summaryrefslogtreecommitdiff
path: root/src/core/hle/kernel/scheduler.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/hle/kernel/scheduler.cpp')
-rw-r--r--src/core/hle/kernel/scheduler.cpp819
1 files changed, 0 insertions, 819 deletions
diff --git a/src/core/hle/kernel/scheduler.cpp b/src/core/hle/kernel/scheduler.cpp
deleted file mode 100644
index 5c63b0b4a..000000000
--- a/src/core/hle/kernel/scheduler.cpp
+++ /dev/null
@@ -1,819 +0,0 @@
1// Copyright 2018 yuzu emulator team
2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included.
4//
5// SelectThreads, Yield functions originally by TuxSH.
6// licensed under GPLv2 or later under exception provided by the author.
7
8#include <algorithm>
9#include <mutex>
10#include <set>
11#include <unordered_set>
12#include <utility>
13
14#include "common/assert.h"
15#include "common/bit_util.h"
16#include "common/fiber.h"
17#include "common/logging/log.h"
18#include "core/arm/arm_interface.h"
19#include "core/core.h"
20#include "core/core_timing.h"
21#include "core/cpu_manager.h"
22#include "core/hle/kernel/kernel.h"
23#include "core/hle/kernel/physical_core.h"
24#include "core/hle/kernel/process.h"
25#include "core/hle/kernel/scheduler.h"
26#include "core/hle/kernel/time_manager.h"
27
28namespace Kernel {
29
30GlobalScheduler::GlobalScheduler(KernelCore& kernel) : kernel{kernel} {}
31
32GlobalScheduler::~GlobalScheduler() = default;
33
34void GlobalScheduler::AddThread(std::shared_ptr<Thread> thread) {
35 std::scoped_lock lock{global_list_guard};
36 thread_list.push_back(std::move(thread));
37}
38
39void GlobalScheduler::RemoveThread(std::shared_ptr<Thread> thread) {
40 std::scoped_lock lock{global_list_guard};
41 thread_list.erase(std::remove(thread_list.begin(), thread_list.end(), thread),
42 thread_list.end());
43}
44
45u32 GlobalScheduler::SelectThreads() {
46 ASSERT(is_locked);
47 const auto update_thread = [](Thread* thread, Scheduler& sched) {
48 std::scoped_lock lock{sched.guard};
49 if (thread != sched.selected_thread_set.get()) {
50 if (thread == nullptr) {
51 ++sched.idle_selection_count;
52 }
53 sched.selected_thread_set = SharedFrom(thread);
54 }
55 const bool reschedule_pending =
56 sched.is_context_switch_pending || (sched.selected_thread_set != sched.current_thread);
57 sched.is_context_switch_pending = reschedule_pending;
58 std::atomic_thread_fence(std::memory_order_seq_cst);
59 return reschedule_pending;
60 };
61 if (!is_reselection_pending.load()) {
62 return 0;
63 }
64 std::array<Thread*, Core::Hardware::NUM_CPU_CORES> top_threads{};
65
66 u32 idle_cores{};
67
68 // Step 1: Get top thread in schedule queue.
69 for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
70 Thread* top_thread =
71 scheduled_queue[core].empty() ? nullptr : scheduled_queue[core].front();
72 if (top_thread != nullptr) {
73 // TODO(Blinkhawk): Implement Thread Pinning
74 } else {
75 idle_cores |= (1U << core);
76 }
77 top_threads[core] = top_thread;
78 }
79
80 while (idle_cores != 0) {
81 u32 core_id = Common::CountTrailingZeroes32(idle_cores);
82
83 if (!suggested_queue[core_id].empty()) {
84 std::array<s32, Core::Hardware::NUM_CPU_CORES> migration_candidates{};
85 std::size_t num_candidates = 0;
86 auto iter = suggested_queue[core_id].begin();
87 Thread* suggested = nullptr;
88 // Step 2: Try selecting a suggested thread.
