summaryrefslogtreecommitdiff
path: root/src/video_core/swrasterizer/rasterizer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/video_core/swrasterizer/rasterizer.cpp')
-rw-r--r--src/video_core/swrasterizer/rasterizer.cpp750
1 files changed, 750 insertions, 0 deletions
diff --git a/src/video_core/swrasterizer/rasterizer.cpp b/src/video_core/swrasterizer/rasterizer.cpp
new file mode 100644
index 000000000..7557fcb89
--- /dev/null
+++ b/src/video_core/swrasterizer/rasterizer.cpp
@@ -0,0 +1,750 @@
1// Copyright 2014 Citra Emulator Project
2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included.
4
5#include <algorithm>
6#include <array>
7#include <cmath>
8#include "common/assert.h"
9#include "common/bit_field.h"
10#include "common/color.h"
11#include "common/common_types.h"
12#include "common/logging/log.h"
13#include "common/math_util.h"
14#include "common/microprofile.h"
15#include "common/vector_math.h"
16#include "core/hw/gpu.h"
17#include "core/memory.h"
18#include "video_core/debug_utils/debug_utils.h"
19#include "video_core/pica_state.h"
20#include "video_core/pica_types.h"
21#include "video_core/regs_framebuffer.h"
22#include "video_core/regs_rasterizer.h"
23#include "video_core/regs_texturing.h"
24#include "video_core/shader/shader.h"
25#include "video_core/swrasterizer/framebuffer.h"
26#include "video_core/swrasterizer/rasterizer.h"
27#include "video_core/swrasterizer/texturing.h"
28#include "video_core/texture/texture_decode.h"
29#include "video_core/utils.h"
30
31namespace Pica {
32namespace Rasterizer {
33
34// NOTE: Assuming that rasterizer coordinates are 12.4 fixed-point values
35struct Fix12P4 {
36 Fix12P4() {}
37 Fix12P4(u16 val) : val(val) {}
38
39 static u16 FracMask() {
40 return 0xF;
41 }
42 static u16 IntMask() {
43 return (u16)~0xF;
44 }
45
46 operator u16() const {
47 return val;
48 }
49
50 bool operator<(const Fix12P4& oth) const {
51 return (u16) * this < (u16)oth;
52 }
53
54private:
55 u16 val;
56};
57
58/**
59 * Calculate signed area of the triangle spanned by the three argument vertices.
60 * The sign denotes an orientation.
61 *
62 * @todo define orientation concretely.
63 */
64static int SignedArea(const Math::Vec2<Fix12P4>& vtx1, const Math::Vec2<Fix12P4>& vtx2,
65 const Math::Vec2<Fix12P4>& vtx3) {
66 const auto vec1 = Math::MakeVec(vtx2 - vtx1, 0);
67 const auto vec2 = Math::MakeVec(vtx3 - vtx1, 0);
68 // TODO: There is a very small chance this will overflow for sizeof(int) == 4
69 return Math::Cross(vec1, vec2).z;
70};
71
72MICROPROFILE_DEFINE(GPU_Rasterization, "GPU", "Rasterization", MP_RGB(50, 50, 240));
73
74/**
75 * Helper function for ProcessTriangle with the "reversed" flag to allow for implementing
76 * culling via recursion.
77 */
78static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Vertex& v2,
79 bool reversed = false) {
80 const auto& regs = g_state.regs;
81 MICROPROFILE_SCOPE(GPU_Rasterization);
82
83 // vertex positions in rasterizer coordinates
84 static auto FloatToFix = [](float24 flt) {
85 // TODO: Rounding here is necessary to prevent garbage pixels at
86 // triangle borders. Is it that the correct solution, though?
