summaryrefslogtreecommitdiff
path: root/src/input_common/motion_input.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/input_common/motion_input.cpp')
-rw-r--r--src/input_common/motion_input.cpp305
1 files changed, 305 insertions, 0 deletions
diff --git a/src/input_common/motion_input.cpp b/src/input_common/motion_input.cpp
new file mode 100644
index 000000000..e89019723
--- /dev/null
+++ b/src/input_common/motion_input.cpp
@@ -0,0 +1,305 @@
1// Copyright 2020 yuzu Emulator Project
2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included
4
5#include <random>
6#include "common/math_util.h"
7#include "input_common/motion_input.h"
8
9namespace InputCommon {
10
11MotionInput::MotionInput(f32 new_kp, f32 new_ki, f32 new_kd)
12 : kp(new_kp), ki(new_ki), kd(new_kd), quat{{0, 0, -1}, 0} {}
13
14void MotionInput::SetAcceleration(const Common::Vec3f& acceleration) {
15 accel = acceleration;
16}
17
18void MotionInput::SetGyroscope(const Common::Vec3f& gyroscope) {
19 gyro = gyroscope - gyro_drift;
20
21 // Auto adjust drift to minimize drift
22 if (!IsMoving(0.1f)) {
23 gyro_drift = (gyro_drift * 0.9999f) + (gyroscope * 0.0001f);
24 }
25
26 if (gyro.Length2() < gyro_threshold) {
27 gyro = {};
28 } else {
29 only_accelerometer = false;
30 }
31}
32
33void MotionInput::SetQuaternion(const Common::Quaternion<f32>& quaternion) {
34 quat = quaternion;
35}
36
37void MotionInput::SetGyroDrift(const Common::Vec3f& drift) {
38 gyro_drift = drift;
39}
40
41void MotionInput::SetGyroThreshold(f32 threshold) {
42 gyro_threshold = threshold;
43}
44
45void MotionInput::EnableReset(bool reset) {
46 reset_enabled = reset;
47}
48
49void MotionInput::ResetRotations() {
50 rotations = {};
51}
52
53bool MotionInput::IsMoving(f32 sensitivity) const {
54 return gyro.Length() >= sensitivity || accel.Length() <= 0.9f || accel.Length() >= 1.1f;
55}
56
57bool MotionInput::IsCalibrated(f32 sensitivity) const {
58 return real_error.Length() < sensitivity;
59}
60
61void MotionInput::UpdateRotation(u64 elapsed_time) {
62 const f32 sample_period = elapsed_time / 1000000.0f;
63 if (sample_period > 0.1f) {
64 return;
65 }
66 rotations += gyro * sample_period;
67}
68
69void MotionInput::UpdateOrientation(u64 elapsed_time) {
70 if (!IsCalibrated(0.1f)) {
71 ResetOrientation();
72 }
73 // Short name local variable for readability
74 f32 q1 = quat.w;
75 f32 q2 = quat.xyz[0];
76 f32 q3 = quat.xyz[1];
77 f32 q4 = quat.xyz[2];
78 const f32 sample_period = elapsed_time / 1000000.0f;
79
80 // Ignore invalid elapsed time
81 if (sample_period > 0.1f) {
82 return;
83 }
84
85 const auto normal_accel = accel.Normalized();
86 auto rad_gyro = gyro * Common::PI * 2;
87 const f32 swap = rad_gyro.x;
88 rad_gyro.x = rad_gyro.y;
89 rad_gyro.y = -swap;
90 rad_gyro.z = -rad_gyro.z;
91
92 // Clear gyro values if there is no gyro present
93 if (only_accelerometer) {
94 rad_gyro.x = 0;
95 rad_gyro.y = 0;
96 rad_gyro.z = 0;
97 }
98
99 // Ignore drift correction if acceleration is not reliable
100 if (accel.Length() >= 0.75f && accel.Length() <= 1.25f) {
101 const f32 ax = -normal_accel.x;
102 const f32 ay = normal_accel.y;
103 const f32 az = -normal_accel.z;
104
105 // Estimated direction of gravity
106 const f32 vx = 2.0f * (q2 * q4 - q1 * q3);
107 const f32 vy = 2.0f * (q1 * q2 + q3 * q4);
108 const f32 vz = q1 * q1 - q2 * q2 - q3 * q3 + q4 * q4;
109
110 // Error is cross product between estimated direction and measured direction of gravity
111 const Common::Vec3f new_real_error = {
112 az * vx - ax * vz,
113 ay * vz - az * vy,
114 ax * vy - ay * vx,
115 };
116
117 derivative_error = new_real_error - real_error;
118 real_error = new_real_error;
119
120 // Prevent integral windup
121 if (ki != 0.0f && !IsCalibrated(0.05f)) {
122 integral_error += real_error;
123 } else {
124 integral_error = {};
125 }
126
127 // Apply feedback terms
128 if (!only_accelerometer) {
129 rad_gyro += kp * real_error;
130 rad_gyro += ki * integral_error;
131 rad_gyro += kd * derivative_error;
132 } else {
133 // Give more weight to acelerometer values to compensate for the lack of gyro
134 rad_gyro += 35.0f * kp * real_error;
135 rad_gyro += 10.0f * ki * integral_error;
136 rad_gyro += 10.0f * kd * derivative_error;
137
138 // Emulate gyro values for games that need them
139 gyro.x = -rad_gyro.y;
140 gyro.y = rad_gyro.x;
141 gyro.z = -rad_gyro.z;
142 UpdateRotation(elapsed_time);
143 }
144 }
145
146 const f32 gx = rad_gyro.y;
147 const f32 gy = rad_gyro.x;
148 const f32 gz = rad_gyro.z;
149
150 // Integrate rate of change of quaternion
151 const f32 pa = q2;
152 const f32 pb = q3;
153 const f32 pc = q4;
154 q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * sample_period);
