).ToFloat32(); | ||
| 262 | float depth = interpolated_z_over_w * depth_scale + depth_offset; | ||
| 263 | |||
| 264 | // Potentially switch to W-Buffer | ||
| 265 | if (regs.rasterizer.depthmap_enable == | ||
| 266 | Pica::RasterizerRegs::DepthBuffering::WBuffering) { | ||
| 267 | // W-Buffer (z * scale + w * offset = (z / w * scale + offset) * w) | ||
| 268 | depth *= interpolated_w_inverse.ToFloat32() * wsum; | ||
| 269 | } | ||
| 270 | |||
| 271 | // Clamp the result | ||
| 272 | depth = MathUtil::Clamp(depth, 0.0f, 1.0f); | ||
| 273 | |||
| 274 | // Perspective correct attribute interpolation: | ||
| 275 | // Attribute values cannot be calculated by simple linear interpolation since | ||
| 276 | // they are not linear in screen space. For example, when interpolating a | ||
| 277 | // texture coordinate across two vertices, something simple like | ||
| 278 | // u = (u0*w0 + u1*w1)/(w0+w1) | ||
| 279 | // will not work. However, the attribute value divided by the | ||
| 280 | // clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear | ||
| 281 | // in screenspace. Hence, we can linearly interpolate these two independently and | ||
| 282 | // calculate the interpolated attribute by dividing the results. | ||
| 283 | // I.e. | ||
| 284 | // u_over_w = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1) | ||
| 285 | // one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1) | ||
| 286 | // u = u_over_w / one_over_w | ||
| 287 | // | ||
| 288 | // The generalization to three vertices is straightforward in baricentric coordinates. | ||
| 289 | auto GetInterpolatedAttribute = [&](float24 attr0, float24 attr1, float24 attr2) { | ||
| 290 | auto attr_over_w = Math::MakeVec(attr0, attr1, attr2); | ||
| 291 | float24 interpolated_attr_over_w = Math::Dot(attr_over_w, baricentric_coordinates); | ||
| 292 | return interpolated_attr_over_w * interpolated_w_inverse; | ||
| 293 | }; | ||
| 294 | |||
| 295 | Math::Vec4<u8> primary_color{ | ||
| 296 | (u8)( | ||
| 297 | GetInterpolatedAttribute(v0.color.r(), v1.color.r(), v2.color.r()).ToFloat32() * | ||
| 298 | 255), | ||
| 299 | (u8)( | ||
| 300 | GetInterpolatedAttribute(v0.color.g(), v1.color.g(), v2.color.g()).ToFloat32() * | ||
| 301 | 255), | ||
| 302 | (u8)( | ||
| 303 | GetInterpolatedAttribute(v0.color.b(), v1.color.b(), v2.color.b()).ToFloat32() * | ||
| 304 | 255), | ||
| 305 | (u8)( | ||
| 306 | GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() * | ||
| 307 | 255), | ||
| 308 | }; | ||
| 309 | |||
| 310 | Math::Vec2<float24> uv[3]; | ||
| 311 | uv[0].u() = GetInterpolatedAttribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u()); | ||
| 312 | uv[0].v() = GetInterpolatedAttribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v()); | ||
| 313 | uv[1].u() = GetInterpolatedAttribute(v0.tc1.u(), v1.tc1.u(), v2.tc1.u()); | ||
| 314 | uv[1].v() = GetInterpolatedAttribute(v0.tc1.v(), v1.tc1.v(), v2.tc1.v()); | ||
| 315 | uv[2].u() = GetInterpolatedAttribute(v0.tc2.u(), v1.tc2.u(), v2.tc2.u()); | ||
| 316 | uv[2].v() = GetInterpolatedAttribute(v0.tc2.v(), v1.tc2.v(), v2.tc2.v()); | ||
| 317 | |||
| 318 | Math::Vec4<u8> texture_color[4]{}; | ||
| 319 | for (int i = 0; i < 3; ++i) { | ||
| 320 | const auto& texture = textures[i]; | ||
