diff options
Diffstat (limited to 'src/common/x64/emitter.cpp')
| -rw-r--r-- | src/common/x64/emitter.cpp | 1989 |
1 files changed, 1989 insertions, 0 deletions
diff --git a/src/common/x64/emitter.cpp b/src/common/x64/emitter.cpp new file mode 100644 index 000000000..4b79acd1f --- /dev/null +++ b/src/common/x64/emitter.cpp | |||
| @@ -0,0 +1,1989 @@ | |||
| 1 | // Copyright (C) 2003 Dolphin Project. | ||
| 2 | |||
| 3 | // This program is free software: you can redistribute it and/or modify | ||
| 4 | // it under the terms of the GNU General Public License as published by | ||
| 5 | // the Free Software Foundation, version 2.0 or later versions. | ||
| 6 | |||
| 7 | // This program is distributed in the hope that it will be useful, | ||
| 8 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 9 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 10 | // GNU General Public License 2.0 for more details. | ||
| 11 | |||
| 12 | // A copy of the GPL 2.0 should have been included with the program. | ||
| 13 | // If not, see http://www.gnu.org/licenses/ | ||
| 14 | |||
| 15 | // Official SVN repository and contact information can be found at | ||
| 16 | // http://code.google.com/p/dolphin-emu/ | ||
| 17 | |||
| 18 | #include <cstring> | ||
| 19 | |||
| 20 | #include "common/assert.h" | ||
| 21 | #include "common/logging/log.h" | ||
| 22 | #include "common/memory_util.h" | ||
| 23 | |||
| 24 | #include "abi.h" | ||
| 25 | #include "cpu_detect.h" | ||
| 26 | #include "emitter.h" | ||
| 27 | |||
| 28 | #define PRIx64 "llx" | ||
| 29 | |||
| 30 | // Minimize the diff against Dolphin | ||
| 31 | #define DYNA_REC JIT | ||
| 32 | |||
| 33 | namespace Gen | ||
| 34 | { | ||
| 35 | |||
| 36 | struct NormalOpDef | ||
| 37 | { | ||
| 38 | u8 toRm8, toRm32, fromRm8, fromRm32, imm8, imm32, simm8, eaximm8, eaximm32, ext; | ||
| 39 | }; | ||
| 40 | |||
| 41 | // 0xCC is code for invalid combination of immediates | ||
| 42 | static const NormalOpDef normalops[11] = | ||
| 43 | { | ||
| 44 | {0x00, 0x01, 0x02, 0x03, 0x80, 0x81, 0x83, 0x04, 0x05, 0}, //ADD | ||
| 45 | {0x10, 0x11, 0x12, 0x13, 0x80, 0x81, 0x83, 0x14, 0x15, 2}, //ADC | ||
| 46 | |||
| 47 | {0x28, 0x29, 0x2A, 0x2B, 0x80, 0x81, 0x83, 0x2C, 0x2D, 5}, //SUB | ||
| 48 | {0x18, 0x19, 0x1A, 0x1B, 0x80, 0x81, 0x83, 0x1C, 0x1D, 3}, //SBB | ||
| 49 | |||
| 50 | {0x20, 0x21, 0x22, 0x23, 0x80, 0x81, 0x83, 0x24, 0x25, 4}, //AND | ||
| 51 | {0x08, 0x09, 0x0A, 0x0B, 0x80, 0x81, 0x83, 0x0C, 0x0D, 1}, //OR | ||
| 52 | |||
| 53 | {0x30, 0x31, 0x32, 0x33, 0x80, 0x81, 0x83, 0x34, 0x35, 6}, //XOR | ||
| 54 | {0x88, 0x89, 0x8A, 0x8B, 0xC6, 0xC7, 0xCC, 0xCC, 0xCC, 0}, //MOV | ||
| 55 | |||
| 56 | {0x84, 0x85, 0x84, 0x85, 0xF6, 0xF7, 0xCC, 0xA8, 0xA9, 0}, //TEST (to == from) | ||
| 57 | {0x38, 0x39, 0x3A, 0x3B, 0x80, 0x81, 0x83, 0x3C, 0x3D, 7}, //CMP | ||
| 58 | |||
| 59 | {0x86, 0x87, 0x86, 0x87, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 7}, //XCHG | ||
| 60 | }; | ||
| 61 | |||
| 62 | enum NormalSSEOps | ||
| 63 | { | ||
| 64 | sseCMP = 0xC2, | ||
| 65 | sseADD = 0x58, //ADD | ||
| 66 | sseSUB = 0x5C, //SUB | ||
| 67 | sseAND = 0x54, //AND | ||
| 68 | sseANDN = 0x55, //ANDN | ||
| 69 | sseOR = 0x56, | ||
| 70 | sseXOR = 0x57, | ||
| 71 | sseMUL = 0x59, //MUL | ||
| 72 | sseDIV = 0x5E, //DIV | ||
| 73 | sseMIN = 0x5D, //MIN | ||
| 74 | sseMAX = 0x5F, //MAX | ||
| 75 | sseCOMIS = 0x2F, //COMIS | ||
| 76 | sseUCOMIS = 0x2E, //UCOMIS | ||
| 77 | sseSQRT = 0x51, //SQRT | ||
| 78 | sseRSQRT = 0x52, //RSQRT (NO DOUBLE PRECISION!!!) | ||
| 79 | sseRCP = 0x53, //RCP | ||
| 80 | sseMOVAPfromRM = 0x28, //MOVAP from RM | ||
| 81 | sseMOVAPtoRM = 0x29, //MOVAP to RM | ||
| 82 | sseMOVUPfromRM = 0x10, //MOVUP from RM | ||
| 83 | sseMOVUPtoRM = 0x11, //MOVUP to RM | ||
| 84 | sseMOVLPfromRM= 0x12, | ||
| 85 | sseMOVLPtoRM = 0x13, | ||
| 86 | sseMOVHPfromRM= 0x16, | ||
| 87 | sseMOVHPtoRM = 0x17, | ||
| 88 | sseMOVHLPS = 0x12, | ||
| 89 | sseMOVLHPS = 0x16, | ||
| 90 | sseMOVDQfromRM = 0x6F, | ||
| 91 | sseMOVDQtoRM = 0x7F, | ||
| 92 | sseMASKMOVDQU = 0xF7, | ||
| 93 | sseLDDQU = 0xF0, | ||
| 94 | sseSHUF = 0xC6, | ||
| 95 | sseMOVNTDQ = 0xE7, | ||
| 96 | sseMOVNTP = 0x2B, | ||
| 97 | sseHADD = 0x7C, | ||
| 98 | }; | ||
| 99 | |||
| 100 | |||
| 101 | void XEmitter::SetCodePtr(u8 *ptr) | ||
| 102 | { | ||
| 103 | code = ptr; | ||
| 104 | } | ||
| 105 | |||
| 106 | const u8 *XEmitter::GetCodePtr() const | ||
| 107 | { | ||
| 108 | return code; | ||
| 109 | } | ||
| 110 | |||
| 111 | u8 *XEmitter::GetWritableCodePtr() | ||
| 112 | { | ||
| 113 | return code; | ||
| 114 | } | ||
| 115 | |||
| 116 | void XEmitter::ReserveCodeSpace(int bytes) | ||
| 117 | { | ||
| 118 | for (int i = 0; i < bytes; i++) | ||
| 119 | *code++ = 0xCC; | ||
| 120 | } | ||
| 121 | |||
| 122 | const u8 *XEmitter::AlignCode4() | ||
| 123 | { | ||
| 124 | int c = int((u64)code & 3); | ||
| 125 | if (c) | ||
| 126 | ReserveCodeSpace(4-c); | ||
| 127 | return code; | ||
| 128 | } | ||
| 129 | |||
| 130 | const u8 *XEmitter::AlignCode16() | ||
| 131 | { | ||
| 132 | int c = int((u64)code & 15); | ||
| 133 | if (c) | ||
| 134 | ReserveCodeSpace(16-c); | ||
| 135 | return code; | ||
| 136 | } | ||
| 137 | |||
| 138 | const u8 *XEmitter::AlignCodePage() | ||
| 139 | { | ||
| 140 | int c = int((u64)code & 4095); | ||
| 141 | if (c) | ||
| 142 | ReserveCodeSpace(4096-c); | ||
| 143 | return code; | ||
| 144 | } | ||
| 145 | |||
| 146 | // This operation modifies flags; check to see the flags are locked. | ||
| 147 | // If the flags are locked, we should immediately and loudly fail before | ||
| 148 | // causing a subtle JIT bug. | ||
| 149 | void XEmitter::CheckFlags() | ||
| 150 | { | ||
| 151 | ASSERT_MSG(!flags_locked, "Attempt to modify flags while flags locked!"); | ||
| 152 | } | ||
| 153 | |||
| 154 | void XEmitter::WriteModRM(int mod, int reg, int rm) | ||
| 155 | { | ||
| 156 | Write8((u8)((mod << 6) | ((reg & 7) << 3) | (rm & 7))); | ||
| 157 | } | ||
| 158 | |||
| 159 | void XEmitter::WriteSIB(int scale, int index, int base) | ||
| 160 | { | ||
| 161 | Write8((u8)((scale << 6) | ((index & 7) << 3) | (base & 7))); | ||
| 162 | } | ||
| 163 | |||
| 164 | void OpArg::WriteRex(XEmitter *emit, int opBits, int bits, int customOp) const | ||
| 165 | { | ||
| 166 | if (customOp == -1) customOp = operandReg; | ||
| 167 | #ifdef ARCHITECTURE_x86_64 | ||
| 168 | u8 op = 0x40; | ||
| 169 | // REX.W (whether operation is a 64-bit operation) | ||
| 170 | if (opBits == 64) op |= 8; | ||
| 171 | // REX.R (whether ModR/M reg field refers to R8-R15. | ||
| 172 | if (customOp & 8) op |= 4; | ||
| 173 | // REX.X (whether ModR/M SIB index field refers to R8-R15) | ||
| 174 | if (indexReg & 8) op |= 2; | ||
| 175 | // REX.B (whether ModR/M rm or SIB base or opcode reg field refers to R8-R15) | ||
| 176 | if (offsetOrBaseReg & 8) op |= 1; | ||
| 177 | // Write REX if wr have REX bits to write, or if the operation accesses | ||
| 178 | // SIL, DIL, BPL, or SPL. | ||
| 179 | if (op != 0x40 || | ||
| 180 | (scale == SCALE_NONE && bits == 8 && (offsetOrBaseReg & 0x10c) == 4) || | ||
| 181 | (opBits == 8 && (customOp & 0x10c) == 4)) | ||
| 182 | { | ||
| 183 | emit->Write8(op); | ||
| 184 | // Check the operation doesn't access AH, BH, CH, or DH. | ||
| 185 | DEBUG_ASSERT((offsetOrBaseReg & 0x100) == 0); | ||
| 186 | DEBUG_ASSERT((customOp & 0x100) == 0); | ||
| 187 | } | ||
| 188 | #else | ||
| 189 | DEBUG_ASSERT(opBits != 64); | ||
| 190 | DEBUG_ASSERT((customOp & 8) == 0 || customOp == -1); | ||
| 191 | DEBUG_ASSERT((indexReg & 8) == 0); | ||
| 192 | DEBUG_ASSERT((offsetOrBaseReg & 8) == 0); | ||
| 193 | DEBUG_ASSERT(opBits != 8 || (customOp & 0x10c) != 4 || customOp == -1); | ||
| 194 | DEBUG_ASSERT(scale == SCALE_ATREG || bits != 8 || (offsetOrBaseReg & 0x10c) != 4); | ||
| 195 | #endif | ||
| 196 | } | ||
| 197 | |||
| 198 | void OpArg::WriteVex(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm, int W) const | ||
| 199 | { | ||
| 200 | int R = !(regOp1 & 8); | ||
| 201 | int X = !(indexReg & 8); | ||
| 202 | int B = !(offsetOrBaseReg & 8); | ||
| 203 | |||
| 204 | int vvvv = (regOp2 == X64Reg::INVALID_REG) ? 0xf : (regOp2 ^ 0xf); | ||
| 205 | |||
| 206 | // do we need any VEX fields that only appear in the three-byte form? | ||
| 207 | if (X == 1 && B == 1 && W == 0 && mmmmm == 1) | ||
| 208 | { | ||
| 209 | u8 RvvvvLpp = (R << 7) | (vvvv << 3) | (L << 1) | pp; | ||
| 210 | emit->Write8(0xC5); | ||
| 211 | emit->Write8(RvvvvLpp); | ||
| 212 | } | ||
| 213 | else | ||