89 while (iter != suggested_queue[core_id].end()) {
90 suggested = *iter;
91 iter++;
92 s32 suggested_core_id = suggested->GetProcessorID();
93 Thread* top_thread =
94 suggested_core_id >= 0 ? top_threads[suggested_core_id] : nullptr;
95 if (top_thread != suggested) {
96 if (top_thread != nullptr &&
97 top_thread->GetPriority() < THREADPRIO_MAX_CORE_MIGRATION) {
98 suggested = nullptr;
99 break;
100 // There's a too high thread to do core migration, cancel
101 }
102 TransferToCore(suggested->GetPriority(), static_cast<s32>(core_id), suggested);
103 break;
104 }
105 suggested = nullptr;
106 migration_candidates[num_candidates++] = suggested_core_id;
107 }
108 // Step 3: Select a suggested thread from another core
109 if (suggested == nullptr) {
110 for (std::size_t i = 0; i < num_candidates; i++) {
111 s32 candidate_core = migration_candidates[i];
112 suggested = top_threads[candidate_core];
113 auto it = scheduled_queue[candidate_core].begin();
114 it++;
115 Thread* next = it != scheduled_queue[candidate_core].end() ? *it : nullptr;
116 if (next != nullptr) {
117 TransferToCore(suggested->GetPriority(), static_cast<s32>(core_id),
118 suggested);
119 top_threads[candidate_core] = next;
120 break;
121 } else {
122 suggested = nullptr;
123 }
124 }
125 }
126 top_threads[core_id] = suggested;
127 }
128
129 idle_cores &= ~(1U << core_id);
130 }
131 u32 cores_needing_context_switch{};
132 for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
133 Scheduler& sched = kernel.Scheduler(core);
134 ASSERT(top_threads[core] == nullptr ||
135 static_cast<u32>(top_threads[core]->GetProcessorID()) == core);
136 if (update_thread(top_threads[core], sched)) {
137 cores_needing_context_switch |= (1U << core);
138 }
139 }
140 return cores_needing_context_switch;
141}
142
143bool GlobalScheduler::YieldThread(Thread* yielding_thread) {
144 ASSERT(is_locked);
145 // Note: caller should use critical section, etc.
146 if (!yielding_thread->IsRunnable()) {
147 // Normally this case shouldn't happen except for SetThreadActivity.
148 is_reselection_pending.store(true, std::memory_order_release);
149 return false;
150 }
151 const u32 core_id = static_cast<u32>(yielding_thread->GetProcessorID());
152 const u32 priority = yielding_thread->GetPriority();
153
154 // Yield the thread
155 Reschedule(priority, core_id, yielding_thread);
156 const Thread* const winner = scheduled_queue[core_id].front();
157 if (kernel.GetCurrentHostThreadID() != core_id) {
158 is_reselection_pending.store(true, std::memory_order_release);
159 }
160
161 return AskForReselectionOrMarkRedundant(yielding_thread, winner);
162}
163
164bool GlobalScheduler::YieldThreadAndBalanceLoad(Thread* yielding_thread) {
165 ASSERT(is_locked);
166 // Note: caller should check if !thread.IsSchedulerOperationRedundant and use critical section,
167 // etc.
168 if (!yielding_thread->IsRunnable()) {
169 // Normally this case shouldn't happen except for SetThreadActivity.