| 321 | if (!texture.enabled) | ||
| 322 | continue; | ||
| 323 | |||
| 324 | DEBUG_ASSERT(0 != texture.config.address); | ||
| 325 | |||
| 326 | int coordinate_i = | ||
| 327 | (i == 2 && regs.texturing.main_config.texture2_use_coord1) ? 1 : i; | ||
| 328 | float24 u = uv[coordinate_i].u(); | ||
| 329 | float24 v = uv[coordinate_i].v(); | ||
| 330 | |||
| 331 | // Only unit 0 respects the texturing type (according to 3DBrew) | ||
| 332 | // TODO: Refactor so cubemaps and shadowmaps can be handled | ||
| 333 | PAddr texture_address = texture.config.GetPhysicalAddress(); | ||
| 334 | if (i == 0) { | ||
| 335 | switch (texture.config.type) { | ||
| 336 | case TexturingRegs::TextureConfig::Texture2D: | ||
| 337 | break; | ||
| 338 | case TexturingRegs::TextureConfig::TextureCube: { | ||
| 339 | auto w = GetInterpolatedAttribute(v0.tc0_w, v1.tc0_w, v2.tc0_w); | ||
| 340 | std::tie(u, v, texture_address) = ConvertCubeCoord(u, v, w, regs.texturing); | ||
| 341 | break; | ||
| 342 | } | ||
| 343 | case TexturingRegs::TextureConfig::Projection2D: { | ||
| 344 | auto tc0_w = GetInterpolatedAttribute(v0.tc0_w, v1.tc0_w, v2.tc0_w); | ||
| 345 | u /= tc0_w; | ||
| 346 | v /= tc0_w; | ||
| 347 | break; | ||
| 348 | } | ||
| 349 | default: | ||
| 350 | // TODO: Change to LOG_ERROR when more types are handled. | ||
| 351 | LOG_DEBUG(HW_GPU, "Unhandled texture type %x", (int)texture.config.type); | ||
| 352 | UNIMPLEMENTED(); | ||
| 353 | break; | ||
| 354 | } | ||
| 355 | } | ||
| 356 | |||
| 357 | int s = (int)(u * float24::FromFloat32(static_cast<float>(texture.config.width))) | ||
| 358 | .ToFloat32(); | ||
| 359 | int t = (int)(v * float24::FromFloat32(static_cast<float>(texture.config.height))) | ||
| 360 | .ToFloat32(); | ||
| 361 | |||
| 362 | bool use_border_s = false; | ||
| 363 | bool use_border_t = false; | ||
| 364 | |||
| 365 | if (texture.config.wrap_s == TexturingRegs::TextureConfig::ClampToBorder) { | ||
| 366 | use_border_s = s < 0 || s >= static_cast<int>(texture.config.width); | ||
| 367 | } else if (texture.config.wrap_s == TexturingRegs::TextureConfig::ClampToBorder2) { | ||
| 368 | use_border_s = s >= static_cast<int>(texture.config.width); | ||
| 369 | } | ||
| 370 | |||
| 371 | if (texture.config.wrap_t == TexturingRegs::TextureConfig::ClampToBorder) { | ||
| 372 | use_border_t = t < 0 || t >= static_cast<int>(texture.config.height); | ||
| 373 | } else if (texture.config.wrap_t == TexturingRegs::TextureConfig::ClampToBorder2) { | ||
| 374 | use_border_t = t >= static_cast<int>(texture.config.height); | ||
| 375 | } | ||
| 376 | |||
| 377 | if (use_border_s || use_border_t) { | ||
| 378 | auto border_color = texture.config.border_color; | ||
| 379 | texture_color[i] = {border_color.r, border_color.g, border_color.b, | ||
| 380 | border_color.a}; | ||
| 381 | } else { | ||
| 382 | // Textures are laid out from bottom to top, hence we invert the t coordinate. | ||
| 383 | // NOTE: This may not be the right place for the inversion. | ||
| 384 | // TODO: Check if this applies to ETC textures, too. | ||
| 385 | s = GetWrappedTexCoord(texture.config.wrap_s, s, texture.config.width); | ||
| 386 | t = texture.config.height - 1 - | ||