87 return Fix12P4(static_cast<unsigned short>(round(flt.ToFloat32() * 16.0f)));
88 };
89 static auto ScreenToRasterizerCoordinates = [](const Math::Vec3<float24>& vec) {
90 return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)};
91 };
92
93 Math::Vec3<Fix12P4> vtxpos[3]{ScreenToRasterizerCoordinates(v0.screenpos),
94 ScreenToRasterizerCoordinates(v1.screenpos),
95 ScreenToRasterizerCoordinates(v2.screenpos)};
96
97 if (regs.rasterizer.cull_mode == RasterizerRegs::CullMode::KeepAll) {
98 // Make sure we always end up with a triangle wound counter-clockwise
99 if (!reversed && SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0) {
100 ProcessTriangleInternal(v0, v2, v1, true);
101 return;
102 }
103 } else {
104 if (!reversed && regs.rasterizer.cull_mode == RasterizerRegs::CullMode::KeepClockWise) {
105 // Reverse vertex order and use the CCW code path.
106 ProcessTriangleInternal(v0, v2, v1, true);
107 return;
108 }
109
110 // Cull away triangles which are wound clockwise.
111 if (SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0)
112 return;
113 }
114
115 u16 min_x = std::min({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
116 u16 min_y = std::min({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
117 u16 max_x = std::max({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
118 u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
119
120 // Convert the scissor box coordinates to 12.4 fixed point
121 u16 scissor_x1 = (u16)(regs.rasterizer.scissor_test.x1 << 4);
122 u16 scissor_y1 = (u16)(regs.rasterizer.scissor_test.y1 << 4);
123 // x2,y2 have +1 added to cover the entire sub-pixel area
124 u16 scissor_x2 = (u16)((regs.rasterizer.scissor_test.x2 + 1) << 4);
125 u16 scissor_y2 = (u16)((regs.rasterizer.scissor_test.y2 + 1) << 4);
126
127 if (regs.rasterizer.scissor_test.mode == RasterizerRegs::ScissorMode::Include) {
128 // Calculate the new bounds
129 min_x = std::max(min_x, scissor_x1);
130 min_y = std::max(min_y, scissor_y1);
131 max_x = std::min(max_x, scissor_x2);
132 max_y = std::min(max_y, scissor_y2);
133 }
134
135 min_x &= Fix12P4::IntMask();
136 min_y &= Fix12P4::IntMask();
137 max_x = ((max_x + Fix12P4::FracMask()) & Fix12P4::IntMask());
138 max_y = ((max_y + Fix12P4::FracMask()) & Fix12P4::IntMask());
139
140 // Triangle filling rules: Pixels on the right-sided edge or on flat bottom edges are not
141 // drawn. Pixels on any other triangle border are drawn. This is implemented with three bias
142 // values which are added to the barycentric coordinates w0, w1 and w2, respectively.
143 // NOTE: These are the PSP filling rules. Not sure if the 3DS uses the same ones...
144 auto IsRightSideOrFlatBottomEdge = [](const Math::Vec2<Fix12P4>& vtx,
145 const Math::Vec2<Fix12P4>& line1,
146 const Math::Vec2<Fix12P4>& line2) {
147 if (line1.y == line2.y) {
148 // just check if vertex is above us => bottom line parallel to x-axis
149 return vtx.y < line1.y;
150 } else {
151 // check if vertex is on our left => right side
152 // TODO: Not sure how likely this is to overflow
153 return (int)vtx.x < (int)line1.x +
154 ((int)line2.x - (int)line1.x) * ((int)vtx.y - (int)line1.y) /
155 ((int)line2.y - (int)line1.y);
156 }
157 };
158 int bias0 =
159 IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0;
160 int bias1 =
161 IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0;
162 int bias2 =
163 IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0;
164
165 auto w_inverse = Math::MakeVec(v0.pos.w, v1.pos.w, v2.pos.w);
166
167 auto textures = regs.texturing.GetTextures();
168 auto tev_stages = regs.texturing.GetTevStages();
169
170 bool stencil_action_enable =
171 g_state.regs.framebuffer.output_merger.stencil_test.enable &&
172 g_state.regs.framebuffer.framebuffer.depth_format == FramebufferRegs::DepthFormat::D24S8;
173 const auto stencil_test = g_state.regs.framebuffer.output_merger.stencil_test;
174
175 // Enter rasterization loop, starting at the center of the topleft bounding box corner.