170 is_reselection_pending.store(true, std::memory_order_release);
171 return false;
172 }
173 const u32 core_id = static_cast<u32>(yielding_thread->GetProcessorID());
174 const u32 priority = yielding_thread->GetPriority();
175
176 // Yield the thread
177 Reschedule(priority, core_id, yielding_thread);
178
179 std::array<Thread*, Core::Hardware::NUM_CPU_CORES> current_threads;
180 for (std::size_t i = 0; i < current_threads.size(); i++) {
181 current_threads[i] = scheduled_queue[i].empty() ? nullptr : scheduled_queue[i].front();
182 }
183
184 Thread* next_thread = scheduled_queue[core_id].front(priority);
185 Thread* winner = nullptr;
186 for (auto& thread : suggested_queue[core_id]) {
187 const s32 source_core = thread->GetProcessorID();
188 if (source_core >= 0) {
189 if (current_threads[source_core] != nullptr) {
190 if (thread == current_threads[source_core] ||
191 current_threads[source_core]->GetPriority() < min_regular_priority) {
192 continue;
193 }
194 }
195 }
196 if (next_thread->GetLastRunningTicks() >= thread->GetLastRunningTicks() ||
197 next_thread->GetPriority() < thread->GetPriority()) {
198 if (thread->GetPriority() <= priority) {
199 winner = thread;
200 break;
201 }
202 }
203 }
204
205 if (winner != nullptr) {
206 if (winner != yielding_thread) {
207 TransferToCore(winner->GetPriority(), s32(core_id), winner);
208 }
209 } else {
210 winner = next_thread;
211 }
212
213 if (kernel.GetCurrentHostThreadID() != core_id) {
214 is_reselection_pending.store(true, std::memory_order_release);
215 }
216
217 return AskForReselectionOrMarkRedundant(yielding_thread, winner);
218}
219
220bool GlobalScheduler::YieldThreadAndWaitForLoadBalancing(Thread* yielding_thread) {
221 ASSERT(is_locked);
222 // Note: caller should check if !thread.IsSchedulerOperationRedundant and use critical section,
223 // etc.
224 if (!yielding_thread->IsRunnable()) {
225 // Normally this case shouldn't happen except for SetThreadActivity.
226 is_reselection_pending.store(true, std::memory_order_release);
227 return false;
228 }
229 Thread* winner = nullptr;
230 const u32 core_id = static_cast<u32>(yielding_thread->GetProcessorID());
231
232 // Remove the thread from its scheduled mlq, put it on the corresponding "suggested" one instead
233 TransferToCore(yielding_thread->GetPriority(), -1, yielding_thread);
234
235 // If the core is idle, perform load balancing, excluding the threads that have just used this
236 // function...
237 if (scheduled_queue[core_id].empty()) {
238 // Here, "current_threads" is calculated after the ""yield"", unlike yield -1
239 std::array<Thread*, Core::Hardware::NUM_CPU_CORES> current_threads;
240 for (std::size_t i = 0; i < current_threads.size(); i++) {
241 current_threads[i] = scheduled_queue[i].empty() ? nullptr : scheduled_queue[i].front();
242 }
243 for (auto& thread : suggested_queue[core_id]) {
244 const s32 source_core = thread->GetProcessorID();
245 if (source_core < 0 || thread == current_threads[source_core]) {
246 continue;
247 }
248 if (current_threads[source_core] == nullptr ||
249 current_threads[source_core]->GetPriority() >= min_regular_priority) {
250 winner = thread;
251 }
252 break;
253 }
254 if (winner != nullptr) {
255 if (winner != yielding_thread) {
256 TransferToCore(winner->GetPriority(), static_cast<s32>(core_id), winner);
257 }
258 } else {
259 winner = yielding_thread;
260 }
261 } else {
262 winner = scheduled_queue[core_id].front();
263 }
264
265 if (kernel.GetCurrentHostThreadID() != core_id) {
266 is_reselection_pending.store(true, std::memory_order_release);
267 }
268
269 return AskForReselectionOrMarkRedundant(yielding_thread, winner);
270}
271
272void GlobalScheduler::PreemptThreads() {
273 ASSERT(is_locked);
274 for (std::size_t core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
275 const u32 priority = preemption_priorities[core_id];
276
277 if (scheduled_queue[core_id].size(priority) > 0) {