| 387 | GetWrappedTexCoord(texture.config.wrap_t, t, texture.config.height); | ||
| 388 | |||
| 389 | const u8* texture_data = Memory::GetPhysicalPointer(texture_address); | ||
| 390 | auto info = | ||
| 391 | Texture::TextureInfo::FromPicaRegister(texture.config, texture.format); | ||
| 392 | |||
| 393 | // TODO: Apply the min and mag filters to the texture | ||
| 394 | texture_color[i] = Texture::LookupTexture(texture_data, s, t, info); | ||
| 395 | #if PICA_DUMP_TEXTURES | ||
| 396 | DebugUtils::DumpTexture(texture.config, texture_data); | ||
| 397 | #endif | ||
| 398 | } | ||
| 399 | } | ||
| 400 | |||
| 401 | // sample procedural texture | ||
| 402 | if (regs.texturing.main_config.texture3_enable) { | ||
| 403 | const auto& proctex_uv = uv[regs.texturing.main_config.texture3_coordinates]; | ||
| 404 | texture_color[3] = ProcTex(proctex_uv.u().ToFloat32(), proctex_uv.v().ToFloat32(), | ||
| 405 | g_state.regs.texturing, g_state.proctex); | ||
| 406 | } | ||
| 407 | |||
| 408 | // Texture environment - consists of 6 stages of color and alpha combining. | ||
| 409 | // | ||
| 410 | // Color combiners take three input color values from some source (e.g. interpolated | ||
| 411 | // vertex color, texture color, previous stage, etc), perform some very simple | ||
| 412 | // operations on each of them (e.g. inversion) and then calculate the output color | ||
| 413 | // with some basic arithmetic. Alpha combiners can be configured separately but work | ||
| 414 | // analogously. | ||
| 415 | Math::Vec4<u8> combiner_output; | ||
| 416 | Math::Vec4<u8> combiner_buffer = {0, 0, 0, 0}; | ||
| 417 | Math::Vec4<u8> next_combiner_buffer = { | ||
| 418 | regs.texturing.tev_combiner_buffer_color.r, | ||
| 419 | regs.texturing.tev_combiner_buffer_color.g, | ||
| 420 | regs.texturing.tev_combiner_buffer_color.b, | ||
| 421 | regs.texturing.tev_combiner_buffer_color.a, | ||
| 422 | }; | ||
| 423 | |||
| 424 | Math::Vec4<u8> primary_fragment_color = {0, 0, 0, 0}; | ||
| 425 | Math::Vec4<u8> secondary_fragment_color = {0, 0, 0, 0}; | ||
| 426 | |||
| 427 | if (!g_state.regs.lighting.disable) { | ||
| 428 | Math::Quaternion<float> normquat = Math::Quaternion<float>{ | ||
| 429 | {GetInterpolatedAttribute(v0.quat.x, v1.quat.x, v2.quat.x).ToFloat32(), | ||
| 430 | GetInterpolatedAttribute(v0.quat.y, v1.quat.y, v2.quat.y).ToFloat32(), | ||
| 431 | GetInterpolatedAttribute(v0.quat.z, v1.quat.z, v2.quat.z).ToFloat32()}, | ||
| 432 | GetInterpolatedAttribute(v0.quat.w, v1.quat.w, v2.quat.w).ToFloat32(), | ||
| 433 | }.Normalized(); | ||
| 434 | |||
| 435 | Math::Vec3<float> view{ | ||
| 436 | GetInterpolatedAttribute(v0.view.x, v1.view.x, v2.view.x).ToFloat32(), | ||
| 437 | GetInterpolatedAttribute(v0.view.y, v1.view.y, v2.view.y).ToFloat32(), | ||
| 438 | GetInterpolatedAttribute(v0.view.z, v1.view.z, v2.view.z).ToFloat32(), | ||
| 439 | }; | ||
| 440 | std::tie(primary_fragment_color, secondary_fragment_color) = ComputeFragmentsColors( | ||
| 441 | g_state.regs.lighting, g_state.lighting, normquat, view, texture_color); | ||
| 442 | } | ||
| 443 | |||
| 444 | for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size(); | ||
| 445 | ++tev_stage_index) { | ||
| 446 | const auto& tev_stage = tev_stages[tev_stage_index]; | ||