176 // TODO: Not sure if looping through x first might be faster
177 for (u16 y = min_y + 8; y < max_y; y += 0x10) {
178 for (u16 x = min_x + 8; x < max_x; x += 0x10) {
179
180 // Do not process the pixel if it's inside the scissor box and the scissor mode is set
181 // to Exclude
182 if (regs.rasterizer.scissor_test.mode == RasterizerRegs::ScissorMode::Exclude) {
183 if (x >= scissor_x1 && x < scissor_x2 && y >= scissor_y1 && y < scissor_y2)
184 continue;
185 }
186
187 // Calculate the barycentric coordinates w0, w1 and w2
188 int w0 = bias0 + SignedArea(vtxpos[1].xy(), vtxpos[2].xy(), {x, y});
189 int w1 = bias1 + SignedArea(vtxpos[2].xy(), vtxpos[0].xy(), {x, y});
190 int w2 = bias2 + SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), {x, y});
191 int wsum = w0 + w1 + w2;
192
193 // If current pixel is not covered by the current primitive
194 if (w0 < 0 || w1 < 0 || w2 < 0)
195 continue;
196
197 auto baricentric_coordinates =
198 Math::MakeVec(float24::FromFloat32(static_cast<float>(w0)),
199 float24::FromFloat32(static_cast<float>(w1)),
200 float24::FromFloat32(static_cast<float>(w2)));
201 float24 interpolated_w_inverse =
202 float24::FromFloat32(1.0f) / Math::Dot(w_inverse, baricentric_coordinates);
203
204 // interpolated_z = z / w
205 float interpolated_z_over_w =
206 (v0.screenpos[2].ToFloat32() * w0 + v1.screenpos[2].ToFloat32() * w1 +
207 v2.screenpos[2].ToFloat32() * w2) /
208 wsum;
209
210 // Not fully accurate. About 3 bits in precision are missing.
211 // Z-Buffer (z / w * scale + offset)
212 float depth_scale = float24::FromRaw(regs.rasterizer.viewport_depth_range).ToFloat32();
213 float depth_offset =
214 float24::FromRaw(regs.rasterizer.viewport_depth_near_plane).ToFloat32();
215 float depth = interpolated_z_over_w * depth_scale + depth_offset;
216
217 // Potentially switch to W-Buffer
218 if (regs.rasterizer.depthmap_enable ==
219 Pica::RasterizerRegs::DepthBuffering::WBuffering) {
220 // W-Buffer (z * scale + w * offset = (z / w * scale + offset) * w)
221 depth *= interpolated_w_inverse.ToFloat32() * wsum;
222 }
223
224 // Clamp the result
225 depth = MathUtil::Clamp(depth, 0.0f, 1.0f);
226
227 // Perspective correct attribute interpolation:
228 // Attribute values cannot be calculated by simple linear interpolation since
229 // they are not linear in screen space. For example, when interpolating a
230 // texture coordinate across two vertices, something simple like
231 // u = (u0*w0 + u1*w1)/(w0+w1)
232 // will not work. However, the attribute value divided by the
233 // clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear
234 // in screenspace. Hence, we can linearly interpolate these two independently and
235 // calculate the interpolated attribute by dividing the results.
236 // I.e.
237 // u_over_w = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1)
238 // one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1)
239 // u = u_over_w / one_over_w
240 //
241 // The generalization to three vertices is straightforward in baricentric coordinates.