278 if (scheduled_queue[core_id].size(priority) > 1) {
279 scheduled_queue[core_id].front(priority)->IncrementYieldCount();
280 }
281 scheduled_queue[core_id].yield(priority);
282 if (scheduled_queue[core_id].size(priority) > 1) {
283 scheduled_queue[core_id].front(priority)->IncrementYieldCount();
284 }
285 }
286
287 Thread* current_thread =
288 scheduled_queue[core_id].empty() ? nullptr : scheduled_queue[core_id].front();
289 Thread* winner = nullptr;
290 for (auto& thread : suggested_queue[core_id]) {
291 const s32 source_core = thread->GetProcessorID();
292 if (thread->GetPriority() != priority) {
293 continue;
294 }
295 if (source_core >= 0) {
296 Thread* next_thread = scheduled_queue[source_core].empty()
297 ? nullptr
298 : scheduled_queue[source_core].front();
299 if (next_thread != nullptr && next_thread->GetPriority() < 2) {
300 break;
301 }
302 if (next_thread == thread) {
303 continue;
304 }
305 }
306 if (current_thread != nullptr &&
307 current_thread->GetLastRunningTicks() >= thread->GetLastRunningTicks()) {
308 winner = thread;
309 break;
310 }
311 }
312
313 if (winner != nullptr) {
314 TransferToCore(winner->GetPriority(), s32(core_id), winner);
315 current_thread =
316 winner->GetPriority() <= current_thread->GetPriority() ? winner : current_thread;
317 }
318
319 if (current_thread != nullptr && current_thread->GetPriority() > priority) {
320 for (auto& thread : suggested_queue[core_id]) {
321 const s32 source_core = thread->GetProcessorID();
322 if (thread->GetPriority() < priority) {
323 continue;
324 }
325 if (source_core >= 0) {
326 Thread* next_thread = scheduled_queue[source_core].empty()
327 ? nullptr
328 : scheduled_queue[source_core].front();
329 if (next_thread != nullptr && next_thread->GetPriority() < 2) {
330 break;
331 }
332 if (next_thread == thread) {
333 continue;
334 }
335 }
336 if (current_thread != nullptr &&
337 current_thread->GetLastRunningTicks() >= thread->GetLastRunningTicks()) {
338 winner = thread;
339 break;
340 }
341 }
342
343 if (winner != nullptr) {
344 TransferToCore(winner->GetPriority(), s32(core_id), winner);
345 current_thread = winner;
346 }
347 }
348
349 is_reselection_pending.store(true, std::memory_order_release);
350 }
351}
352
353void GlobalScheduler::EnableInterruptAndSchedule(u32 cores_pending_reschedule,
354 Core::EmuThreadHandle global_thread) {
355 u32 current_core = global_thread.host_handle;
356 bool must_context_switch = global_thread.guest_handle != InvalidHandle &&
357 (current_core < Core::Hardware::NUM_CPU_CORES);
358 while (cores_pending_reschedule != 0) {
359 u32 core = Common::CountTrailingZeroes32(cores_pending_reschedule);
360 ASSERT(core < Core::Hardware::NUM_CPU_CORES);
361 if (!must_context_switch || core != current_core) {
362 auto& phys_core = kernel.PhysicalCore(core);
363 phys_core.Interrupt();
364 } else {
365 must_context_switch = true;
366 }
367 cores_pending_reschedule &= ~(1U << core);
368 }
369 if (must_context_switch) {
370 auto& core_scheduler = kernel.CurrentScheduler();
371 kernel.ExitSVCProfile();
372 core_scheduler.TryDoContextSwitch();
373 kernel.EnterSVCProfile();
374 }
375}
376
377void GlobalScheduler::Suggest(u32 priority, std::size_t core, Thread* thread) {
378 ASSERT(is_locked);
379 suggested_queue[core].add(thread, priority);
380}
381
382void GlobalScheduler::Unsuggest(u32 priority, std::size_t core, Thread* thread) {
383 ASSERT(is_locked);
384 suggested_queue[core].remove(thread, priority);
385}
386
387void GlobalScheduler::Schedule(u32 priority, std::size_t core, Thread* thread) {
388 ASSERT(is_locked);
389 ASSERT_MSG(thread->GetProcessorID() == s32(core), "Thread must be assigned to this core.");
390 scheduled_queue[core].add(thread, priority);
391}
392
393void GlobalScheduler::SchedulePrepend(u32 priority, std::size_t core, Thread* thread) {
394 ASSERT(is_locked);