| 214 | { | ||
| 215 | u8 RXBmmmmm = (R << 7) | (X << 6) | (B << 5) | mmmmm; | ||
| 216 | u8 WvvvvLpp = (W << 7) | (vvvv << 3) | (L << 1) | pp; | ||
| 217 | emit->Write8(0xC4); | ||
| 218 | emit->Write8(RXBmmmmm); | ||
| 219 | emit->Write8(WvvvvLpp); | ||
| 220 | } | ||
| 221 | } | ||
| 222 | |||
| 223 | void OpArg::WriteRest(XEmitter *emit, int extraBytes, X64Reg _operandReg, | ||
| 224 | bool warn_64bit_offset) const | ||
| 225 | { | ||
| 226 | if (_operandReg == INVALID_REG) | ||
| 227 | _operandReg = (X64Reg)this->operandReg; | ||
| 228 | int mod = 0; | ||
| 229 | int ireg = indexReg; | ||
| 230 | bool SIB = false; | ||
| 231 | int _offsetOrBaseReg = this->offsetOrBaseReg; | ||
| 232 | |||
| 233 | if (scale == SCALE_RIP) //Also, on 32-bit, just an immediate address | ||
| 234 | { | ||
| 235 | // Oh, RIP addressing. | ||
| 236 | _offsetOrBaseReg = 5; | ||
| 237 | emit->WriteModRM(0, _operandReg, _offsetOrBaseReg); | ||
| 238 | //TODO : add some checks | ||
| 239 | #ifdef ARCHITECTURE_x86_64 | ||
| 240 | u64 ripAddr = (u64)emit->GetCodePtr() + 4 + extraBytes; | ||
| 241 | s64 distance = (s64)offset - (s64)ripAddr; | ||
| 242 | ASSERT_MSG( | ||
| 243 | (distance < 0x80000000LL && | ||
| 244 | distance >= -0x80000000LL) || | ||
| 245 | !warn_64bit_offset, | ||
| 246 | "WriteRest: op out of range (0x%" PRIx64 " uses 0x%" PRIx64 ")", | ||
| 247 | ripAddr, offset); | ||
| 248 | s32 offs = (s32)distance; | ||
| 249 | emit->Write32((u32)offs); | ||
| 250 | #else | ||
| 251 | emit->Write32((u32)offset); | ||
| 252 | #endif | ||
| 253 | return; | ||
| 254 | } | ||
| 255 | |||
| 256 | if (scale == 0) | ||
| 257 | { | ||
| 258 | // Oh, no memory, Just a reg. | ||
| 259 | mod = 3; //11 | ||
| 260 | } | ||
| 261 | else if (scale >= 1) | ||
| 262 | { | ||
| 263 | //Ah good, no scaling. | ||
| 264 | if (scale == SCALE_ATREG && !((_offsetOrBaseReg & 7) == 4 || (_offsetOrBaseReg & 7) == 5)) | ||
| 265 | { | ||
| 266 | //Okay, we're good. No SIB necessary. | ||
| 267 | int ioff = (int)offset; | ||
| 268 | if (ioff == 0) | ||
| 269 | { | ||
| 270 | mod = 0; | ||
| 271 | } | ||
| 272 | else if (ioff<-128 || ioff>127) | ||
| 273 | { | ||
| 274 | mod = 2; //32-bit displacement | ||
| 275 | } | ||
| 276 | else | ||
| 277 | { | ||
| 278 | mod = 1; //8-bit displacement | ||
| 279 | } | ||
| 280 | } | ||
| 281 | else if (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8) | ||
| 282 | { | ||
| 283 | SIB = true; | ||
| 284 | mod = 0; | ||
| 285 | _offsetOrBaseReg = 5; | ||
| 286 | } | ||
| 287 | else //if (scale != SCALE_ATREG) | ||
| 288 | { | ||
| 289 | if ((_offsetOrBaseReg & 7) == 4) //this would occupy the SIB encoding :( | ||
| 290 | { | ||
| 291 | //So we have to fake it with SIB encoding :( | ||
| 292 | SIB = true; | ||
| 293 | } | ||
| 294 | |||
| 295 | if (scale >= SCALE_1 && scale < SCALE_ATREG) | ||
| 296 | { | ||
| 297 | SIB = true; | ||
| 298 | } | ||
| 299 | |||
| 300 | if (scale == SCALE_ATREG && ((_offsetOrBaseReg & 7) == 4)) | ||
| 301 | { | ||
| 302 | SIB = true; | ||
| 303 | ireg = _offsetOrBaseReg; | ||
| 304 | } | ||
| 305 | |||
| 306 | //Okay, we're fine. Just disp encoding. | ||
| 307 | //We need displacement. Which size? | ||
| 308 | int ioff = (int)(s64)offset; | ||
| 309 | if (ioff < -128 || ioff > 127) | ||
| 310 | { | ||
| 311 | mod = 2; //32-bit displacement | ||
| 312 | } | ||
| 313 | else | ||
| 314 | { | ||
| 315 | mod = 1; //8-bit displacement | ||
| 316 | } | ||
| 317 | } | ||
| 318 | } | ||
| 319 | |||
| 320 | // Okay. Time to do the actual writing | ||
| 321 | // ModRM byte: | ||
| 322 | int oreg = _offsetOrBaseReg; | ||
| 323 | if (SIB) | ||
| 324 | oreg = 4; | ||
| 325 | |||
| 326 | // TODO(ector): WTF is this if about? I don't remember writing it :-) | ||
| 327 | //if (RIP) | ||
| 328 | // oreg = 5; | ||
| 329 | |||
| 330 | emit->WriteModRM(mod, _operandReg&7, oreg&7); | ||
| 331 | |||
| 332 | if (SIB) | ||
| 333 | { | ||
| 334 | //SIB byte | ||
| 335 | int ss; | ||
| 336 | switch (scale) | ||
| 337 | { | ||
| 338 | case SCALE_NONE: _offsetOrBaseReg = 4; ss = 0; break; //RSP | ||
| 339 | case SCALE_1: ss = 0; break; | ||
| 340 | case SCALE_2: ss = 1; break; | ||
| 341 | case SCALE_4: ss = 2; break; | ||
| 342 | case SCALE_8: ss = 3; break; | ||
| 343 | case SCALE_NOBASE_2: ss = 1; break; | ||
| 344 | case SCALE_NOBASE_4: ss = 2; break; | ||
| 345 | case SCALE_NOBASE_8: ss = 3; break; | ||
| 346 | case SCALE_ATREG: ss = 0; break; | ||
| 347 | default: ASSERT_MSG(0, "Invalid scale for SIB byte"); ss = 0; break; | ||
| 348 | } | ||
| 349 | emit->Write8((u8)((ss << 6) | ((ireg&7)<<3) | (_offsetOrBaseReg&7))); | ||
| 350 | } | ||
| 351 | |||
| 352 | if (mod == 1) //8-bit disp | ||
| 353 | { | ||
| 354 | emit->Write8((u8)(s8)(s32)offset); | ||
| 355 | } | ||
| 356 | else if (mod == 2 || (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)) //32-bit disp | ||
| 357 | { | ||
| 358 | emit->Write32((u32)offset); | ||
| 359 | } | ||
| 360 | } | ||
| 361 | |||
| 362 | // W = operand extended width (1 if 64-bit) | ||
| 363 | // R = register# upper bit | ||
| 364 | // X = scale amnt upper bit | ||
| 365 | // B = base register# upper bit | ||
| 366 | void XEmitter::Rex(int w, int r, int x, int b) | ||
| 367 | { | ||
| 368 | w = w ? 1 : 0; | ||
| 369 | r = r ? 1 : 0; | ||
| 370 | x = x ? 1 : 0; | ||
| 371 | b = b ? 1 : 0; | ||
| 372 | u8 rx = (u8)(0x40 | (w << 3) | (r << 2) | (x << 1) | (b)); | ||
| 373 | if (rx != 0x40) | ||
| 374 | Write8(rx); | ||
| 375 | } | ||
| 376 | |||
| 377 | void XEmitter::JMP(const u8 *addr, bool force5Bytes) | ||
| 378 | { | ||
| 379 | u64 fn = (u64)addr; | ||
| 380 | if (!force5Bytes) | ||
| 381 | { | ||
| 382 | s64 distance = (s64)(fn - ((u64)code + 2)); | ||
| 383 | ASSERT_MSG(distance >= -0x80 && distance < 0x80, | ||
| 384 | "Jump target too far away, needs force5Bytes = true"); | ||
| 385 | //8 bits will do | ||
| 386 | Write8(0xEB); | ||
| 387 | Write8((u8)(s8)distance); | ||
| 388 | } | ||
| 389 | else | ||
| 390 | { | ||
| 391 | s64 distance = (s64)(fn - ((u64)code + 5)); | ||
| 392 | |||
| 393 | ASSERT_MSG( | ||
| 394 | distance >= -0x80000000LL && distance < 0x80000000LL, | ||
| 395 | "Jump target too far away, needs indirect register"); | ||
| 396 | Write8(0xE9); | ||
| 397 | Write32((u32)(s32)distance); | ||
| 398 | } | ||
| 399 | } | ||
| 400 | |||
| 401 | void XEmitter::JMPptr(const OpArg &arg2) | ||
| 402 | { | ||
| 403 | OpArg arg = arg2; | ||
| 404 | if (arg.IsImm()) ASSERT_MSG(0, "JMPptr - Imm argument"); | ||
| 405 | arg.operandReg = 4; | ||
| 406 | arg.WriteRex(this, 0, 0); | ||
| 407 | Write8(0xFF); | ||
| 408 | arg.WriteRest(this); | ||
| 409 | } | ||
| 410 | |||
| 411 | //Can be used to trap other processors, before overwriting their code | ||
| 412 | // not used in dolphin | ||
| 413 | void XEmitter::JMPself() | ||
| 414 | { | ||
| 415 | Write8(0xEB); | ||
| 416 | Write8(0xFE); | ||
| 417 | } | ||
| 418 | |||
| 419 | void XEmitter::CALLptr(OpArg arg) | ||
| 420 | { | ||
| 421 | if (arg.IsImm()) ASSERT_MSG(0, "CALLptr - Imm argument"); | ||
| 422 | arg.operandReg = 2; | ||
| 423 | arg.WriteRex(this, 0, 0); | ||
| 424 | Write8(0xFF); | ||
| 425 | arg.WriteRest(this); | ||
| 426 | } | ||
| 427 | |||
| 428 | void XEmitter::CALL(const void *fnptr) | ||
| 429 | { | ||
| 430 | u64 distance = u64(fnptr) - (u64(code) + 5); | ||
| 431 | ASSERT_MSG( | ||
| 432 | distance < 0x0000000080000000ULL || | ||
| 433 | distance >= 0xFFFFFFFF80000000ULL, | ||
| 434 | "CALL out of range (%p calls %p)", code, fnptr); | ||
| 435 | Write8(0xE8); | ||
| 436 | Write32(u32(distance)); | ||
| 437 | } | ||
| 438 | |||
| 439 | FixupBranch XEmitter::J(bool force5bytes) | ||
| 440 | { | ||
| 441 | FixupBranch branch; | ||
| 442 | branch.type = force5bytes ? 1 : 0; | ||
| 443 | branch.ptr = code + (force5bytes ? 5 : 2); | ||
| 444 | if (!force5bytes) | ||
| 445 | { | ||
| 446 | //8 bits will do | ||
| 447 | Write8(0xEB); | ||
| 448 | Write8(0); | ||
| 449 | } | ||
| 450 | else | ||
| 451 | { | ||
| 452 | Write8(0xE9); | ||
| 453 | Write32(0); | ||
| 454 | } | ||
| 455 | return branch; | ||
| 456 | } | ||
| 457 | |||
| 458 | FixupBranch XEmitter::J_CC(CCFlags conditionCode, bool force5bytes) | ||
| 459 | { | ||
| 460 | FixupBranch branch; | ||
| 461 | branch.type = force5bytes ? 1 : 0; | ||
| 462 | branch.ptr = code + (force5bytes ? 6 : 2); | ||
| 463 | if (!force5bytes) | ||
| 464 | { | ||
| 465 | //8 bits will do | ||
| 466 | Write8(0x70 + conditionCode); | ||
| 467 | Write8(0); | ||
| 468 | } | ||
| 469 | else | ||