242 auto GetInterpolatedAttribute = [&](float24 attr0, float24 attr1, float24 attr2) {
243 auto attr_over_w = Math::MakeVec(attr0, attr1, attr2);
244 float24 interpolated_attr_over_w = Math::Dot(attr_over_w, baricentric_coordinates);
245 return interpolated_attr_over_w * interpolated_w_inverse;
246 };
247
248 Math::Vec4<u8> primary_color{
249 (u8)(
250 GetInterpolatedAttribute(v0.color.r(), v1.color.r(), v2.color.r()).ToFloat32() *
251 255),
252 (u8)(
253 GetInterpolatedAttribute(v0.color.g(), v1.color.g(), v2.color.g()).ToFloat32() *
254 255),
255 (u8)(
256 GetInterpolatedAttribute(v0.color.b(), v1.color.b(), v2.color.b()).ToFloat32() *
257 255),
258 (u8)(
259 GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() *
260 255),
261 };
262
263 Math::Vec2<float24> uv[3];
264 uv[0].u() = GetInterpolatedAttribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u());
265 uv[0].v() = GetInterpolatedAttribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v());
266 uv[1].u() = GetInterpolatedAttribute(v0.tc1.u(), v1.tc1.u(), v2.tc1.u());
267 uv[1].v() = GetInterpolatedAttribute(v0.tc1.v(), v1.tc1.v(), v2.tc1.v());
268 uv[2].u() = GetInterpolatedAttribute(v0.tc2.u(), v1.tc2.u(), v2.tc2.u());
269 uv[2].v() = GetInterpolatedAttribute(v0.tc2.v(), v1.tc2.v(), v2.tc2.v());
270
271 Math::Vec4<u8> texture_color[3]{};
272 for (int i = 0; i < 3; ++i) {
273 const auto& texture = textures[i];
274 if (!texture.enabled)
275 continue;
276
277 DEBUG_ASSERT(0 != texture.config.address);
278
279 float24 u = uv[i].u();
280 float24 v = uv[i].v();
281
282 // Only unit 0 respects the texturing type (according to 3DBrew)
283 // TODO: Refactor so cubemaps and shadowmaps can be handled
284 if (i == 0) {
285 switch (texture.config.type) {
286 case TexturingRegs::TextureConfig::Texture2D:
287 break;
288 case TexturingRegs::TextureConfig::Projection2D: {
289 auto tc0_w = GetInterpolatedAttribute(v0.tc0_w, v1.tc0_w, v2.tc0_w);
290 u /= tc0_w;
291 v /= tc0_w;
292 break;
293 }
294 default:
295 // TODO: Change to LOG_ERROR when more types are handled.
296 LOG_DEBUG(HW_GPU, "Unhandled texture type %x", (int)texture.config.type);
297 UNIMPLEMENTED();
298 break;
299 }
300 }
301
302 int s = (int)(u * float24::FromFloat32(static_cast<float>(texture.config.width)))
303 .ToFloat32();
304 int t = (int)(v * float24::FromFloat32(static_cast<float>(texture.config.height)))
305 .ToFloat32();
306
307 if ((texture.config.wrap_s == TexturingRegs::TextureConfig::ClampToBorder &&
308 (s < 0 || static_cast<u32>(s) >= texture.config.width)) ||
309 (texture.config.wrap_t == TexturingRegs::TextureConfig::ClampToBorder &&
310 (t < 0 || static_cast<u32>(t) >= texture.config.height))) {
311 auto border_color = texture.config.border_color;
312 texture_color[i] = {border_color.r, border_color.g, border_color.b,
313 border_color.a};
314 } else {
315 // Textures are laid out from bottom to top, hence we invert the t coordinate.
316 // NOTE: This may not be the right place for the inversion.
317 // TODO: Check if this applies to ETC textures, too.
318 s = GetWrappedTexCoord(texture.config.wrap_s, s, texture.config.width);
319 t = texture.config.height - 1 -
320 GetWrappedTexCoord(texture.config.wrap_t, t, texture.config.height);
321
322 u8* texture_data =
323 Memory::GetPhysicalPointer(texture.config.GetPhysicalAddress());
324 auto info =
325 Texture::TextureInfo::FromPicaRegister(texture.config, texture.format);
326
327 // TODO: Apply the min and mag filters to the texture
328 texture_color[i] = Texture::LookupTexture(texture_data, s, t, info);
329#if PICA_DUMP_TEXTURES
330 DebugUtils::DumpTexture(texture.config, texture_data);
331#endif
332 }
333 }
334
335 // Texture environment - consists of 6 stages of color and alpha combining.