395 ASSERT_MSG(thread->GetProcessorID() == s32(core), "Thread must be assigned to this core.");
396 scheduled_queue[core].add(thread, priority, false);
397}
398
399void GlobalScheduler::Reschedule(u32 priority, std::size_t core, Thread* thread) {
400 ASSERT(is_locked);
401 scheduled_queue[core].remove(thread, priority);
402 scheduled_queue[core].add(thread, priority);
403}
404
405void GlobalScheduler::Unschedule(u32 priority, std::size_t core, Thread* thread) {
406 ASSERT(is_locked);
407 scheduled_queue[core].remove(thread, priority);
408}
409
410void GlobalScheduler::TransferToCore(u32 priority, s32 destination_core, Thread* thread) {
411 ASSERT(is_locked);
412 const bool schedulable = thread->GetPriority() < THREADPRIO_COUNT;
413 const s32 source_core = thread->GetProcessorID();
414 if (source_core == destination_core || !schedulable) {
415 return;
416 }
417 thread->SetProcessorID(destination_core);
418 if (source_core >= 0) {
419 Unschedule(priority, static_cast<u32>(source_core), thread);
420 }
421 if (destination_core >= 0) {
422 Unsuggest(priority, static_cast<u32>(destination_core), thread);
423 Schedule(priority, static_cast<u32>(destination_core), thread);
424 }
425 if (source_core >= 0) {
426 Suggest(priority, static_cast<u32>(source_core), thread);
427 }
428}
429
430bool GlobalScheduler::AskForReselectionOrMarkRedundant(Thread* current_thread,
431 const Thread* winner) {
432 if (current_thread == winner) {
433 current_thread->IncrementYieldCount();
434 return true;
435 } else {
436 is_reselection_pending.store(true, std::memory_order_release);
437 return false;
438 }
439}
440
441void GlobalScheduler::AdjustSchedulingOnStatus(Thread* thread, u32 old_flags) {
442 if (old_flags == thread->scheduling_state) {
443 return;
444 }
445 ASSERT(is_locked);
446
447 if (old_flags == static_cast<u32>(ThreadSchedStatus::Runnable)) {
448 // In this case the thread was running, now it's pausing/exitting
449 if (thread->processor_id >= 0) {
450 Unschedule(thread->current_priority, static_cast<u32>(thread->processor_id), thread);
451 }
452
453 for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
454 if (core != static_cast<u32>(thread->processor_id) &&
455 ((thread->affinity_mask >> core) & 1) != 0) {
456 Unsuggest(thread->current_priority, core, thread);
457 }
458 }
459 } else if (thread->scheduling_state == static_cast<u32>(ThreadSchedStatus::Runnable)) {
460 // The thread is now set to running from being stopped
461 if (thread->processor_id >= 0) {
462 Schedule(thread->current_priority, static_cast<u32>(thread->processor_id), thread);
463 }
464
465 for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
466 if (core != static_cast<u32>(thread->processor_id) &&
467 ((thread->affinity_mask >> core) & 1) != 0) {
468 Suggest(thread->current_priority, core, thread);
469 }
470 }
471 }
472
473 SetReselectionPending();
474}
475
476void GlobalScheduler::AdjustSchedulingOnPriority(Thread* thread, u32 old_priority) {
477 if (thread->scheduling_state != static_cast<u32>(ThreadSchedStatus::Runnable)) {
478 return;
479 }
480 ASSERT(is_locked);
481 if (thread->processor_id >= 0) {
482 Unschedule(old_priority, static_cast<u32>(thread->processor_id), thread);
483 }
484
485 for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
486 if (core != static_cast<u32>(thread->processor_id) &&
487 ((thread->affinity_mask >> core) & 1) != 0) {
488 Unsuggest(old_priority, core, thread);
489 }
490 }
491
492 if (thread->processor_id >= 0) {
493 if (thread == kernel.CurrentScheduler().GetCurrentThread()) {
494 SchedulePrepend(thread->current_priority, static_cast<u32>(thread->processor_id),
495 thread);
496 } else {
497 Schedule(thread->current_priority, static_cast<u32>(thread->processor_id), thread);
498 }
499 }
500
501 for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
502 if (core != static_cast<u32>(thread->processor_id) &&
503 ((thread->affinity_mask >> core) & 1) != 0) {