| 470 | { | ||
| 471 | Write8(0x0F); | ||
| 472 | Write8(0x80 + conditionCode); | ||
| 473 | Write32(0); | ||
| 474 | } | ||
| 475 | return branch; | ||
| 476 | } | ||
| 477 | |||
| 478 | void XEmitter::J_CC(CCFlags conditionCode, const u8* addr, bool force5bytes) | ||
| 479 | { | ||
| 480 | u64 fn = (u64)addr; | ||
| 481 | s64 distance = (s64)(fn - ((u64)code + 2)); | ||
| 482 | if (distance < -0x80 || distance >= 0x80 || force5bytes) | ||
| 483 | { | ||
| 484 | distance = (s64)(fn - ((u64)code + 6)); | ||
| 485 | ASSERT_MSG( | ||
| 486 | distance >= -0x80000000LL && distance < 0x80000000LL, | ||
| 487 | "Jump target too far away, needs indirect register"); | ||
| 488 | Write8(0x0F); | ||
| 489 | Write8(0x80 + conditionCode); | ||
| 490 | Write32((u32)(s32)distance); | ||
| 491 | } | ||
| 492 | else | ||
| 493 | { | ||
| 494 | Write8(0x70 + conditionCode); | ||
| 495 | Write8((u8)(s8)distance); | ||
| 496 | } | ||
| 497 | } | ||
| 498 | |||
| 499 | void XEmitter::SetJumpTarget(const FixupBranch &branch) | ||
| 500 | { | ||
| 501 | if (branch.type == 0) | ||
| 502 | { | ||
| 503 | s64 distance = (s64)(code - branch.ptr); | ||
| 504 | ASSERT_MSG(distance >= -0x80 && distance < 0x80, "Jump target too far away, needs force5Bytes = true"); | ||
| 505 | branch.ptr[-1] = (u8)(s8)distance; | ||
| 506 | } | ||
| 507 | else if (branch.type == 1) | ||
| 508 | { | ||
| 509 | s64 distance = (s64)(code - branch.ptr); | ||
| 510 | ASSERT_MSG(distance >= -0x80000000LL && distance < 0x80000000LL, "Jump target too far away, needs indirect register"); | ||
| 511 | ((s32*)branch.ptr)[-1] = (s32)distance; | ||
| 512 | } | ||
| 513 | } | ||
| 514 | |||
| 515 | // INC/DEC considered harmful on newer CPUs due to partial flag set. | ||
| 516 | // Use ADD, SUB instead. | ||
| 517 | |||
| 518 | /* | ||
| 519 | void XEmitter::INC(int bits, OpArg arg) | ||
| 520 | { | ||
| 521 | if (arg.IsImm()) ASSERT_MSG(0, "INC - Imm argument"); | ||
| 522 | arg.operandReg = 0; | ||
| 523 | if (bits == 16) {Write8(0x66);} | ||
| 524 | arg.WriteRex(this, bits, bits); | ||
| 525 | Write8(bits == 8 ? 0xFE : 0xFF); | ||
| 526 | arg.WriteRest(this); | ||
| 527 | } | ||
| 528 | void XEmitter::DEC(int bits, OpArg arg) | ||
| 529 | { | ||
| 530 | if (arg.IsImm()) ASSERT_MSG(0, "DEC - Imm argument"); | ||
| 531 | arg.operandReg = 1; | ||
| 532 | if (bits == 16) {Write8(0x66);} | ||
| 533 | arg.WriteRex(this, bits, bits); | ||
| 534 | Write8(bits == 8 ? 0xFE : 0xFF); | ||
| 535 | arg.WriteRest(this); | ||
| 536 | } | ||
| 537 | */ | ||
| 538 | |||
| 539 | //Single byte opcodes | ||
| 540 | //There is no PUSHAD/POPAD in 64-bit mode. | ||
| 541 | void XEmitter::INT3() {Write8(0xCC);} | ||
| 542 | void XEmitter::RET() {Write8(0xC3);} | ||
| 543 | void XEmitter::RET_FAST() {Write8(0xF3); Write8(0xC3);} //two-byte return (rep ret) - recommended by AMD optimization manual for the case of jumping to a ret | ||
| 544 | |||
| 545 | // The first sign of decadence: optimized NOPs. | ||
| 546 | void XEmitter::NOP(size_t size) | ||
| 547 | { | ||
| 548 | DEBUG_ASSERT((int)size > 0); | ||
| 549 | while (true) | ||
| 550 | { | ||
| 551 | switch (size) | ||
| 552 | { | ||
| 553 | case 0: | ||
| 554 | return; | ||
| 555 | case 1: | ||
| 556 | Write8(0x90); | ||
| 557 | return; | ||
| 558 | case 2: | ||
| 559 | Write8(0x66); Write8(0x90); | ||
| 560 | return; | ||
| 561 | case 3: | ||
| 562 | Write8(0x0F); Write8(0x1F); Write8(0x00); | ||
| 563 | return; | ||
| 564 | case 4: | ||
| 565 | Write8(0x0F); Write8(0x1F); Write8(0x40); Write8(0x00); | ||
| 566 | return; | ||
| 567 | case 5: | ||
| 568 | Write8(0x0F); Write8(0x1F); Write8(0x44); Write8(0x00); | ||
| 569 | Write8(0x00); | ||
| 570 | return; | ||
| 571 | case 6: | ||
| 572 | Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x44); | ||
| 573 | Write8(0x00); Write8(0x00); | ||
| 574 | return; | ||
| 575 | case 7: | ||
| 576 | Write8(0x0F); Write8(0x1F); Write8(0x80); Write8(0x00); | ||
| 577 | Write8(0x00); Write8(0x00); Write8(0x00); | ||
| 578 | return; | ||
| 579 | case 8: | ||
| 580 | Write8(0x0F); Write8(0x1F); Write8(0x84); Write8(0x00); | ||
| 581 | Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); | ||
| 582 | return; | ||
| 583 | case 9: | ||
| 584 | Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x84); | ||
| 585 | Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); | ||
| 586 | Write8(0x00); | ||
| 587 | return; | ||
| 588 | case 10: | ||
| 589 | Write8(0x66); Write8(0x66); Write8(0x0F); Write8(0x1F); | ||
| 590 | Write8(0x84); Write8(0x00); Write8(0x00); Write8(0x00); | ||
| 591 | Write8(0x00); Write8(0x00); | ||
| 592 | return; | ||
| 593 | default: | ||
| 594 | // Even though x86 instructions are allowed to be up to 15 bytes long, | ||
| 595 | // AMD advises against using NOPs longer than 11 bytes because they | ||
| 596 | // carry a performance penalty on CPUs older than AMD family 16h. | ||
| 597 | Write8(0x66); Write8(0x66); Write8(0x66); Write8(0x0F); | ||
| 598 | Write8(0x1F); Write8(0x84); Write8(0x00); Write8(0x00); | ||
| 599 | Write8(0x00); Write8(0x00); Write8(0x00); | ||
| 600 | size -= 11; | ||
| 601 | continue; | ||
| 602 | } | ||
| 603 | } | ||
| 604 | } | ||
| 605 | |||
| 606 | void XEmitter::PAUSE() {Write8(0xF3); NOP();} //use in tight spinloops for energy saving on some cpu | ||
| 607 | void XEmitter::CLC() {CheckFlags(); Write8(0xF8);} //clear carry | ||
| 608 | void XEmitter::CMC() {CheckFlags(); Write8(0xF5);} //flip carry | ||
| 609 | void XEmitter::STC() {CheckFlags(); Write8(0xF9);} //set carry | ||
| 610 | |||
| 611 | //TODO: xchg ah, al ??? | ||
| 612 | void XEmitter::XCHG_AHAL() | ||
| 613 | { | ||
| 614 | Write8(0x86); | ||
| 615 | Write8(0xe0); | ||
| 616 | // alt. 86 c4 | ||
| 617 | } | ||
| 618 | |||
| 619 | //These two can not be executed on early Intel 64-bit CPU:s, only on AMD! | ||
| 620 | void XEmitter::LAHF() {Write8(0x9F);} | ||
| 621 | void XEmitter::SAHF() {CheckFlags(); Write8(0x9E);} | ||
| 622 | |||
| 623 | void XEmitter::PUSHF() {Write8(0x9C);} | ||
| 624 | void XEmitter::POPF() {CheckFlags(); Write8(0x9D);} | ||
| 625 | |||
| 626 | void XEmitter::LFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xE8);} | ||
| 627 | void XEmitter::MFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xF0);} | ||
| 628 | void XEmitter::SFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xF8);} | ||
| 629 | |||
| 630 | void XEmitter::WriteSimple1Byte(int bits, u8 byte, X64Reg reg) | ||
| 631 | { | ||
| 632 | if (bits == 16) | ||
| 633 | Write8(0x66); | ||
| 634 | Rex(bits == 64, 0, 0, (int)reg >> 3); | ||
| 635 | Write8(byte + ((int)reg & 7)); | ||
| 636 | } | ||
| 637 | |||
| 638 | void XEmitter::WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg) | ||
| 639 | { | ||
| 640 | if (bits == 16) | ||
| 641 | Write8(0x66); | ||
| 642 | Rex(bits==64, 0, 0, (int)reg >> 3); | ||
| 643 | Write8(byte1); | ||
| 644 | Write8(byte2 + ((int)reg & 7)); | ||
| 645 | } | ||
| 646 | |||
| 647 | void XEmitter::CWD(int bits) | ||
| 648 | { | ||
| 649 | if (bits == 16) | ||
| 650 | Write8(0x66); | ||
| 651 | Rex(bits == 64, 0, 0, 0); | ||
| 652 | Write8(0x99); | ||
| 653 | } | ||
| 654 | |||
| 655 | void XEmitter::CBW(int bits) | ||
| 656 | { | ||
| 657 | if (bits == 8) | ||
| 658 | Write8(0x66); | ||
| 659 | Rex(bits == 32, 0, 0, 0); | ||
| 660 | Write8(0x98); | ||
| 661 | } | ||
| 662 | |||
| 663 | //Simple opcodes | ||
| 664 | |||
| 665 | |||
| 666 | //push/pop do not need wide to be 64-bit | ||
| 667 | void XEmitter::PUSH(X64Reg reg) {WriteSimple1Byte(32, 0x50, reg);} | ||
| 668 | void XEmitter::POP(X64Reg reg) {WriteSimple1Byte(32, 0x58, reg);} | ||
| 669 | |||
| 670 | void XEmitter::PUSH(int bits, const OpArg ®) | ||
| 671 | { | ||
| 672 | if (reg.IsSimpleReg()) | ||
| 673 | PUSH(reg.GetSimpleReg()); | ||
| 674 | else if (reg.IsImm()) | ||
| 675 | { | ||
| 676 | switch (reg.GetImmBits()) | ||
| 677 | { | ||
| 678 | case 8: | ||
| 679 | Write8(0x6A); | ||
| 680 | Write8((u8)(s8)reg.offset); | ||
| 681 | break; | ||
| 682 | case 16: | ||
| 683 | Write8(0x66); | ||
| 684 | Write8(0x68); | ||
| 685 | Write16((u16)(s16)(s32)reg.offset); | ||
| 686 | break; | ||
| 687 | case 32: | ||
| 688 | Write8(0x68); | ||
| 689 | Write32((u32)reg.offset); | ||
| 690 | break; | ||
| 691 | default: | ||
| 692 | ASSERT_MSG(0, "PUSH - Bad imm bits"); | ||
| 693 | break; | ||
| 694 | } | ||
| 695 | } | ||
| 696 | else | ||
| 697 | { | ||
| 698 | if (bits == 16) | ||
| 699 | Write8(0x66); | ||
| 700 | reg.WriteRex(this, bits, bits); | ||