336 //
337 // Color combiners take three input color values from some source (e.g. interpolated
338 // vertex color, texture color, previous stage, etc), perform some very simple
339 // operations on each of them (e.g. inversion) and then calculate the output color
340 // with some basic arithmetic. Alpha combiners can be configured separately but work
341 // analogously.
342 Math::Vec4<u8> combiner_output;
343 Math::Vec4<u8> combiner_buffer = {0, 0, 0, 0};
344 Math::Vec4<u8> next_combiner_buffer = {
345 regs.texturing.tev_combiner_buffer_color.r,
346 regs.texturing.tev_combiner_buffer_color.g,
347 regs.texturing.tev_combiner_buffer_color.b,
348 regs.texturing.tev_combiner_buffer_color.a,
349 };
350
351 for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size();
352 ++tev_stage_index) {
353 const auto& tev_stage = tev_stages[tev_stage_index];
354 using Source = TexturingRegs::TevStageConfig::Source;
355
356 auto GetSource = [&](Source source) -> Math::Vec4<u8> {
357 switch (source) {
358 case Source::PrimaryColor:
359
360 // HACK: Until we implement fragment lighting, use primary_color
361 case Source::PrimaryFragmentColor:
362 return primary_color;
363
364 // HACK: Until we implement fragment lighting, use zero
365 case Source::SecondaryFragmentColor:
366 return {0, 0, 0, 0};
367
368 case Source::Texture0:
369 return texture_color[0];
370
371 case Source::Texture1:
372 return texture_color[1];
373
374 case Source::Texture2:
375 return texture_color[2];
376
377 case Source::PreviousBuffer:
378 return combiner_buffer;
379
380 case Source::Constant:
381 return {tev_stage.const_r, tev_stage.const_g, tev_stage.const_b,
382 tev_stage.const_a};
383
384 case Source::Previous:
385 return combiner_output;
386
387 default:
388 LOG_ERROR(HW_GPU, "Unknown color combiner source %d", (int)source);
389 UNIMPLEMENTED();
390 return {0, 0, 0, 0};
391 }
392 };
393
394 // color combiner
395 // NOTE: Not sure if the alpha combiner might use the color output of the previous
396 // stage as input. Hence, we currently don't directly write the result to
397 // combiner_output.rgb(), but instead store it in a temporary variable until
398 // alpha combining has been done.
399 Math::Vec3<u8> color_result[3] = {
400 GetColorModifier(tev_stage.color_modifier1, GetSource(tev_stage.color_source1)),
401 GetColorModifier(tev_stage.color_modifier2, GetSource(tev_stage.color_source2)),
402 GetColorModifier(tev_stage.color_modifier3, GetSource(tev_stage.color_source3)),
403 };
404 auto color_output = ColorCombine(tev_stage.color_op, color_result);
405
406 // alpha combiner
407 std::array<u8, 3> alpha_result = {{
408 GetAlphaModifier(tev_stage.alpha_modifier1, GetSource(tev_stage.alpha_source1)),
409 GetAlphaModifier(tev_stage.alpha_modifier2, GetSource(tev_stage.alpha_source2)),
410 GetAlphaModifier(tev_stage.alpha_modifier3, GetSource(tev_stage.alpha_source3)),
411 }};
412 auto alpha_output = AlphaCombine(tev_stage.alpha_op, alpha_result);
413
414 combiner_output[0] =
415 std::min((unsigned)255, color_output.r() * tev_stage.GetColorMultiplier());
416 combiner_output[1] =
417 std::min((unsigned)255, color_output.g() * tev_stage.GetColorMultiplier());
418 combiner_output[2] =
419 std::min((unsigned)255, color_output.b() * tev_stage.GetColorMultiplier());
420 combiner_output[3] =
421 std::min((unsigned)255, alpha_output * tev_stage.GetAlphaMultiplier());
422
423 combiner_buffer = next_combiner_buffer;
424
425 if (regs.texturing.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferColor(
426 tev_stage_index)) {
427 next_combiner_buffer.r() = combiner_output.r();
428 next_combiner_buffer.g() = combiner_output.g();
429 next_combiner_buffer.b() = combiner_output.b();
430 }
431
432 if (regs.texturing.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferAlpha(
433 tev_stage_index)) {
434 next_combiner_buffer.a() = combiner_output.a();
435 }
436 }
437
438 const auto& output_merger = regs.framebuffer.output_merger;
439 // TODO: Does alpha testing happen before or after stencil?