504 Suggest(thread->current_priority, core, thread);
505 }
506 }
507 thread->IncrementYieldCount();
508 SetReselectionPending();
509}
510
511void GlobalScheduler::AdjustSchedulingOnAffinity(Thread* thread, u64 old_affinity_mask,
512 s32 old_core) {
513 if (thread->scheduling_state != static_cast<u32>(ThreadSchedStatus::Runnable) ||
514 thread->current_priority >= THREADPRIO_COUNT) {
515 return;
516 }
517 ASSERT(is_locked);
518
519 for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
520 if (((old_affinity_mask >> core) & 1) != 0) {
521 if (core == static_cast<u32>(old_core)) {
522 Unschedule(thread->current_priority, core, thread);
523 } else {
524 Unsuggest(thread->current_priority, core, thread);
525 }
526 }
527 }
528
529 for (u32 core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
530 if (((thread->affinity_mask >> core) & 1) != 0) {
531 if (core == static_cast<u32>(thread->processor_id)) {
532 Schedule(thread->current_priority, core, thread);
533 } else {
534 Suggest(thread->current_priority, core, thread);
535 }
536 }
537 }
538
539 thread->IncrementYieldCount();
540 SetReselectionPending();
541}
542
543void GlobalScheduler::Shutdown() {
544 for (std::size_t core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
545 scheduled_queue[core].clear();
546 suggested_queue[core].clear();
547 }
548 thread_list.clear();
549}
550
551void GlobalScheduler::Lock() {
552 Core::EmuThreadHandle current_thread = kernel.GetCurrentEmuThreadID();
553 ASSERT(!current_thread.IsInvalid());
554 if (current_thread == current_owner) {
555 ++scope_lock;
556 } else {
557 inner_lock.lock();
558 is_locked = true;
559 current_owner = current_thread;
560 ASSERT(current_owner != Core::EmuThreadHandle::InvalidHandle());
561 scope_lock = 1;
562 }
563}
564
565void GlobalScheduler::Unlock() {
566 if (--scope_lock != 0) {
567 ASSERT(scope_lock > 0);
568 return;
569 }
570 u32 cores_pending_reschedule = SelectThreads();
571 Core::EmuThreadHandle leaving_thread = current_owner;
572 current_owner = Core::EmuThreadHandle::InvalidHandle();
573 scope_lock = 1;
574 is_locked = false;
575 inner_lock.unlock();
576 EnableInterruptAndSchedule(cores_pending_reschedule, leaving_thread);
577}
578
579Scheduler::Scheduler(Core::System& system, std::size_t core_id) : system(system), core_id(core_id) {
580 switch_fiber = std::make_shared<Common::Fiber>(std::function<void(void*)>(OnSwitch), this);
581}
582
583Scheduler::~Scheduler() = default;
584
585bool Scheduler::HaveReadyThreads() const {
586 return system.GlobalScheduler().HaveReadyThreads(core_id);
587}
588
589Thread* Scheduler::GetCurrentThread() const {
590 if (current_thread) {
591 return current_thread.get();
592 }
593 return idle_thread.get();
594}
595
596Thread* Scheduler::GetSelectedThread() const {
597 return selected_thread.get();
598}
599
600u64 Scheduler::GetLastContextSwitchTicks() const {
601 return last_context_switch_time;
602}
603
604void Scheduler::TryDoContextSwitch() {
605 auto& phys_core = system.Kernel().CurrentPhysicalCore();
606 if (phys_core.IsInterrupted()) {
607 phys_core.ClearInterrupt();
608 }
609 guard.lock();
610 if (is_context_switch_pending) {
611 SwitchContext();
612 } else {
613 guard.unlock();
614 }
615}
616
617void Scheduler::OnThreadStart() {
618 SwitchContextStep2();
619}
620
621void Scheduler::Unload(Thread* thread) {
622 if (thread) {
623 thread->last_running_ticks = system.CoreTiming().GetCPUTicks();
624 thread->SetIsRunning(false);
625 if (thread->IsContinuousOnSVC() && !thread->IsHLEThread()) {
626 system.ArmInterface(core_id).ExceptionalExit();
627 thread->SetContinuousOnSVC(false);
628 }
629 if (!thread->IsHLEThread() && !thread->HasExited()) {
630 Core::ARM_Interface& cpu_core = system.ArmInterface(core_id);
631 cpu_core.SaveContext(thread->GetContext32());
632 cpu_core.SaveContext(thread->GetContext64());
633 // Save the TPIDR_EL0 system register in case it was modified.