| 701 | Write8(0xFF); | ||
| 702 | reg.WriteRest(this, 0, (X64Reg)6); | ||
| 703 | } | ||
| 704 | } | ||
| 705 | |||
| 706 | void XEmitter::POP(int /*bits*/, const OpArg ®) | ||
| 707 | { | ||
| 708 | if (reg.IsSimpleReg()) | ||
| 709 | POP(reg.GetSimpleReg()); | ||
| 710 | else | ||
| 711 | ASSERT_MSG(0, "POP - Unsupported encoding"); | ||
| 712 | } | ||
| 713 | |||
| 714 | void XEmitter::BSWAP(int bits, X64Reg reg) | ||
| 715 | { | ||
| 716 | if (bits >= 32) | ||
| 717 | { | ||
| 718 | WriteSimple2Byte(bits, 0x0F, 0xC8, reg); | ||
| 719 | } | ||
| 720 | else if (bits == 16) | ||
| 721 | { | ||
| 722 | ROL(16, R(reg), Imm8(8)); | ||
| 723 | } | ||
| 724 | else if (bits == 8) | ||
| 725 | { | ||
| 726 | // Do nothing - can't bswap a single byte... | ||
| 727 | } | ||
| 728 | else | ||
| 729 | { | ||
| 730 | ASSERT_MSG(0, "BSWAP - Wrong number of bits"); | ||
| 731 | } | ||
| 732 | } | ||
| 733 | |||
| 734 | // Undefined opcode - reserved | ||
| 735 | // If we ever need a way to always cause a non-breakpoint hard exception... | ||
| 736 | void XEmitter::UD2() | ||
| 737 | { | ||
| 738 | Write8(0x0F); | ||
| 739 | Write8(0x0B); | ||
| 740 | } | ||
| 741 | |||
| 742 | void XEmitter::PREFETCH(PrefetchLevel level, OpArg arg) | ||
| 743 | { | ||
| 744 | ASSERT_MSG(!arg.IsImm(), "PREFETCH - Imm argument"); | ||
| 745 | arg.operandReg = (u8)level; | ||
| 746 | arg.WriteRex(this, 0, 0); | ||
| 747 | Write8(0x0F); | ||
| 748 | Write8(0x18); | ||
| 749 | arg.WriteRest(this); | ||
| 750 | } | ||
| 751 | |||
| 752 | void XEmitter::SETcc(CCFlags flag, OpArg dest) | ||
| 753 | { | ||
| 754 | ASSERT_MSG(!dest.IsImm(), "SETcc - Imm argument"); | ||
| 755 | dest.operandReg = 0; | ||
| 756 | dest.WriteRex(this, 0, 8); | ||
| 757 | Write8(0x0F); | ||
| 758 | Write8(0x90 + (u8)flag); | ||
| 759 | dest.WriteRest(this); | ||
| 760 | } | ||
| 761 | |||
| 762 | void XEmitter::CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag) | ||
| 763 | { | ||
| 764 | ASSERT_MSG(!src.IsImm(), "CMOVcc - Imm argument"); | ||
| 765 | ASSERT_MSG(bits != 8, "CMOVcc - 8 bits unsupported"); | ||
| 766 | if (bits == 16) | ||
| 767 | Write8(0x66); | ||
| 768 | src.operandReg = dest; | ||
| 769 | src.WriteRex(this, bits, bits); | ||
| 770 | Write8(0x0F); | ||
| 771 | Write8(0x40 + (u8)flag); | ||
| 772 | src.WriteRest(this); | ||
| 773 | } | ||
| 774 | |||
| 775 | void XEmitter::WriteMulDivType(int bits, OpArg src, int ext) | ||
| 776 | { | ||
| 777 | ASSERT_MSG(!src.IsImm(), "WriteMulDivType - Imm argument"); | ||
| 778 | CheckFlags(); | ||
| 779 | src.operandReg = ext; | ||
| 780 | if (bits == 16) | ||
| 781 | Write8(0x66); | ||
| 782 | src.WriteRex(this, bits, bits, 0); | ||
| 783 | if (bits == 8) | ||
| 784 | { | ||
| 785 | Write8(0xF6); | ||
| 786 | } | ||
| 787 | else | ||
| 788 | { | ||
| 789 | Write8(0xF7); | ||
| 790 | } | ||
| 791 | src.WriteRest(this); | ||
| 792 | } | ||
| 793 | |||
| 794 | void XEmitter::MUL(int bits, OpArg src) {WriteMulDivType(bits, src, 4);} | ||
| 795 | void XEmitter::DIV(int bits, OpArg src) {WriteMulDivType(bits, src, 6);} | ||
| 796 | void XEmitter::IMUL(int bits, OpArg src) {WriteMulDivType(bits, src, 5);} | ||
| 797 | void XEmitter::IDIV(int bits, OpArg src) {WriteMulDivType(bits, src, 7);} | ||
| 798 | void XEmitter::NEG(int bits, OpArg src) {WriteMulDivType(bits, src, 3);} | ||
| 799 | void XEmitter::NOT(int bits, OpArg src) {WriteMulDivType(bits, src, 2);} | ||
| 800 | |||
| 801 | void XEmitter::WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep) | ||
| 802 | { | ||
| 803 | ASSERT_MSG(!src.IsImm(), "WriteBitSearchType - Imm argument"); | ||
| 804 | CheckFlags(); | ||
| 805 | src.operandReg = (u8)dest; | ||
| 806 | if (bits == 16) | ||
| 807 | Write8(0x66); | ||
| 808 | if (rep) | ||
| 809 | Write8(0xF3); | ||
| 810 | src.WriteRex(this, bits, bits); | ||
| 811 | Write8(0x0F); | ||
| 812 | Write8(byte2); | ||
| 813 | src.WriteRest(this); | ||
| 814 | } | ||
| 815 | |||
| 816 | void XEmitter::MOVNTI(int bits, OpArg dest, X64Reg src) | ||
| 817 | { | ||
| 818 | if (bits <= 16) | ||
| 819 | ASSERT_MSG(0, "MOVNTI - bits<=16"); | ||
| 820 | WriteBitSearchType(bits, src, dest, 0xC3); | ||
| 821 | } | ||
| 822 | |||
| 823 | void XEmitter::BSF(int bits, X64Reg dest, OpArg src) {WriteBitSearchType(bits,dest,src,0xBC);} //bottom bit to top bit | ||
| 824 | void XEmitter::BSR(int bits, X64Reg dest, OpArg src) {WriteBitSearchType(bits,dest,src,0xBD);} //top bit to bottom bit | ||
| 825 | |||
| 826 | void XEmitter::TZCNT(int bits, X64Reg dest, OpArg src) | ||
| 827 | { | ||
| 828 | CheckFlags(); | ||
| 829 | if (!Common::GetCPUCaps().bmi1) | ||
| 830 | ASSERT_MSG(0, "Trying to use BMI1 on a system that doesn't support it. Bad programmer."); | ||
| 831 | WriteBitSearchType(bits, dest, src, 0xBC, true); | ||
| 832 | } | ||
| 833 | void XEmitter::LZCNT(int bits, X64Reg dest, OpArg src) | ||
| 834 | { | ||
| 835 | CheckFlags(); | ||
| 836 | if (!Common::GetCPUCaps().lzcnt) | ||
| 837 | ASSERT_MSG(0, "Trying to use LZCNT on a system that doesn't support it. Bad programmer."); | ||
| 838 | WriteBitSearchType(bits, dest, src, 0xBD, true); | ||
| 839 | } | ||
| 840 | |||
| 841 | void XEmitter::MOVSX(int dbits, int sbits, X64Reg dest, OpArg src) | ||
| 842 | { | ||
| 843 | ASSERT_MSG(!src.IsImm(), "MOVSX - Imm argument"); | ||
| 844 | if (dbits == sbits) | ||
| 845 | { | ||
| 846 | MOV(dbits, R(dest), src); | ||
| 847 | return; | ||
| 848 | } | ||
| 849 | src.operandReg = (u8)dest; | ||
| 850 | if (dbits == 16) | ||
| 851 | Write8(0x66); | ||
| 852 | src.WriteRex(this, dbits, sbits); | ||
| 853 | if (sbits == 8) | ||
| 854 | { | ||
| 855 | Write8(0x0F); | ||
| 856 | Write8(0xBE); | ||
| 857 | } | ||
| 858 | else if (sbits == 16) | ||
| 859 | { | ||
| 860 | Write8(0x0F); | ||
| 861 | Write8(0xBF); | ||
| 862 | } | ||
| 863 | else if (sbits == 32 && dbits == 64) | ||
| 864 | { | ||
| 865 | Write8(0x63); | ||
| 866 | } | ||
| 867 | else | ||
| 868 | { | ||
| 869 | Crash(); | ||
| 870 | } | ||
| 871 | src.WriteRest(this); | ||
| 872 | } | ||
| 873 | |||
| 874 | void XEmitter::MOVZX(int dbits, int sbits, X64Reg dest, OpArg src) | ||
| 875 | { | ||
| 876 | ASSERT_MSG(!src.IsImm(), "MOVZX - Imm argument"); | ||
| 877 | if (dbits == sbits) | ||
| 878 | { | ||
| 879 | MOV(dbits, R(dest), src); | ||
| 880 | return; | ||
| 881 | } | ||
| 882 | src.operandReg = (u8)dest; | ||
| 883 | if (dbits == 16) | ||
| 884 | Write8(0x66); | ||
| 885 | //the 32bit result is automatically zero extended to 64bit | ||
| 886 | src.WriteRex(this, dbits == 64 ? 32 : dbits, sbits); | ||
| 887 | if (sbits == 8) | ||
| 888 | { | ||
| 889 | Write8(0x0F); | ||
| 890 | Write8(0xB6); | ||
| 891 | } | ||
| 892 | else if (sbits == 16) | ||
| 893 | { | ||
| 894 | Write8(0x0F); | ||
| 895 | Write8(0xB7); | ||
| 896 | } | ||
| 897 | else if (sbits == 32 && dbits == 64) | ||
| 898 | { | ||
| 899 | Write8(0x8B); | ||
| 900 | } | ||
| 901 | else | ||
| 902 | { | ||
| 903 | ASSERT_MSG(0, "MOVZX - Invalid size"); | ||
| 904 | } | ||
| 905 | src.WriteRest(this); | ||
| 906 | } | ||
| 907 | |||
| 908 | void XEmitter::MOVBE(int bits, const OpArg& dest, const OpArg& src) | ||
| 909 | { | ||
| 910 | ASSERT_MSG(Common::GetCPUCaps().movbe, "Generating MOVBE on a system that does not support it."); | ||
| 911 | if (bits == 8) | ||
| 912 | { | ||
| 913 | MOV(bits, dest, src); | ||
| 914 | return; | ||
| 915 | } | ||
| 916 | |||
| 917 | if (bits == 16) | ||
| 918 | Write8(0x66); | ||
| 919 | |||
| 920 | if (dest.IsSimpleReg()) | ||
| 921 | { | ||
| 922 | ASSERT_MSG(!src.IsSimpleReg() && !src.IsImm(), "MOVBE: Loading from !mem"); | ||
| 923 | src.WriteRex(this, bits, bits, dest.GetSimpleReg()); | ||
| 924 | Write8(0x0F); Write8(0x38); Write8(0xF0); | ||
| 925 | src.WriteRest(this, 0, dest.GetSimpleReg()); | ||
| 926 | } | ||
| 927 | else if (src.IsSimpleReg()) | ||
| 928 | { | ||
| 929 | ASSERT_MSG(!dest.IsSimpleReg() && !dest.IsImm(), "MOVBE: Storing to !mem"); | ||
| 930 | dest.WriteRex(this, bits, bits, src.GetSimpleReg()); | ||
| 931 | Write8(0x0F); Write8(0x38); Write8(0xF1); | ||
| 932 | dest.WriteRest(this, 0, src.GetSimpleReg()); | ||
| 933 | } | ||
| 934 | else | ||
| 935 | { | ||
| 936 | ASSERT_MSG(0, "MOVBE: Not loading or storing to mem"); | ||
| 937 | } | ||
| 938 | } | ||
| 939 | |||
| 940 | |||
| 941 | void XEmitter::LEA(int bits, X64Reg dest, OpArg src) | ||
| 942 | { | ||
| 943 | ASSERT_MSG(!src.IsImm(), "LEA - Imm argument"); | ||
| 944 | src.operandReg = (u8)dest; | ||
| 945 | if (bits == 16) | ||