440 if (output_merger.alpha_test.enable) {
441 bool pass = false;
442
443 switch (output_merger.alpha_test.func) {
444 case FramebufferRegs::CompareFunc::Never:
445 pass = false;
446 break;
447
448 case FramebufferRegs::CompareFunc::Always:
449 pass = true;
450 break;
451
452 case FramebufferRegs::CompareFunc::Equal:
453 pass = combiner_output.a() == output_merger.alpha_test.ref;
454 break;
455
456 case FramebufferRegs::CompareFunc::NotEqual:
457 pass = combiner_output.a() != output_merger.alpha_test.ref;
458 break;
459
460 case FramebufferRegs::CompareFunc::LessThan:
461 pass = combiner_output.a() < output_merger.alpha_test.ref;
462 break;
463
464 case FramebufferRegs::CompareFunc::LessThanOrEqual:
465 pass = combiner_output.a() <= output_merger.alpha_test.ref;
466 break;
467
468 case FramebufferRegs::CompareFunc::GreaterThan:
469 pass = combiner_output.a() > output_merger.alpha_test.ref;
470 break;
471
472 case FramebufferRegs::CompareFunc::GreaterThanOrEqual:
473 pass = combiner_output.a() >= output_merger.alpha_test.ref;
474 break;
475 }
476
477 if (!pass)
478 continue;
479 }
480
481 // Apply fog combiner
482 // Not fully accurate. We'd have to know what data type is used to
483 // store the depth etc. Using float for now until we know more
484 // about Pica datatypes
485 if (regs.texturing.fog_mode == TexturingRegs::FogMode::Fog) {
486 const Math::Vec3<u8> fog_color = {
487 static_cast<u8>(regs.texturing.fog_color.r.Value()),
488 static_cast<u8>(regs.texturing.fog_color.g.Value()),
489 static_cast<u8>(regs.texturing.fog_color.b.Value()),
490 };
491
492 // Get index into fog LUT
493 float fog_index;
494 if (g_state.regs.texturing.fog_flip) {
495 fog_index = (1.0f - depth) * 128.0f;
496 } else {
497 fog_index = depth * 128.0f;
498 }
499
500 // Generate clamped fog factor from LUT for given fog index
501 float fog_i = MathUtil::Clamp(floorf(fog_index), 0.0f, 127.0f);
502 float fog_f = fog_index - fog_i;
503 const auto& fog_lut_entry = g_state.fog.lut[static_cast<unsigned int>(fog_i)];
504 float fog_factor = (fog_lut_entry.value + fog_lut_entry.difference * fog_f) /
505 2047.0f; // This is signed fixed point 1.11
506 fog_factor = MathUtil::Clamp(fog_factor, 0.0f, 1.0f);
507
508 // Blend the fog
509 for (unsigned i = 0; i < 3; i++) {
510 combiner_output[i] = static_cast<u8>(fog_factor * combiner_output[i] +
511 (1.0f - fog_factor) * fog_color[i]);
512 }
513 }
514
515 u8 old_stencil = 0;
516
517 auto UpdateStencil = [stencil_test, x, y,
518 &old_stencil](Pica::FramebufferRegs::StencilAction action) {
519 u8 new_stencil =
520 PerformStencilAction(action, old_stencil, stencil_test.reference_value);
521 if (g_state.regs.framebuffer.framebuffer.allow_depth_stencil_write != 0)
522 SetStencil(x >> 4, y >> 4, (new_stencil & stencil_test.write_mask) |
523 (old_stencil & ~stencil_test.write_mask));
524 };
525
526 if (stencil_action_enable) {
527 old_stencil = GetStencil(x >> 4, y >> 4);
528 u8 dest = old_stencil & stencil_test.input_mask;
529 u8 ref = stencil_test.reference_value & stencil_test.input_mask;
530
531 bool pass = false;