| 447 | using Source = TexturingRegs::TevStageConfig::Source; | ||
| 448 | |||
| 449 | auto GetSource = [&](Source source) -> Math::Vec4<u8> { | ||
| 450 | switch (source) { | ||
| 451 | case Source::PrimaryColor: | ||
| 452 | return primary_color; | ||
| 453 | |||
| 454 | case Source::PrimaryFragmentColor: | ||
| 455 | return primary_fragment_color; | ||
| 456 | |||
| 457 | case Source::SecondaryFragmentColor: | ||
| 458 | return secondary_fragment_color; | ||
| 459 | |||
| 460 | case Source::Texture0: | ||
| 461 | return texture_color[0]; | ||
| 462 | |||
| 463 | case Source::Texture1: | ||
| 464 | return texture_color[1]; | ||
| 465 | |||
| 466 | case Source::Texture2: | ||
| 467 | return texture_color[2]; | ||
| 468 | |||
| 469 | case Source::Texture3: | ||
| 470 | return texture_color[3]; | ||
| 471 | |||
| 472 | case Source::PreviousBuffer: | ||
| 473 | return combiner_buffer; | ||
| 474 | |||
| 475 | case Source::Constant: | ||
| 476 | return {tev_stage.const_r, tev_stage.const_g, tev_stage.const_b, | ||
| 477 | tev_stage.const_a}; | ||
| 478 | |||
| 479 | case Source::Previous: | ||
| 480 | return combiner_output; | ||
| 481 | |||
| 482 | default: | ||
| 483 | LOG_ERROR(HW_GPU, "Unknown color combiner source %d", (int)source); | ||
| 484 | UNIMPLEMENTED(); | ||
| 485 | return {0, 0, 0, 0}; | ||
| 486 | } | ||
| 487 | }; | ||
| 488 | |||
| 489 | // color combiner | ||
| 490 | // NOTE: Not sure if the alpha combiner might use the color output of the previous | ||
| 491 | // stage as input. Hence, we currently don't directly write the result to | ||
| 492 | // combiner_output.rgb(), but instead store it in a temporary variable until | ||
| 493 | // alpha combining has been done. | ||
| 494 | Math::Vec3<u8> color_result[3] = { | ||
| 495 | GetColorModifier(tev_stage.color_modifier1, GetSource(tev_stage.color_source1)), | ||
| 496 | GetColorModifier(tev_stage.color_modifier2, GetSource(tev_stage.color_source2)), | ||
| 497 | GetColorModifier(tev_stage.color_modifier3, GetSource(tev_stage.color_source3)), | ||
| 498 | }; | ||
| 499 | auto color_output = ColorCombine(tev_stage.color_op, color_result); | ||
| 500 | |||
| 501 | u8 alpha_output; | ||
| 502 | if (tev_stage.color_op == TexturingRegs::TevStageConfig::Operation::Dot3_RGBA) { | ||
| 503 | // result of Dot3_RGBA operation is also placed to the alpha component | ||
| 504 | alpha_output = color_output.x; | ||
| 505 | } else { | ||
| 506 | // alpha combiner | ||
| 507 | std::array<u8, 3> alpha_result = {{ | ||
| 508 | GetAlphaModifier(tev_stage.alpha_modifier1, | ||
| 509 | GetSource(tev_stage.alpha_source1)), | ||
| 510 | GetAlphaModifier(tev_stage.alpha_modifier2, | ||
| 511 | GetSource(tev_stage.alpha_source2)), | ||
| 512 | GetAlphaModifier(tev_stage.alpha_modifier3, | ||
| 513 | GetSource(tev_stage.alpha_source3)), | ||
| 514 | }}; | ||
| 515 | alpha_output = AlphaCombine(tev_stage.alpha_op, alpha_result); | ||
| 516 | } | ||
| 517 | |||
| 518 | combiner_output[0] = | ||
| 519 | std::min((unsigned)255, color_output.r() * tev_stage.GetColorMultiplier()); | ||
| 520 | combiner_output[1] = | ||
| 521 | std::min((unsigned)255, color_output.g() * tev_stage.GetColorMultiplier()); | ||
| 522 | combiner_output[2] = | ||