| 946 | Write8(0x66); //TODO: performance warning | ||
| 947 | src.WriteRex(this, bits, bits); | ||
| 948 | Write8(0x8D); | ||
| 949 | src.WriteRest(this, 0, INVALID_REG, bits == 64); | ||
| 950 | } | ||
| 951 | |||
| 952 | //shift can be either imm8 or cl | ||
| 953 | void XEmitter::WriteShift(int bits, OpArg dest, OpArg &shift, int ext) | ||
| 954 | { | ||
| 955 | CheckFlags(); | ||
| 956 | bool writeImm = false; | ||
| 957 | if (dest.IsImm()) | ||
| 958 | { | ||
| 959 | ASSERT_MSG(0, "WriteShift - can't shift imms"); | ||
| 960 | } | ||
| 961 | if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8)) | ||
| 962 | { | ||
| 963 | ASSERT_MSG(0, "WriteShift - illegal argument"); | ||
| 964 | } | ||
| 965 | dest.operandReg = ext; | ||
| 966 | if (bits == 16) | ||
| 967 | Write8(0x66); | ||
| 968 | dest.WriteRex(this, bits, bits, 0); | ||
| 969 | if (shift.GetImmBits() == 8) | ||
| 970 | { | ||
| 971 | //ok an imm | ||
| 972 | u8 imm = (u8)shift.offset; | ||
| 973 | if (imm == 1) | ||
| 974 | { | ||
| 975 | Write8(bits == 8 ? 0xD0 : 0xD1); | ||
| 976 | } | ||
| 977 | else | ||
| 978 | { | ||
| 979 | writeImm = true; | ||
| 980 | Write8(bits == 8 ? 0xC0 : 0xC1); | ||
| 981 | } | ||
| 982 | } | ||
| 983 | else | ||
| 984 | { | ||
| 985 | Write8(bits == 8 ? 0xD2 : 0xD3); | ||
| 986 | } | ||
| 987 | dest.WriteRest(this, writeImm ? 1 : 0); | ||
| 988 | if (writeImm) | ||
| 989 | Write8((u8)shift.offset); | ||
| 990 | } | ||
| 991 | |||
| 992 | // large rotates and shift are slower on intel than amd | ||
| 993 | // intel likes to rotate by 1, and the op is smaller too | ||
| 994 | void XEmitter::ROL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 0);} | ||
| 995 | void XEmitter::ROR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 1);} | ||
| 996 | void XEmitter::RCL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 2);} | ||
| 997 | void XEmitter::RCR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 3);} | ||
| 998 | void XEmitter::SHL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 4);} | ||
| 999 | void XEmitter::SHR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 5);} | ||
| 1000 | void XEmitter::SAR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 7);} | ||
| 1001 | |||
| 1002 | // index can be either imm8 or register, don't use memory destination because it's slow | ||
| 1003 | void XEmitter::WriteBitTest(int bits, OpArg &dest, OpArg &index, int ext) | ||
| 1004 | { | ||
| 1005 | CheckFlags(); | ||
| 1006 | if (dest.IsImm()) | ||
| 1007 | { | ||
| 1008 | ASSERT_MSG(0, "WriteBitTest - can't test imms"); | ||
| 1009 | } | ||
| 1010 | if ((index.IsImm() && index.GetImmBits() != 8)) | ||
| 1011 | { | ||
| 1012 | ASSERT_MSG(0, "WriteBitTest - illegal argument"); | ||
| 1013 | } | ||
| 1014 | if (bits == 16) | ||
| 1015 | Write8(0x66); | ||
| 1016 | if (index.IsImm()) | ||
| 1017 | { | ||
| 1018 | dest.WriteRex(this, bits, bits); | ||
| 1019 | Write8(0x0F); Write8(0xBA); | ||
| 1020 | dest.WriteRest(this, 1, (X64Reg)ext); | ||
| 1021 | Write8((u8)index.offset); | ||
| 1022 | } | ||
| 1023 | else | ||
| 1024 | { | ||
| 1025 | X64Reg operand = index.GetSimpleReg(); | ||
| 1026 | dest.WriteRex(this, bits, bits, operand); | ||
| 1027 | Write8(0x0F); Write8(0x83 + 8*ext); | ||
| 1028 | dest.WriteRest(this, 1, operand); | ||
| 1029 | } | ||
| 1030 | } | ||
| 1031 | |||
| 1032 | void XEmitter::BT(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 4);} | ||
| 1033 | void XEmitter::BTS(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 5);} | ||
| 1034 | void XEmitter::BTR(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 6);} | ||
| 1035 | void XEmitter::BTC(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 7);} | ||
| 1036 | |||
| 1037 | //shift can be either imm8 or cl | ||
| 1038 | void XEmitter::SHRD(int bits, OpArg dest, OpArg src, OpArg shift) | ||
| 1039 | { | ||
| 1040 | CheckFlags(); | ||
| 1041 | if (dest.IsImm()) | ||
| 1042 | { | ||
| 1043 | ASSERT_MSG(0, "SHRD - can't use imms as destination"); | ||
| 1044 | } | ||
| 1045 | if (!src.IsSimpleReg()) | ||
| 1046 | { | ||
| 1047 | ASSERT_MSG(0, "SHRD - must use simple register as source"); | ||
| 1048 | } | ||
| 1049 | if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8)) | ||
| 1050 | { | ||
| 1051 | ASSERT_MSG(0, "SHRD - illegal shift"); | ||
| 1052 | } | ||
| 1053 | if (bits == 16) | ||
| 1054 | Write8(0x66); | ||
| 1055 | X64Reg operand = src.GetSimpleReg(); | ||
| 1056 | dest.WriteRex(this, bits, bits, operand); | ||
| 1057 | if (shift.GetImmBits() == 8) | ||
| 1058 | { | ||
| 1059 | Write8(0x0F); Write8(0xAC); | ||
| 1060 | dest.WriteRest(this, 1, operand); | ||
| 1061 | Write8((u8)shift.offset); | ||
| 1062 | } | ||
| 1063 | else | ||
| 1064 | { | ||
| 1065 | Write8(0x0F); Write8(0xAD); | ||
| 1066 | dest.WriteRest(this, 0, operand); | ||
| 1067 | } | ||
| 1068 | } | ||
| 1069 | |||
| 1070 | void XEmitter::SHLD(int bits, OpArg dest, OpArg src, OpArg shift) | ||
| 1071 | { | ||
| 1072 | CheckFlags(); | ||
| 1073 | if (dest.IsImm()) | ||
| 1074 | { | ||
| 1075 | ASSERT_MSG(0, "SHLD - can't use imms as destination"); | ||
| 1076 | } | ||
| 1077 | if (!src.IsSimpleReg()) | ||
| 1078 | { | ||
| 1079 | ASSERT_MSG(0, "SHLD - must use simple register as source"); | ||
| 1080 | } | ||
| 1081 | if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8)) | ||
| 1082 | { | ||
| 1083 | ASSERT_MSG(0, "SHLD - illegal shift"); | ||
| 1084 | } | ||
| 1085 | if (bits == 16) | ||
| 1086 | Write8(0x66); | ||
| 1087 | X64Reg operand = src.GetSimpleReg(); | ||
| 1088 | dest.WriteRex(this, bits, bits, operand); | ||
| 1089 | if (shift.GetImmBits() == 8) | ||
| 1090 | { | ||
| 1091 | Write8(0x0F); Write8(0xA4); | ||
| 1092 | dest.WriteRest(this, 1, operand); | ||
| 1093 | Write8((u8)shift.offset); | ||
| 1094 | } | ||
| 1095 | else | ||
| 1096 | { | ||
| 1097 | Write8(0x0F); Write8(0xA5); | ||
| 1098 | dest.WriteRest(this, 0, operand); | ||
| 1099 | } | ||
| 1100 | } | ||
| 1101 | |||
| 1102 | void OpArg::WriteSingleByteOp(XEmitter *emit, u8 op, X64Reg _operandReg, int bits) | ||
| 1103 | { | ||
| 1104 | if (bits == 16) | ||
| 1105 | emit->Write8(0x66); | ||
| 1106 | |||
| 1107 | this->operandReg = (u8)_operandReg; | ||
| 1108 | WriteRex(emit, bits, bits); | ||
| 1109 | emit->Write8(op); | ||
| 1110 | WriteRest(emit); | ||
| 1111 | } | ||
| 1112 | |||
| 1113 | //operand can either be immediate or register | ||
| 1114 | void OpArg::WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &operand, int bits) const | ||
| 1115 | { | ||
| 1116 | X64Reg _operandReg; | ||
| 1117 | if (IsImm()) | ||
| 1118 | { | ||
| 1119 | ASSERT_MSG(0, "WriteNormalOp - Imm argument, wrong order"); | ||
| 1120 | } | ||
| 1121 | |||
| 1122 | if (bits == 16) | ||
| 1123 | emit->Write8(0x66); | ||
| 1124 | |||
| 1125 | int immToWrite = 0; | ||
| 1126 | |||
| 1127 | if (operand.IsImm()) | ||
| 1128 | { | ||
| 1129 | WriteRex(emit, bits, bits); | ||
| 1130 | |||
| 1131 | if (!toRM) | ||
| 1132 | { | ||
| 1133 | ASSERT_MSG(0, "WriteNormalOp - Writing to Imm (!toRM)"); | ||
| 1134 | } | ||
| 1135 | |||
| 1136 | if (operand.scale == SCALE_IMM8 && bits == 8) | ||
| 1137 | { | ||
| 1138 | // op al, imm8 | ||
| 1139 | if (!scale && offsetOrBaseReg == AL && normalops[op].eaximm8 != 0xCC) | ||
| 1140 | { | ||
| 1141 | emit->Write8(normalops[op].eaximm8); | ||
| 1142 | emit->Write8((u8)operand.offset); | ||
| 1143 | return; | ||
| 1144 | } | ||
| 1145 | // mov reg, imm8 | ||
| 1146 | if (!scale && op == nrmMOV) | ||
| 1147 | { | ||
| 1148 | emit->Write8(0xB0 + (offsetOrBaseReg & 7)); | ||
| 1149 | emit->Write8((u8)operand.offset); | ||
| 1150 | return; | ||
| 1151 | } | ||
| 1152 | // op r/m8, imm8 | ||
| 1153 | emit->Write8(normalops[op].imm8); | ||
| 1154 | immToWrite = 8; | ||
| 1155 | } | ||
| 1156 | else if ((operand.scale == SCALE_IMM16 && bits == 16) || | ||
| 1157 | (operand.scale == SCALE_IMM32 && bits == 32) || | ||
| 1158 | (operand.scale == SCALE_IMM32 && bits == 64)) | ||
| 1159 | { | ||
| 1160 | // Try to save immediate size if we can, but first check to see | ||
| 1161 | // if the instruction supports simm8. | ||
| 1162 | // op r/m, imm8 | ||
| 1163 | if (normalops[op].simm8 != 0xCC && | ||
| 1164 | ((operand.scale == SCALE_IMM16 && (s16)operand.offset == (s8)operand.offset) || | ||
| 1165 | (operand.scale == SCALE_IMM32 && (s32)operand.offset == (s8)operand.offset))) | ||
| 1166 | { | ||
| 1167 | emit->Write8(normalops[op].simm8); | ||
| 1168 | immToWrite = 8; | ||
| 1169 | } | ||