532 switch (stencil_test.func) {
533 case FramebufferRegs::CompareFunc::Never:
534 pass = false;
535 break;
536
537 case FramebufferRegs::CompareFunc::Always:
538 pass = true;
539 break;
540
541 case FramebufferRegs::CompareFunc::Equal:
542 pass = (ref == dest);
543 break;
544
545 case FramebufferRegs::CompareFunc::NotEqual:
546 pass = (ref != dest);
547 break;
548
549 case FramebufferRegs::CompareFunc::LessThan:
550 pass = (ref < dest);
551 break;
552
553 case FramebufferRegs::CompareFunc::LessThanOrEqual:
554 pass = (ref <= dest);
555 break;
556
557 case FramebufferRegs::CompareFunc::GreaterThan:
558 pass = (ref > dest);
559 break;
560
561 case FramebufferRegs::CompareFunc::GreaterThanOrEqual:
562 pass = (ref >= dest);
563 break;
564 }
565
566 if (!pass) {
567 UpdateStencil(stencil_test.action_stencil_fail);
568 continue;
569 }
570 }
571
572 // Convert float to integer
573 unsigned num_bits =
574 FramebufferRegs::DepthBitsPerPixel(regs.framebuffer.framebuffer.depth_format);
575 u32 z = (u32)(depth * ((1 << num_bits) - 1));
576
577 if (output_merger.depth_test_enable) {
578 u32 ref_z = GetDepth(x >> 4, y >> 4);
579
580 bool pass = false;
581
582 switch (output_merger.depth_test_func) {
583 case FramebufferRegs::CompareFunc::Never:
584 pass = false;
585 break;
586
587 case FramebufferRegs::CompareFunc::Always:
588 pass = true;
589 break;
590
591 case FramebufferRegs::CompareFunc::Equal:
592 pass = z == ref_z;
593 break;
594
595 case FramebufferRegs::CompareFunc::NotEqual:
596 pass = z != ref_z;
597 break;
598
599 case FramebufferRegs::CompareFunc::LessThan:
600 pass = z < ref_z;
601 break;
602
603 case FramebufferRegs::CompareFunc::LessThanOrEqual:
604 pass = z <= ref_z;
605 break;
606
607 case FramebufferRegs::CompareFunc::GreaterThan:
608 pass = z > ref_z;
609 break;
610
611 case FramebufferRegs::CompareFunc::GreaterThanOrEqual:
612 pass = z >= ref_z;
613 break;
614 }
615
616 if (!pass) {
617 if (stencil_action_enable)
618 UpdateStencil(stencil_test.action_depth_fail);
619 continue;
620 }
621 }
622
623 if (regs.framebuffer.framebuffer.allow_depth_stencil_write != 0 &&
624 output_merger.depth_write_enable) {
625
626 SetDepth(x >> 4, y >> 4, z);
627 }
628
629 // The stencil depth_pass action is executed even if depth testing is disabled
630 if (stencil_action_enable)
631 UpdateStencil(stencil_test.action_depth_pass);
632
633 auto dest = GetPixel(x >> 4, y >> 4);
634 Math::Vec4<u8> blend_output = combiner_output;
635
636 if (output_merger.alphablend_enable) {
637 auto params = output_merger.alpha_blending;
638
639 auto LookupFactor = [&](unsigned channel,
640 FramebufferRegs::BlendFactor factor) -> u8 {
641 DEBUG_ASSERT(channel < 4);
642
643 const Math::Vec4<u8> blend_const = {
644 static_cast<u8>(output_merger.blend_const.r),
645 static_cast<u8>(output_merger.blend_const.g),
646 static_cast<u8>(output_merger.blend_const.b),
647 static_cast<u8>(output_merger.blend_const.a),
648 };
649
650 switch (factor) {
651 case FramebufferRegs::BlendFactor::Zero:
652 return 0;
653
654 case FramebufferRegs::BlendFactor::One:
655 return 255;
656