634 thread->SetTPIDR_EL0(cpu_core.GetTPIDR_EL0());
635 cpu_core.ClearExclusiveState();
636 }
637 thread->context_guard.unlock();
638 }
639}
640
641void Scheduler::Unload() {
642 Unload(current_thread.get());
643}
644
645void Scheduler::Reload(Thread* thread) {
646 if (thread) {
647 ASSERT_MSG(thread->GetSchedulingStatus() == ThreadSchedStatus::Runnable,
648 "Thread must be runnable.");
649
650 // Cancel any outstanding wakeup events for this thread
651 thread->SetIsRunning(true);
652 thread->SetWasRunning(false);
653 thread->last_running_ticks = system.CoreTiming().GetCPUTicks();
654
655 auto* const thread_owner_process = thread->GetOwnerProcess();
656 if (thread_owner_process != nullptr) {
657 system.Kernel().MakeCurrentProcess(thread_owner_process);
658 }
659 if (!thread->IsHLEThread()) {
660 Core::ARM_Interface& cpu_core = system.ArmInterface(core_id);
661 cpu_core.LoadContext(thread->GetContext32());
662 cpu_core.LoadContext(thread->GetContext64());
663 cpu_core.SetTlsAddress(thread->GetTLSAddress());
664 cpu_core.SetTPIDR_EL0(thread->GetTPIDR_EL0());
665 cpu_core.ClearExclusiveState();
666 }
667 }
668}
669
670void Scheduler::Reload() {
671 Reload(current_thread.get());
672}
673
674void Scheduler::SwitchContextStep2() {
675 // Load context of new thread
676 Reload(selected_thread.get());
677
678 TryDoContextSwitch();
679}
680
681void Scheduler::SwitchContext() {
682 current_thread_prev = current_thread;
683 selected_thread = selected_thread_set;
684 Thread* previous_thread = current_thread_prev.get();
685 Thread* new_thread = selected_thread.get();
686 current_thread = selected_thread;
687
688 is_context_switch_pending = false;
689
690 if (new_thread == previous_thread) {
691 guard.unlock();
692 return;
693 }
694
695 Process* const previous_process = system.Kernel().CurrentProcess();
696
697 UpdateLastContextSwitchTime(previous_thread, previous_process);
698
699 // Save context for previous thread
700 Unload(previous_thread);
701
702 std::shared_ptr<Common::Fiber>* old_context;
703 if (previous_thread != nullptr) {
704 old_context = &previous_thread->GetHostContext();
705 } else {
706 old_context = &idle_thread->GetHostContext();
707 }
708 guard.unlock();
709
710 Common::Fiber::YieldTo(*old_context, switch_fiber);
711 /// When a thread wakes up, the scheduler may have changed to other in another core.