| 523 | std::min((unsigned)255, color_output.b() * tev_stage.GetColorMultiplier()); | ||
| 524 | combiner_output[3] = | ||
| 525 | std::min((unsigned)255, alpha_output * tev_stage.GetAlphaMultiplier()); | ||
| 526 | |||
| 527 | combiner_buffer = next_combiner_buffer; | ||
| 528 | |||
| 529 | if (regs.texturing.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferColor( | ||
| 530 | tev_stage_index)) { | ||
| 531 | next_combiner_buffer.r() = combiner_output.r(); | ||
| 532 | next_combiner_buffer.g() = combiner_output.g(); | ||
| 533 | next_combiner_buffer.b() = combiner_output.b(); | ||
| 534 | } | ||
| 535 | |||
| 536 | if (regs.texturing.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferAlpha( | ||
| 537 | tev_stage_index)) { | ||
| 538 | next_combiner_buffer.a() = combiner_output.a(); | ||
| 539 | } | ||
| 540 | } | ||
| 541 | |||
| 542 | const auto& output_merger = regs.framebuffer.output_merger; | ||
| 543 | // TODO: Does alpha testing happen before or after stencil? | ||
| 544 | if (output_merger.alpha_test.enable) { | ||
| 545 | bool pass = false; | ||
| 546 | |||
| 547 | switch (output_merger.alpha_test.func) { | ||
| 548 | case FramebufferRegs::CompareFunc::Never: | ||
| 549 | pass = false; | ||
| 550 | break; | ||
| 551 | |||
| 552 | case FramebufferRegs::CompareFunc::Always: | ||
| 553 | pass = true; | ||
| 554 | break; | ||
| 555 | |||
| 556 | case FramebufferRegs::CompareFunc::Equal: | ||
| 557 | pass = combiner_output.a() == output_merger.alpha_test.ref; | ||
| 558 | break; | ||
| 559 | |||
| 560 | case FramebufferRegs::CompareFunc::NotEqual: | ||
| 561 | pass = combiner_output.a() != output_merger.alpha_test.ref; | ||
| 562 | break; | ||
| 563 | |||
| 564 | case FramebufferRegs::CompareFunc::LessThan: | ||
| 565 | pass = combiner_output.a() < output_merger.alpha_test.ref; | ||
| 566 | break; | ||
| 567 | |||
| 568 | case FramebufferRegs::CompareFunc::LessThanOrEqual: | ||
| 569 | pass = combiner_output.a() <= output_merger.alpha_test.ref; | ||
| 570 | break; | ||
| 571 | |||
| 572 | case FramebufferRegs::CompareFunc::GreaterThan: | ||
| 573 | pass = combiner_output.a() > output_merger.alpha_test.ref; | ||
| 574 | break; | ||
| 575 | |||
| 576 | case FramebufferRegs::CompareFunc::GreaterThanOrEqual: | ||
| 577 | pass = combiner_output.a() >= output_merger.alpha_test.ref; | ||
| 578 | break; | ||
| 579 | } | ||
| 580 | |||
| 581 | if (!pass) | ||
| 582 | continue; | ||
| 583 | } | ||
| 584 | |||
| 585 | // Apply fog combiner | ||
| 586 | // Not fully accurate. We'd have to know what data type is used to | ||
| 587 | // store the depth etc. Using float for now until we know more | ||
| 588 | // about Pica datatypes | ||
| 589 | if (regs.texturing.fog_mode == TexturingRegs::FogMode::Fog) { | ||
| 590 | const Math::Vec3<u8> fog_color = { | ||
| 591 | static_cast<u8>(regs.texturing.fog_color.r.Value()), | ||
| 592 | static_cast<u8>(regs.texturing.fog_color.g.Value()), | ||
| 593 | static_cast<u8>(regs.texturing.fog_color.b.Value()), | ||
| 594 | }; | ||
| 595 | |||
| 596 | // Get index into fog LUT | ||
| 597 | float fog_index; | ||
| 598 | if (g_state.regs.texturing.fog_flip) { | ||
| 599 | fog_index = (1.0f - depth) * 128.0f; | ||
| 600 | } else { | ||