155 q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * sample_period);
156 q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * sample_period);
157 q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * sample_period);
158
159 quat.w = q1;
160 quat.xyz[0] = q2;
161 quat.xyz[1] = q3;
162 quat.xyz[2] = q4;
163 quat = quat.Normalized();
164}
165
166std::array<Common::Vec3f, 3> MotionInput::GetOrientation() const {
167 const Common::Quaternion<float> quad{
168 .xyz = {-quat.xyz[1], -quat.xyz[0], -quat.w},
169 .w = -quat.xyz[2],
170 };
171 const std::array<float, 16> matrix4x4 = quad.ToMatrix();
172
173 return {Common::Vec3f(matrix4x4[0], matrix4x4[1], -matrix4x4[2]),
174 Common::Vec3f(matrix4x4[4], matrix4x4[5], -matrix4x4[6]),
175 Common::Vec3f(-matrix4x4[8], -matrix4x4[9], matrix4x4[10])};
176}
177
178Common::Vec3f MotionInput::GetAcceleration() const {
179 return accel;
180}
181
182Common::Vec3f MotionInput::GetGyroscope() const {
183 return gyro;
184}
185
186Common::Quaternion<f32> MotionInput::GetQuaternion() const {
187 return quat;
188}
189
190Common::Vec3f MotionInput::GetRotations() const {
191 return rotations;
192}
193
194Input::MotionStatus MotionInput::GetMotion() const {
195 const Common::Vec3f gyroscope = GetGyroscope();
196 const Common::Vec3f accelerometer = GetAcceleration();
197 const Common::Vec3f rotation = GetRotations();
198 const std::array<Common::Vec3f, 3> orientation = GetOrientation();
199 return {accelerometer, gyroscope, rotation, orientation};
200}
201
202Input::MotionStatus MotionInput::GetRandomMotion(int accel_magnitude, int gyro_magnitude) const {
203 std::random_device device;
204 std::mt19937 gen(device());
205 std::uniform_int_distribution<s16> distribution(-1000, 1000);
206 const Common::Vec3f gyroscope = {
207 distribution(gen) * 0.001f,
208 distribution(gen) * 0.001f,
209 distribution(gen) * 0.001f,
210 };
211 const Common::Vec3f accelerometer = {
212 distribution(gen) * 0.001f,
213 distribution(gen) * 0.001f,
214 distribution(gen) * 0.001f,
215 };
216 const Common::Vec3f rotation = {};
217 const std::array<Common::Vec3f, 3> orientation = {
218 Common::Vec3f{1.0f, 0, 0},
219 Common::Vec3f{0, 1.0f, 0},
220 Common::Vec3f{0, 0, 1.0f},
221 };
222 return {accelerometer * accel_magnitude, gyroscope * gyro_magnitude, rotation, orientation};
223}
224
225void MotionInput::ResetOrientation() {
226 if (!reset_enabled || only_accelerometer) {
227 return;
228 }
229 if (!IsMoving(0.5f) && accel.z <= -0.9f) {
230 ++reset_counter;
231 if (reset_counter > 900) {
232 quat.w = 0;
233 quat.xyz[0] = 0;
234 quat.xyz[1] = 0;
235 quat.xyz[2] = -1;
236 SetOrientationFromAccelerometer();
237 integral_error = {};
238 reset_counter = 0;
239 }
240 } else {
241 reset_counter = 0;
242 }
243}
244
245void MotionInput::SetOrientationFromAccelerometer() {
246 int iterations = 0;
247 const f32 sample_period = 0.015f;
248
249 const auto normal_accel = accel.Normalized();
250 const f32 ax = -normal_accel.x;
251 const f32 ay = normal_accel.y;
252 const f32 az = -normal_accel.z;
253
254 while (!IsCalibrated(0.01f) && ++iterations < 100) {
255 // Short name local variable for readability
256 f32 q1 = quat.w;
257 f32 q2 = quat.xyz[0];
258 f32 q3 = quat.xyz[1];
259 f32 q4 = quat.xyz[2];
260
261 Common::Vec3f rad_gyro = {};
262 const f32 ax = -normal_accel.x;
263 const f32 ay = normal_accel.y;
264 const f32 az = -normal_accel.z;
265
266 // Estimated direction of gravity
267 const f32 vx = 2.0f * (q2 * q4 - q1 * q3);
268 const f32 vy = 2.0f * (q1 * q2 + q3 * q4);
269 const f32 vz = q1 * q1 - q2 * q2 - q3 * q3 + q4 * q4;
270
271 // Error is cross product between estimated direction and measured direction of gravity
272 const Common::Vec3f new_real_error = {
273 az * vx - ax * vz,
274 ay * vz - az * vy,
275 ax * vy - ay * vx,
276 };
277
278 derivative_error = new_real_error - real_error;
279 real_error = new_real_error;
280
281 rad_gyro += 10.0f * kp * real_error;
282 rad_gyro += 5.0f * ki * integral_error;
283 rad_gyro += 10.0f * kd * derivative_error;
284
285 const f32 gx = rad_gyro.y;
286 const f32 gy = rad_gyro.x;
287 const f32 gz = rad_gyro.z;
288
289 // Integrate rate of change of quaternion
290 const f32 pa = q2;
291 const f32 pb = q3;
292 const f32 pc = q4;
293 q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * sample_period);
294 q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * sample_period);
295 q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * sample_period);
296 q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * sample_period);
297
298 quat.w = q1;
299 quat.xyz[0] = q2;
300 quat.xyz[1] = q3;
301 quat.xyz[2] = q4;
302 quat = quat.Normalized();
303 }
304}
305} // namespace InputCommon