| 1170 | else | ||
| 1171 | { | ||
| 1172 | // mov reg, imm | ||
| 1173 | if (!scale && op == nrmMOV && bits != 64) | ||
| 1174 | { | ||
| 1175 | emit->Write8(0xB8 + (offsetOrBaseReg & 7)); | ||
| 1176 | if (bits == 16) | ||
| 1177 | emit->Write16((u16)operand.offset); | ||
| 1178 | else | ||
| 1179 | emit->Write32((u32)operand.offset); | ||
| 1180 | return; | ||
| 1181 | } | ||
| 1182 | // op eax, imm | ||
| 1183 | if (!scale && offsetOrBaseReg == EAX && normalops[op].eaximm32 != 0xCC) | ||
| 1184 | { | ||
| 1185 | emit->Write8(normalops[op].eaximm32); | ||
| 1186 | if (bits == 16) | ||
| 1187 | emit->Write16((u16)operand.offset); | ||
| 1188 | else | ||
| 1189 | emit->Write32((u32)operand.offset); | ||
| 1190 | return; | ||
| 1191 | } | ||
| 1192 | // op r/m, imm | ||
| 1193 | emit->Write8(normalops[op].imm32); | ||
| 1194 | immToWrite = bits == 16 ? 16 : 32; | ||
| 1195 | } | ||
| 1196 | } | ||
| 1197 | else if ((operand.scale == SCALE_IMM8 && bits == 16) || | ||
| 1198 | (operand.scale == SCALE_IMM8 && bits == 32) || | ||
| 1199 | (operand.scale == SCALE_IMM8 && bits == 64)) | ||
| 1200 | { | ||
| 1201 | // op r/m, imm8 | ||
| 1202 | emit->Write8(normalops[op].simm8); | ||
| 1203 | immToWrite = 8; | ||
| 1204 | } | ||
| 1205 | else if (operand.scale == SCALE_IMM64 && bits == 64) | ||
| 1206 | { | ||
| 1207 | if (scale) | ||
| 1208 | { | ||
| 1209 | ASSERT_MSG(0, "WriteNormalOp - MOV with 64-bit imm requres register destination"); | ||
| 1210 | } | ||
| 1211 | // mov reg64, imm64 | ||
| 1212 | else if (op == nrmMOV) | ||
| 1213 | { | ||
| 1214 | emit->Write8(0xB8 + (offsetOrBaseReg & 7)); | ||
| 1215 | emit->Write64((u64)operand.offset); | ||
| 1216 | return; | ||
| 1217 | } | ||
| 1218 | ASSERT_MSG(0, "WriteNormalOp - Only MOV can take 64-bit imm"); | ||
| 1219 | } | ||
| 1220 | else | ||
| 1221 | { | ||
| 1222 | ASSERT_MSG(0, "WriteNormalOp - Unhandled case"); | ||
| 1223 | } | ||
| 1224 | _operandReg = (X64Reg)normalops[op].ext; //pass extension in REG of ModRM | ||
| 1225 | } | ||
| 1226 | else | ||
| 1227 | { | ||
| 1228 | _operandReg = (X64Reg)operand.offsetOrBaseReg; | ||
| 1229 | WriteRex(emit, bits, bits, _operandReg); | ||
| 1230 | // op r/m, reg | ||
| 1231 | if (toRM) | ||
| 1232 | { | ||
| 1233 | emit->Write8(bits == 8 ? normalops[op].toRm8 : normalops[op].toRm32); | ||
| 1234 | } | ||
| 1235 | // op reg, r/m | ||
| 1236 | else | ||
| 1237 | { | ||
| 1238 | emit->Write8(bits == 8 ? normalops[op].fromRm8 : normalops[op].fromRm32); | ||
| 1239 | } | ||
| 1240 | } | ||
| 1241 | WriteRest(emit, immToWrite >> 3, _operandReg); | ||
| 1242 | switch (immToWrite) | ||
| 1243 | { | ||
| 1244 | case 0: | ||
| 1245 | break; | ||
| 1246 | case 8: | ||
| 1247 | emit->Write8((u8)operand.offset); | ||
| 1248 | break; | ||
| 1249 | case 16: | ||
| 1250 | emit->Write16((u16)operand.offset); | ||
| 1251 | break; | ||
| 1252 | case 32: | ||
| 1253 | emit->Write32((u32)operand.offset); | ||
| 1254 | break; | ||
| 1255 | default: | ||
| 1256 | ASSERT_MSG(0, "WriteNormalOp - Unhandled case"); | ||
| 1257 | } | ||
| 1258 | } | ||
| 1259 | |||
| 1260 | void XEmitter::WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg &a1, const OpArg &a2) | ||
| 1261 | { | ||
| 1262 | if (a1.IsImm()) | ||
| 1263 | { | ||
| 1264 | //Booh! Can't write to an imm | ||
| 1265 | ASSERT_MSG(0, "WriteNormalOp - a1 cannot be imm"); | ||
| 1266 | return; | ||
| 1267 | } | ||
| 1268 | if (a2.IsImm()) | ||
| 1269 | { | ||
| 1270 | a1.WriteNormalOp(emit, true, op, a2, bits); | ||
| 1271 | } | ||
| 1272 | else | ||
| 1273 | { | ||
| 1274 | if (a1.IsSimpleReg()) | ||
| 1275 | { | ||
| 1276 | a2.WriteNormalOp(emit, false, op, a1, bits); | ||
| 1277 | } | ||
| 1278 | else | ||
| 1279 | { | ||
| 1280 | ASSERT_MSG(a2.IsSimpleReg() || a2.IsImm(), "WriteNormalOp - a1 and a2 cannot both be memory"); | ||
| 1281 | a1.WriteNormalOp(emit, true, op, a2, bits); | ||
| 1282 | } | ||
| 1283 | } | ||
| 1284 | } | ||
| 1285 | |||
| 1286 | void XEmitter::ADD (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmADD, a1, a2);} | ||
| 1287 | void XEmitter::ADC (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmADC, a1, a2);} | ||
| 1288 | void XEmitter::SUB (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmSUB, a1, a2);} | ||
| 1289 | void XEmitter::SBB (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmSBB, a1, a2);} | ||
| 1290 | void XEmitter::AND (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmAND, a1, a2);} | ||
| 1291 | void XEmitter::OR (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmOR , a1, a2);} | ||
| 1292 | void XEmitter::XOR (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmXOR, a1, a2);} | ||
| 1293 | void XEmitter::MOV (int bits, const OpArg &a1, const OpArg &a2) | ||
| 1294 | { | ||
| 1295 | if (a1.IsSimpleReg() && a2.IsSimpleReg() && a1.GetSimpleReg() == a2.GetSimpleReg()) | ||
| 1296 | LOG_ERROR(Common, "Redundant MOV @ %p - bug in JIT?", code); | ||
| 1297 | WriteNormalOp(this, bits, nrmMOV, a1, a2); | ||
| 1298 | } | ||
| 1299 | void XEmitter::TEST(int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmTEST, a1, a2);} | ||
| 1300 | void XEmitter::CMP (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmCMP, a1, a2);} | ||
| 1301 | void XEmitter::XCHG(int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmXCHG, a1, a2);} | ||
| 1302 | |||
| 1303 | void XEmitter::IMUL(int bits, X64Reg regOp, OpArg a1, OpArg a2) | ||
| 1304 | { | ||
| 1305 | CheckFlags(); | ||
| 1306 | if (bits == 8) | ||
| 1307 | { | ||
| 1308 | ASSERT_MSG(0, "IMUL - illegal bit size!"); | ||
| 1309 | return; | ||
| 1310 | } | ||
| 1311 | |||
| 1312 | if (a1.IsImm()) | ||
| 1313 | { | ||
| 1314 | ASSERT_MSG(0, "IMUL - second arg cannot be imm!"); | ||
| 1315 | return; | ||
| 1316 | } | ||
| 1317 | |||
| 1318 | if (!a2.IsImm()) | ||
| 1319 | { | ||
| 1320 | ASSERT_MSG(0, "IMUL - third arg must be imm!"); | ||
| 1321 | return; | ||
| 1322 | } | ||
| 1323 | |||
| 1324 | if (bits == 16) | ||
| 1325 | Write8(0x66); | ||
| 1326 | a1.WriteRex(this, bits, bits, regOp); | ||
| 1327 | |||
| 1328 | if (a2.GetImmBits() == 8 || | ||
| 1329 | (a2.GetImmBits() == 16 && (s8)a2.offset == (s16)a2.offset) || | ||
| 1330 | (a2.GetImmBits() == 32 && (s8)a2.offset == (s32)a2.offset)) | ||
| 1331 | { | ||
| 1332 | Write8(0x6B); | ||
| 1333 | a1.WriteRest(this, 1, regOp); | ||
| 1334 | Write8((u8)a2.offset); | ||
| 1335 | } | ||
| 1336 | else | ||
| 1337 | { | ||
| 1338 | Write8(0x69); | ||
| 1339 | if (a2.GetImmBits() == 16 && bits == 16) | ||
| 1340 | { | ||
| 1341 | a1.WriteRest(this, 2, regOp); | ||
| 1342 | Write16((u16)a2.offset); | ||
| 1343 | } | ||
| 1344 | else if (a2.GetImmBits() == 32 && (bits == 32 || bits == 64)) | ||
| 1345 | { | ||
| 1346 | a1.WriteRest(this, 4, regOp); | ||
| 1347 | Write32((u32)a2.offset); | ||
| 1348 | } | ||
| 1349 | else | ||
| 1350 | { | ||
| 1351 | ASSERT_MSG(0, "IMUL - unhandled case!"); | ||
| 1352 | } | ||
| 1353 | } | ||
| 1354 | } | ||
| 1355 | |||
| 1356 | void XEmitter::IMUL(int bits, X64Reg regOp, OpArg a) | ||
| 1357 | { | ||
| 1358 | CheckFlags(); | ||
| 1359 | if (bits == 8) | ||
| 1360 | { | ||
| 1361 | ASSERT_MSG(0, "IMUL - illegal bit size!"); | ||
| 1362 | return; | ||
| 1363 | } | ||
| 1364 | |||
| 1365 | if (a.IsImm()) | ||
| 1366 | { | ||
| 1367 | IMUL(bits, regOp, R(regOp), a) ; | ||
| 1368 | return; | ||
| 1369 | } | ||
| 1370 | |||
| 1371 | if (bits == 16) | ||
| 1372 | Write8(0x66); | ||
| 1373 | a.WriteRex(this, bits, bits, regOp); | ||
| 1374 | Write8(0x0F); | ||
| 1375 | Write8(0xAF); | ||
| 1376 | a.WriteRest(this, 0, regOp); | ||
| 1377 | } | ||
| 1378 | |||
| 1379 | |||
| 1380 | void XEmitter::WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes) | ||
| 1381 | { | ||
| 1382 | if (opPrefix) | ||
| 1383 | Write8(opPrefix); | ||
| 1384 | arg.operandReg = regOp; | ||
| 1385 | arg.WriteRex(this, 0, 0); | ||
| 1386 | Write8(0x0F); | ||
| 1387 | if (op > 0xFF) | ||
| 1388 | Write8((op >> 8) & 0xFF); | ||
| 1389 | Write8(op & 0xFF); | ||
| 1390 | arg.WriteRest(this, extrabytes); | ||
| 1391 | } | ||
| 1392 | |||
| 1393 | void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes) | ||
| 1394 | { | ||
| 1395 | WriteAVXOp(opPrefix, op, regOp, INVALID_REG, arg, extrabytes); | ||
| 1396 | } | ||
| 1397 | |||
| 1398 | static int GetVEXmmmmm(u16 op) | ||
| 1399 | { | ||
| 1400 | // Currently, only 0x38 and 0x3A are used as secondary escape byte. | ||
| 1401 | if ((op >> 8) == 0x3A) | ||
| 1402 | return 3; | ||
| 1403 | else if ((op >> 8) == 0x38) | ||