| 601 | fog_index = depth * 128.0f; | ||
| 602 | } | ||
| 603 | |||
| 604 | // Generate clamped fog factor from LUT for given fog index | ||
| 605 | float fog_i = MathUtil::Clamp(floorf(fog_index), 0.0f, 127.0f); | ||
| 606 | float fog_f = fog_index - fog_i; | ||
| 607 | const auto& fog_lut_entry = g_state.fog.lut[static_cast<unsigned int>(fog_i)]; | ||
| 608 | float fog_factor = fog_lut_entry.ToFloat() + fog_lut_entry.DiffToFloat() * fog_f; | ||
| 609 | fog_factor = MathUtil::Clamp(fog_factor, 0.0f, 1.0f); | ||
| 610 | |||
| 611 | // Blend the fog | ||
| 612 | for (unsigned i = 0; i < 3; i++) { | ||
| 613 | combiner_output[i] = static_cast<u8>(fog_factor * combiner_output[i] + | ||
| 614 | (1.0f - fog_factor) * fog_color[i]); | ||
| 615 | } | ||
| 616 | } | ||
| 617 | |||
| 618 | u8 old_stencil = 0; | ||
| 619 | |||
| 620 | auto UpdateStencil = [stencil_test, x, y, | ||
| 621 | &old_stencil](Pica::FramebufferRegs::StencilAction action) { | ||
| 622 | u8 new_stencil = | ||
| 623 | PerformStencilAction(action, old_stencil, stencil_test.reference_value); | ||
| 624 | if (g_state.regs.framebuffer.framebuffer.allow_depth_stencil_write != 0) | ||
| 625 | SetStencil(x >> 4, y >> 4, (new_stencil & stencil_test.write_mask) | | ||
| 626 | (old_stencil & ~stencil_test.write_mask)); | ||
| 627 | }; | ||
| 628 | |||
| 629 | if (stencil_action_enable) { | ||
| 630 | old_stencil = GetStencil(x >> 4, y >> 4); | ||
| 631 | u8 dest = old_stencil & stencil_test.input_mask; | ||
| 632 | u8 ref = stencil_test.reference_value & stencil_test.input_mask; | ||
| 633 | |||
| 634 | bool pass = false; | ||
| 635 | switch (stencil_test.func) { | ||
| 636 | case FramebufferRegs::CompareFunc::Never: | ||
| 637 | pass = false; | ||
| 638 | break; | ||
| 639 | |||
| 640 | case FramebufferRegs::CompareFunc::Always: | ||
| 641 | pass = true; | ||
| 642 | break; | ||
| 643 | |||
| 644 | case FramebufferRegs::CompareFunc::Equal: | ||
| 645 | pass = (ref == dest); | ||
| 646 | break; | ||
| 647 | |||
| 648 | case FramebufferRegs::CompareFunc::NotEqual: | ||
| 649 | pass = (ref != dest); | ||
| 650 | break; | ||
| 651 | |||
| 652 | case FramebufferRegs::CompareFunc::LessThan: | ||
| 653 | pass = (ref < dest); | ||
| 654 | break; | ||
| 655 | |||
| 656 | case FramebufferRegs::CompareFunc::LessThanOrEqual: | ||
| 657 | pass = (ref <= dest); | ||
| 658 | break; | ||
| 659 | |||
| 660 | case FramebufferRegs::CompareFunc::GreaterThan: | ||
| 661 | pass = (ref > dest); | ||
| 662 | break; | ||
| 663 | |||
| 664 | case FramebufferRegs::CompareFunc::GreaterThanOrEqual: | ||
| 665 | pass = (ref >= dest); | ||
| 666 | break; | ||
| 667 | } | ||
| 668 | |||
| 669 | if (!pass) { | ||
| 670 | UpdateStencil(stencil_test.action_stencil_fail); | ||
| 671 | continue; | ||
| 672 | } | ||
| 673 | } | ||
| 674 | |||
| 675 | // Convert float to integer | ||
| 676 | unsigned num_bits = | ||
| 677 | FramebufferRegs::DepthBitsPerPixel(regs.framebuffer.framebuffer.depth_format); | ||
| 678 | u32 z = (u32)(depth * ((1 << num_bits) - 1)); | ||
| 679 | |||
| 680 | if (output_merger.depth_test_enable) { | ||
| 681 | u32 ref_z = GetDepth(x >> 4, y >> 4); | ||
| 682 | |||
| 683 | bool pass = false; | ||
| 684 | |||
| 685 | switch (output_merger.depth_test_func) { | ||