657 case FramebufferRegs::BlendFactor::SourceColor:
658 return combiner_output[channel];
659
660 case FramebufferRegs::BlendFactor::OneMinusSourceColor:
661 return 255 - combiner_output[channel];
662
663 case FramebufferRegs::BlendFactor::DestColor:
664 return dest[channel];
665
666 case FramebufferRegs::BlendFactor::OneMinusDestColor:
667 return 255 - dest[channel];
668
669 case FramebufferRegs::BlendFactor::SourceAlpha:
670 return combiner_output.a();
671
672 case FramebufferRegs::BlendFactor::OneMinusSourceAlpha:
673 return 255 - combiner_output.a();
674
675 case FramebufferRegs::BlendFactor::DestAlpha:
676 return dest.a();
677
678 case FramebufferRegs::BlendFactor::OneMinusDestAlpha:
679 return 255 - dest.a();
680
681 case FramebufferRegs::BlendFactor::ConstantColor:
682 return blend_const[channel];
683
684 case FramebufferRegs::BlendFactor::OneMinusConstantColor:
685 return 255 - blend_const[channel];
686
687 case FramebufferRegs::BlendFactor::ConstantAlpha:
688 return blend_const.a();
689
690 case FramebufferRegs::BlendFactor::OneMinusConstantAlpha:
691 return 255 - blend_const.a();
692
693 case FramebufferRegs::BlendFactor::SourceAlphaSaturate:
694 // Returns 1.0 for the alpha channel
695 if (channel == 3)
696 return 255;
697 return std::min(combiner_output.a(), static_cast<u8>(255 - dest.a()));
698
699 default:
700 LOG_CRITICAL(HW_GPU, "Unknown blend factor %x", factor);
701 UNIMPLEMENTED();
702 break;
703 }
704
705 return combiner_output[channel];
706 };
707
708 auto srcfactor = Math::MakeVec(LookupFactor(0, params.factor_source_rgb),
709 LookupFactor(1, params.factor_source_rgb),
710 LookupFactor(2, params.factor_source_rgb),
711 LookupFactor(3, params.factor_source_a));
712
713 auto dstfactor = Math::MakeVec(LookupFactor(0, params.factor_dest_rgb),
714 LookupFactor(1, params.factor_dest_rgb),
715 LookupFactor(2, params.factor_dest_rgb),
716 LookupFactor(3, params.factor_dest_a));
717
718 blend_output = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor,
719 params.blend_equation_rgb);
720 blend_output.a() = EvaluateBlendEquation(combiner_output, srcfactor, dest,
721 dstfactor, params.blend_equation_a)
722 .a();
723 } else {
724 blend_output =
725 Math::MakeVec(LogicOp(combiner_output.r(), dest.r(), output_merger.logic_op),
726 LogicOp(combiner_output.g(), dest.g(), output_merger.logic_op),
727 LogicOp(combiner_output.b(), dest.b(), output_merger.logic_op),
728 LogicOp(combiner_output.a(), dest.a(), output_merger.logic_op));
729 }
730
731 const Math::Vec4<u8> result = {
732 output_merger.red_enable ? blend_output.r() : dest.r(),
733 output_merger.green_enable ? blend_output.g() : dest.g(),
734 output_merger.blue_enable ? blend_output.b() : dest.b(),
735 output_merger.alpha_enable ? blend_output.a() : dest.a(),
736 };
737
738 if (regs.framebuffer.framebuffer.allow_color_write != 0)
739 DrawPixel(x >> 4, y >> 4, result);
740 }
741 }
742}
743
744void ProcessTriangle(const Vertex& v0, const Vertex& v1, const Vertex& v2) {
745 ProcessTriangleInternal(v0, v1, v2);
746}
747
748} // namespace Rasterizer
749
750} // namespace Pica