712 auto& next_scheduler = system.Kernel().CurrentScheduler();
713 next_scheduler.SwitchContextStep2();
714}
715
716void Scheduler::OnSwitch(void* this_scheduler) {
717 Scheduler* sched = static_cast<Scheduler*>(this_scheduler);
718 sched->SwitchToCurrent();
719}
720
721void Scheduler::SwitchToCurrent() {
722 while (true) {
723 {
724 std::scoped_lock lock{guard};
725 selected_thread = selected_thread_set;
726 current_thread = selected_thread;
727 is_context_switch_pending = false;
728 }
729 const auto is_switch_pending = [this] {
730 std::scoped_lock lock{guard};
731 return is_context_switch_pending;
732 };
733 do {
734 if (current_thread != nullptr && !current_thread->IsHLEThread()) {
735 current_thread->context_guard.lock();
736 if (!current_thread->IsRunnable()) {
737 current_thread->context_guard.unlock();
738 break;
739 }
740 if (static_cast<u32>(current_thread->GetProcessorID()) != core_id) {
741 current_thread->context_guard.unlock();
742 break;
743 }
744 }
745 std::shared_ptr<Common::Fiber>* next_context;
746 if (current_thread != nullptr) {
747 next_context = &current_thread->GetHostContext();
748 } else {
749 next_context = &idle_thread->GetHostContext();
750 }
751 Common::Fiber::YieldTo(switch_fiber, *next_context);
752 } while (!is_switch_pending());
753 }
754}
755
756void Scheduler::UpdateLastContextSwitchTime(Thread* thread, Process* process) {
757 const u64 prev_switch_ticks = last_context_switch_time;
758 const u64 most_recent_switch_ticks = system.CoreTiming().GetCPUTicks();
759 const u64 update_ticks = most_recent_switch_ticks - prev_switch_ticks;
760
761 if (thread != nullptr) {
762 thread->UpdateCPUTimeTicks(update_ticks);
763 }
764
765 if (process != nullptr) {
766 process->UpdateCPUTimeTicks(update_ticks);
767 }
768
769 last_context_switch_time = most_recent_switch_ticks;
770}
771
772void Scheduler::Initialize() {
773 std::string name = "Idle Thread Id:" + std::to_string(core_id);
774 std::function<void(void*)> init_func = Core::CpuManager::GetIdleThreadStartFunc();
775 void* init_func_parameter = system.GetCpuManager().GetStartFuncParamater();
776 ThreadType type = static_cast<ThreadType>(THREADTYPE_KERNEL | THREADTYPE_HLE | THREADTYPE_IDLE);
777 auto thread_res = Thread::Create(system, type, name, 0, 64, 0, static_cast<u32>(core_id), 0,
778 nullptr, std::move(init_func), init_func_parameter);
779 idle_thread = std::move(thread_res).Unwrap();
780}
781
782void Scheduler::Shutdown() {
783 current_thread = nullptr;
784 selected_thread = nullptr;
785}
786
787SchedulerLock::SchedulerLock(KernelCore& kernel) : kernel{kernel} {
788 kernel.GlobalScheduler().Lock();
789}
790
791SchedulerLock::~SchedulerLock() {
792 kernel.GlobalScheduler().Unlock();
793}
794
795SchedulerLockAndSleep::SchedulerLockAndSleep(KernelCore& kernel, Handle& event_handle,
796 Thread* time_task, s64 nanoseconds)
797 : SchedulerLock{kernel}, event_handle{event_handle}, time_task{time_task}, nanoseconds{
798 nanoseconds} {
799 event_handle = InvalidHandle;
800}
801
802SchedulerLockAndSleep::~SchedulerLockAndSleep() {
803 if (sleep_cancelled) {
804 return;
805 }
806 auto& time_manager = kernel.TimeManager();
807 time_manager.ScheduleTimeEvent(event_handle, time_task, nanoseconds);
808}
809
810void SchedulerLockAndSleep::Release() {
811 if (sleep_cancelled) {
812 return;
813 }
814 auto& time_manager = kernel.TimeManager();
815 time_manager.ScheduleTimeEvent(event_handle, time_task, nanoseconds);
816 sleep_cancelled = true;
817}
818
819} // namespace Kernel