| 686 | case FramebufferRegs::CompareFunc::Never: | ||
| 687 | pass = false; | ||
| 688 | break; | ||
| 689 | |||
| 690 | case FramebufferRegs::CompareFunc::Always: | ||
| 691 | pass = true; | ||
| 692 | break; | ||
| 693 | |||
| 694 | case FramebufferRegs::CompareFunc::Equal: | ||
| 695 | pass = z == ref_z; | ||
| 696 | break; | ||
| 697 | |||
| 698 | case FramebufferRegs::CompareFunc::NotEqual: | ||
| 699 | pass = z != ref_z; | ||
| 700 | break; | ||
| 701 | |||
| 702 | case FramebufferRegs::CompareFunc::LessThan: | ||
| 703 | pass = z < ref_z; | ||
| 704 | break; | ||
| 705 | |||
| 706 | case FramebufferRegs::CompareFunc::LessThanOrEqual: | ||
| 707 | pass = z <= ref_z; | ||
| 708 | break; | ||
| 709 | |||
| 710 | case FramebufferRegs::CompareFunc::GreaterThan: | ||
| 711 | pass = z > ref_z; | ||
| 712 | break; | ||
| 713 | |||
| 714 | case FramebufferRegs::CompareFunc::GreaterThanOrEqual: | ||
| 715 | pass = z >= ref_z; | ||
| 716 | break; | ||
| 717 | } | ||
| 718 | |||
| 719 | if (!pass) { | ||
| 720 | if (stencil_action_enable) | ||
| 721 | UpdateStencil(stencil_test.action_depth_fail); | ||
| 722 | continue; | ||
| 723 | } | ||
| 724 | } | ||
| 725 | |||
| 726 | if (regs.framebuffer.framebuffer.allow_depth_stencil_write != 0 && | ||
| 727 | output_merger.depth_write_enable) { | ||
| 728 | |||
| 729 | SetDepth(x >> 4, y >> 4, z); | ||
| 730 | } | ||
| 731 | |||
| 732 | // The stencil depth_pass action is executed even if depth testing is disabled | ||
| 733 | if (stencil_action_enable) | ||
| 734 | UpdateStencil(stencil_test.action_depth_pass); | ||
| 735 | |||
| 736 | auto dest = GetPixel(x >> 4, y >> 4); | ||
| 737 | Math::Vec4<u8> blend_output = combiner_output; | ||
| 738 | |||
| 739 | if (output_merger.alphablend_enable) { | ||
| 740 | auto params = output_merger.alpha_blending; | ||
| 741 | |||
| 742 | auto LookupFactor = [&](unsigned channel, | ||
| 743 | FramebufferRegs::BlendFactor factor) -> u8 { | ||
| 744 | DEBUG_ASSERT(channel < 4); | ||
| 745 | |||
| 746 | const Math::Vec4<u8> blend_const = { | ||
| 747 | static_cast<u8>(output_merger.blend_const.r), | ||
| 748 | static_cast<u8>(output_merger.blend_const.g), | ||
| 749 | static_cast<u8>(output_merger.blend_const.b), | ||
| 750 | static_cast<u8>(output_merger.blend_const.a), | ||
| 751 | }; | ||
| 752 | |||
| 753 | switch (factor) { | ||
| 754 | case FramebufferRegs::BlendFactor::Zero: | ||
| 755 | return 0; | ||
| 756 | |||
| 757 | case FramebufferRegs::BlendFactor::One: | ||
| 758 | return 255; | ||
| 759 | |||
| 760 | case FramebufferRegs::BlendFactor::SourceColor: | ||
| 761 | return combiner_output[channel]; | ||
| 762 | |||
| 763 | case FramebufferRegs::BlendFactor::OneMinusSourceColor: | ||
| 764 | return 255 - combiner_output[channel]; | ||
| 765 | |||
| 766 | case FramebufferRegs::BlendFactor::DestColor: | ||
| 767 | return dest[channel]; | ||
| 768 | |||
| 769 | case FramebufferRegs::BlendFactor::OneMinusDestColor: | ||
| 770 | return 255 - dest[channel]; | ||
| 771 | |||
| 772 | case FramebufferRegs::BlendFactor::SourceAlpha: | ||
| 773 | return combiner_output.a(); | ||
| 774 | |||
| 775 | case FramebufferRegs::BlendFactor::OneMinusSourceAlpha: | ||
| 776 | return 255 - combiner_output.a(); | ||