| 1404 | return 2; | ||
| 1405 | else | ||
| 1406 | return 1; | ||
| 1407 | } | ||
| 1408 | |||
| 1409 | static int GetVEXpp(u8 opPrefix) | ||
| 1410 | { | ||
| 1411 | if (opPrefix == 0x66) | ||
| 1412 | return 1; | ||
| 1413 | else if (opPrefix == 0xF3) | ||
| 1414 | return 2; | ||
| 1415 | else if (opPrefix == 0xF2) | ||
| 1416 | return 3; | ||
| 1417 | else | ||
| 1418 | return 0; | ||
| 1419 | } | ||
| 1420 | |||
| 1421 | void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes) | ||
| 1422 | { | ||
| 1423 | if (!Common::GetCPUCaps().avx) | ||
| 1424 | ASSERT_MSG(0, "Trying to use AVX on a system that doesn't support it. Bad programmer."); | ||
| 1425 | int mmmmm = GetVEXmmmmm(op); | ||
| 1426 | int pp = GetVEXpp(opPrefix); | ||
| 1427 | // FIXME: we currently don't support 256-bit instructions, and "size" is not the vector size here | ||
| 1428 | arg.WriteVex(this, regOp1, regOp2, 0, pp, mmmmm); | ||
| 1429 | Write8(op & 0xFF); | ||
| 1430 | arg.WriteRest(this, extrabytes, regOp1); | ||
| 1431 | } | ||
| 1432 | |||
| 1433 | // Like the above, but more general; covers GPR-based VEX operations, like BMI1/2 | ||
| 1434 | void XEmitter::WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes) | ||
| 1435 | { | ||
| 1436 | if (size != 32 && size != 64) | ||
| 1437 | ASSERT_MSG(0, "VEX GPR instructions only support 32-bit and 64-bit modes!"); | ||
| 1438 | int mmmmm = GetVEXmmmmm(op); | ||
| 1439 | int pp = GetVEXpp(opPrefix); | ||
| 1440 | arg.WriteVex(this, regOp1, regOp2, 0, pp, mmmmm, size == 64); | ||
| 1441 | Write8(op & 0xFF); | ||
| 1442 | arg.WriteRest(this, extrabytes, regOp1); | ||
| 1443 | } | ||
| 1444 | |||
| 1445 | void XEmitter::WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes) | ||
| 1446 | { | ||
| 1447 | CheckFlags(); | ||
| 1448 | if (!Common::GetCPUCaps().bmi1) | ||
| 1449 | ASSERT_MSG(0, "Trying to use BMI1 on a system that doesn't support it. Bad programmer."); | ||
| 1450 | WriteVEXOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes); | ||
| 1451 | } | ||
| 1452 | |||
| 1453 | void XEmitter::WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes) | ||
| 1454 | { | ||
| 1455 | CheckFlags(); | ||
| 1456 | if (!Common::GetCPUCaps().bmi2) | ||
| 1457 | ASSERT_MSG(0, "Trying to use BMI2 on a system that doesn't support it. Bad programmer."); | ||
| 1458 | WriteVEXOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes); | ||
| 1459 | } | ||
| 1460 | |||
| 1461 | void XEmitter::MOVD_xmm(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x6E, dest, arg, 0);} | ||
| 1462 | void XEmitter::MOVD_xmm(const OpArg &arg, X64Reg src) {WriteSSEOp(0x66, 0x7E, src, arg, 0);} | ||
| 1463 | |||
| 1464 | void XEmitter::MOVQ_xmm(X64Reg dest, OpArg arg) | ||
| 1465 | { | ||
| 1466 | #ifdef ARCHITECTURE_x86_64 | ||
| 1467 | // Alternate encoding | ||
| 1468 | // This does not display correctly in MSVC's debugger, it thinks it's a MOVD | ||
| 1469 | arg.operandReg = dest; | ||
| 1470 | Write8(0x66); | ||
| 1471 | arg.WriteRex(this, 64, 0); | ||
| 1472 | Write8(0x0f); | ||
| 1473 | Write8(0x6E); | ||
| 1474 | arg.WriteRest(this, 0); | ||
| 1475 | #else | ||
| 1476 | arg.operandReg = dest; | ||
| 1477 | Write8(0xF3); | ||
| 1478 | Write8(0x0f); | ||
| 1479 | Write8(0x7E); | ||
| 1480 | arg.WriteRest(this, 0); | ||
| 1481 | #endif | ||
| 1482 | } | ||
| 1483 | |||
| 1484 | void XEmitter::MOVQ_xmm(OpArg arg, X64Reg src) | ||
| 1485 | { | ||
| 1486 | if (src > 7 || arg.IsSimpleReg()) | ||
| 1487 | { | ||
| 1488 | // Alternate encoding | ||
| 1489 | // This does not display correctly in MSVC's debugger, it thinks it's a MOVD | ||
| 1490 | arg.operandReg = src; | ||
| 1491 | Write8(0x66); | ||
| 1492 | arg.WriteRex(this, 64, 0); | ||
| 1493 | Write8(0x0f); | ||
| 1494 | Write8(0x7E); | ||
| 1495 | arg.WriteRest(this, 0); | ||
| 1496 | } | ||
| 1497 | else | ||
| 1498 | { | ||
| 1499 | arg.operandReg = src; | ||
| 1500 | arg.WriteRex(this, 0, 0); | ||
| 1501 | Write8(0x66); | ||
| 1502 | Write8(0x0f); | ||
| 1503 | Write8(0xD6); | ||
| 1504 | arg.WriteRest(this, 0); | ||
| 1505 | } | ||
| 1506 | } | ||
| 1507 | |||
| 1508 | void XEmitter::WriteMXCSR(OpArg arg, int ext) | ||
| 1509 | { | ||
| 1510 | if (arg.IsImm() || arg.IsSimpleReg()) | ||
| 1511 | ASSERT_MSG(0, "MXCSR - invalid operand"); | ||
| 1512 | |||
| 1513 | arg.operandReg = ext; | ||
| 1514 | arg.WriteRex(this, 0, 0); | ||
| 1515 | Write8(0x0F); | ||
| 1516 | Write8(0xAE); | ||
| 1517 | arg.WriteRest(this); | ||
| 1518 | } | ||
| 1519 | |||
| 1520 | void XEmitter::STMXCSR(OpArg memloc) {WriteMXCSR(memloc, 3);} | ||
| 1521 | void XEmitter::LDMXCSR(OpArg memloc) {WriteMXCSR(memloc, 2);} | ||
| 1522 | |||
| 1523 | void XEmitter::MOVNTDQ(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVNTDQ, regOp, arg);} | ||
| 1524 | void XEmitter::MOVNTPS(OpArg arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVNTP, regOp, arg);} | ||
| 1525 | void XEmitter::MOVNTPD(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVNTP, regOp, arg);} | ||
| 1526 | |||
| 1527 | void XEmitter::ADDSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseADD, regOp, arg);} | ||
| 1528 | void XEmitter::ADDSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseADD, regOp, arg);} | ||
| 1529 | void XEmitter::SUBSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseSUB, regOp, arg);} | ||
| 1530 | void XEmitter::SUBSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseSUB, regOp, arg);} | ||
| 1531 | void XEmitter::CMPSS(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(0xF3, sseCMP, regOp, arg, 1); Write8(compare);} | ||
| 1532 | void XEmitter::CMPSD(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(0xF2, sseCMP, regOp, arg, 1); Write8(compare);} | ||
| 1533 | void XEmitter::MULSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseMUL, regOp, arg);} | ||
| 1534 | void XEmitter::MULSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseMUL, regOp, arg);} | ||
| 1535 | void XEmitter::DIVSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseDIV, regOp, arg);} | ||
| 1536 | void XEmitter::DIVSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseDIV, regOp, arg);} | ||
| 1537 | void XEmitter::MINSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseMIN, regOp, arg);} | ||
| 1538 | void XEmitter::MINSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseMIN, regOp, arg);} | ||
| 1539 | void XEmitter::MAXSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseMAX, regOp, arg);} | ||
| 1540 | void XEmitter::MAXSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseMAX, regOp, arg);} | ||
| 1541 | void XEmitter::SQRTSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseSQRT, regOp, arg);} | ||
| 1542 | void XEmitter::SQRTSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseSQRT, regOp, arg);} | ||
| 1543 | void XEmitter::RSQRTSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseRSQRT, regOp, arg);} | ||
| 1544 | |||
| 1545 | void XEmitter::ADDPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseADD, regOp, arg);} | ||
| 1546 | void XEmitter::ADDPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseADD, regOp, arg);} | ||
| 1547 | void XEmitter::SUBPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseSUB, regOp, arg);} | ||
| 1548 | void XEmitter::SUBPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseSUB, regOp, arg);} | ||
| 1549 | void XEmitter::CMPPS(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(0x00, sseCMP, regOp, arg, 1); Write8(compare);} | ||
| 1550 | void XEmitter::CMPPD(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(0x66, sseCMP, regOp, arg, 1); Write8(compare);} | ||
| 1551 | void XEmitter::ANDPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseAND, regOp, arg);} | ||
| 1552 | void XEmitter::ANDPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseAND, regOp, arg);} | ||
| 1553 | void XEmitter::ANDNPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseANDN, regOp, arg);} | ||
| 1554 | void XEmitter::ANDNPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseANDN, regOp, arg);} | ||
| 1555 | void XEmitter::ORPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseOR, regOp, arg);} | ||
| 1556 | void XEmitter::ORPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseOR, regOp, arg);} | ||
| 1557 | void XEmitter::XORPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseXOR, regOp, arg);} | ||
| 1558 | void XEmitter::XORPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseXOR, regOp, arg);} | ||