| 777 | |||
| 778 | case FramebufferRegs::BlendFactor::DestAlpha: | ||
| 779 | return dest.a(); | ||
| 780 | |||
| 781 | case FramebufferRegs::BlendFactor::OneMinusDestAlpha: | ||
| 782 | return 255 - dest.a(); | ||
| 783 | |||
| 784 | case FramebufferRegs::BlendFactor::ConstantColor: | ||
| 785 | return blend_const[channel]; | ||
| 786 | |||
| 787 | case FramebufferRegs::BlendFactor::OneMinusConstantColor: | ||
| 788 | return 255 - blend_const[channel]; | ||
| 789 | |||
| 790 | case FramebufferRegs::BlendFactor::ConstantAlpha: | ||
| 791 | return blend_const.a(); | ||
| 792 | |||
| 793 | case FramebufferRegs::BlendFactor::OneMinusConstantAlpha: | ||
| 794 | return 255 - blend_const.a(); | ||
| 795 | |||
| 796 | case FramebufferRegs::BlendFactor::SourceAlphaSaturate: | ||
| 797 | // Returns 1.0 for the alpha channel | ||
| 798 | if (channel == 3) | ||
| 799 | return 255; | ||
| 800 | return std::min(combiner_output.a(), static_cast<u8>(255 - dest.a())); | ||
| 801 | |||
| 802 | default: | ||
| 803 | LOG_CRITICAL(HW_GPU, "Unknown blend factor %x", factor); | ||
| 804 | UNIMPLEMENTED(); | ||
| 805 | break; | ||
| 806 | } | ||
| 807 | |||
| 808 | return combiner_output[channel]; | ||
| 809 | }; | ||
| 810 | |||
| 811 | auto srcfactor = Math::MakeVec(LookupFactor(0, params.factor_source_rgb), | ||
| 812 | LookupFactor(1, params.factor_source_rgb), | ||
| 813 | LookupFactor(2, params.factor_source_rgb), | ||
| 814 | LookupFactor(3, params.factor_source_a)); | ||
| 815 | |||
| 816 | auto dstfactor = Math::MakeVec(LookupFactor(0, params.factor_dest_rgb), | ||
| 817 | LookupFactor(1, params.factor_dest_rgb), | ||
| 818 | LookupFactor(2, params.factor_dest_rgb), | ||
| 819 | LookupFactor(3, params.factor_dest_a)); | ||
| 820 | |||
| 821 | blend_output = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor, | ||
| 822 | params.blend_equation_rgb); | ||
| 823 | blend_output.a() = EvaluateBlendEquation(combiner_output, srcfactor, dest, | ||
| 824 | dstfactor, params.blend_equation_a) | ||
| 825 | .a(); | ||
| 826 | } else { | ||
| 827 | blend_output = | ||
| 828 | Math::MakeVec(LogicOp(combiner_output.r(), dest.r(), output_merger.logic_op), | ||
| 829 | LogicOp(combiner_output.g(), dest.g(), output_merger.logic_op), | ||
| 830 | LogicOp(combiner_output.b(), dest.b(), output_merger.logic_op), | ||
| 831 | LogicOp(combiner_output.a(), dest.a(), output_merger.logic_op)); | ||
| 832 | } | ||
| 833 | |||
| 834 | const Math::Vec4<u8> result = { | ||
| 835 | output_merger.red_enable ? blend_output.r() : dest.r(), | ||
| 836 | output_merger.green_enable ? blend_output.g() : dest.g(), | ||
| 837 | output_merger.blue_enable ? blend_output.b() : dest.b(), | ||
| 838 | output_merger.alpha_enable ? blend_output.a() : dest.a(), | ||
| 839 | }; | ||
| 840 | |||
| 841 | if (regs.framebuffer.framebuffer.allow_color_write != 0) | ||
| 842 | DrawPixel(x >> 4, y >> 4, result); | ||
| 843 | } | ||
| 844 | } | ||
| 845 | } | ||
| 846 | |||
| 847 | void ProcessTriangle(const Vertex& v0, const Vertex& v1, const Vertex& v2) { | ||
| 848 | ProcessTriangleInternal(v0, v1, v2); | ||
| 849 | } | ||
| 850 | |||
| 851 | } // namespace Rasterizer | ||
| 852 | |||
| 853 | } // namespace Pica | ||