| 1559 | void XEmitter::MULPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseMUL, regOp, arg);} | ||
| 1560 | void XEmitter::MULPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMUL, regOp, arg);} | ||
| 1561 | void XEmitter::DIVPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseDIV, regOp, arg);} | ||
| 1562 | void XEmitter::DIVPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseDIV, regOp, arg);} | ||
| 1563 | void XEmitter::MINPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseMIN, regOp, arg);} | ||
| 1564 | void XEmitter::MINPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMIN, regOp, arg);} | ||
| 1565 | void XEmitter::MAXPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseMAX, regOp, arg);} | ||
| 1566 | void XEmitter::MAXPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMAX, regOp, arg);} | ||
| 1567 | void XEmitter::SQRTPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseSQRT, regOp, arg);} | ||
| 1568 | void XEmitter::SQRTPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseSQRT, regOp, arg);} | ||
| 1569 | void XEmitter::RCPPS(X64Reg regOp, OpArg arg) { WriteSSEOp(0x00, sseRCP, regOp, arg); } | ||
| 1570 | void XEmitter::RSQRTPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseRSQRT, regOp, arg);} | ||
| 1571 | void XEmitter::SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0x00, sseSHUF, regOp, arg,1); Write8(shuffle);} | ||
| 1572 | void XEmitter::SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0x66, sseSHUF, regOp, arg,1); Write8(shuffle);} | ||
| 1573 | |||
| 1574 | void XEmitter::HADDPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseHADD, regOp, arg);} | ||
| 1575 | |||
| 1576 | void XEmitter::COMISS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseCOMIS, regOp, arg);} //weird that these should be packed | ||
| 1577 | void XEmitter::COMISD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseCOMIS, regOp, arg);} //ordered | ||
| 1578 | void XEmitter::UCOMISS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseUCOMIS, regOp, arg);} //unordered | ||
| 1579 | void XEmitter::UCOMISD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseUCOMIS, regOp, arg);} | ||
| 1580 | |||
| 1581 | void XEmitter::MOVAPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseMOVAPfromRM, regOp, arg);} | ||
| 1582 | void XEmitter::MOVAPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMOVAPfromRM, regOp, arg);} | ||
| 1583 | void XEmitter::MOVAPS(OpArg arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVAPtoRM, regOp, arg);} | ||
| 1584 | void XEmitter::MOVAPD(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVAPtoRM, regOp, arg);} | ||
| 1585 | |||
| 1586 | void XEmitter::MOVUPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseMOVUPfromRM, regOp, arg);} | ||
| 1587 | void XEmitter::MOVUPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMOVUPfromRM, regOp, arg);} | ||
| 1588 | void XEmitter::MOVUPS(OpArg arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVUPtoRM, regOp, arg);} | ||
| 1589 | void XEmitter::MOVUPD(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVUPtoRM, regOp, arg);} | ||
| 1590 | |||
| 1591 | void XEmitter::MOVDQA(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMOVDQfromRM, regOp, arg);} | ||
| 1592 | void XEmitter::MOVDQA(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVDQtoRM, regOp, arg);} | ||
| 1593 | void XEmitter::MOVDQU(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseMOVDQfromRM, regOp, arg);} | ||
| 1594 | void XEmitter::MOVDQU(OpArg arg, X64Reg regOp) {WriteSSEOp(0xF3, sseMOVDQtoRM, regOp, arg);} | ||
| 1595 | |||
| 1596 | void XEmitter::MOVSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseMOVUPfromRM, regOp, arg);} | ||
| 1597 | void XEmitter::MOVSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseMOVUPfromRM, regOp, arg);} | ||
| 1598 | void XEmitter::MOVSS(OpArg arg, X64Reg regOp) {WriteSSEOp(0xF3, sseMOVUPtoRM, regOp, arg);} | ||
| 1599 | void XEmitter::MOVSD(OpArg arg, X64Reg regOp) {WriteSSEOp(0xF2, sseMOVUPtoRM, regOp, arg);} | ||
| 1600 | |||
| 1601 | void XEmitter::MOVLPS(X64Reg regOp, OpArg arg) { WriteSSEOp(0x00, sseMOVLPfromRM, regOp, arg); } | ||
| 1602 | void XEmitter::MOVLPD(X64Reg regOp, OpArg arg) { WriteSSEOp(0x66, sseMOVLPfromRM, regOp, arg); } | ||
| 1603 | void XEmitter::MOVLPS(OpArg arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVLPtoRM, regOp, arg); } | ||
| 1604 | void XEmitter::MOVLPD(OpArg arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVLPtoRM, regOp, arg); } | ||
| 1605 | |||
| 1606 | void XEmitter::MOVHPS(X64Reg regOp, OpArg arg) { WriteSSEOp(0x00, sseMOVHPfromRM, regOp, arg); } | ||
| 1607 | void XEmitter::MOVHPD(X64Reg regOp, OpArg arg) { WriteSSEOp(0x66, sseMOVHPfromRM, regOp, arg); } | ||
| 1608 | void XEmitter::MOVHPS(OpArg arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVHPtoRM, regOp, arg); } | ||
| 1609 | void XEmitter::MOVHPD(OpArg arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVHPtoRM, regOp, arg); } | ||
| 1610 | |||
| 1611 | void XEmitter::MOVHLPS(X64Reg regOp1, X64Reg regOp2) {WriteSSEOp(0x00, sseMOVHLPS, regOp1, R(regOp2));} | ||
| 1612 | void XEmitter::MOVLHPS(X64Reg regOp1, X64Reg regOp2) {WriteSSEOp(0x00, sseMOVLHPS, regOp1, R(regOp2));} | ||
| 1613 | |||
| 1614 | void XEmitter::CVTPS2PD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, 0x5A, regOp, arg);} | ||
| 1615 | void XEmitter::CVTPD2PS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, 0x5A, regOp, arg);} | ||
| 1616 | |||
| 1617 | void XEmitter::CVTSD2SS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0x5A, regOp, arg);} | ||
| 1618 | void XEmitter::CVTSS2SD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x5A, regOp, arg);} | ||
| 1619 | void XEmitter::CVTSD2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0x2D, regOp, arg);} | ||
| 1620 | void XEmitter::CVTSS2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x2D, regOp, arg);} | ||
| 1621 | void XEmitter::CVTSI2SD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0x2A, regOp, arg);} | ||
| 1622 | void XEmitter::CVTSI2SS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x2A, regOp, arg);} | ||
| 1623 | |||
| 1624 | void XEmitter::CVTDQ2PD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0xE6, regOp, arg);} | ||
| 1625 | void XEmitter::CVTDQ2PS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, 0x5B, regOp, arg);} | ||
| 1626 | void XEmitter::CVTPD2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0xE6, regOp, arg);} | ||
| 1627 | void XEmitter::CVTPS2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, 0x5B, regOp, arg);} | ||
| 1628 | |||
| 1629 | void XEmitter::CVTTSD2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0x2C, regOp, arg);} | ||
| 1630 | void XEmitter::CVTTSS2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x2C, regOp, arg);} | ||
| 1631 | void XEmitter::CVTTPS2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x5B, regOp, arg);} | ||
| 1632 | void XEmitter::CVTTPD2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, 0xE6, regOp, arg);} | ||
| 1633 | |||
| 1634 | void XEmitter::MASKMOVDQU(X64Reg dest, X64Reg src) {WriteSSEOp(0x66, sseMASKMOVDQU, dest, R(src));} | ||
| 1635 | |||
| 1636 | void XEmitter::MOVMSKPS(X64Reg dest, OpArg arg) {WriteSSEOp(0x00, 0x50, dest, arg);} | ||
| 1637 | void XEmitter::MOVMSKPD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x50, dest, arg);} | ||
| 1638 | |||
| 1639 | void XEmitter::LDDQU(X64Reg dest, OpArg arg) {WriteSSEOp(0xF2, sseLDDQU, dest, arg);} // For integer data only | ||
| 1640 | |||
| 1641 | // THESE TWO ARE UNTESTED. | ||
| 1642 | void XEmitter::UNPCKLPS(X64Reg dest, OpArg arg) {WriteSSEOp(0x00, 0x14, dest, arg);} | ||
| 1643 | void XEmitter::UNPCKHPS(X64Reg dest, OpArg arg) {WriteSSEOp(0x00, 0x15, dest, arg);} | ||
| 1644 | |||
| 1645 | void XEmitter::UNPCKLPD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x14, dest, arg);} | ||
| 1646 | void XEmitter::UNPCKHPD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x15, dest, arg);} | ||
| 1647 | |||
| 1648 | void XEmitter::MOVDDUP(X64Reg regOp, OpArg arg) | ||
| 1649 | { | ||
| 1650 | if (Common::GetCPUCaps().sse3) | ||
| 1651 | { | ||
| 1652 | WriteSSEOp(0xF2, 0x12, regOp, arg); //SSE3 movddup | ||
| 1653 | } | ||
| 1654 | else | ||
| 1655 | { | ||
| 1656 | // Simulate this instruction with SSE2 instructions | ||
| 1657 | if (!arg.IsSimpleReg(regOp)) | ||
| 1658 | MOVSD(regOp, arg); | ||
| 1659 | UNPCKLPD(regOp, R(regOp)); | ||
| 1660 | } | ||
| 1661 | } | ||
| 1662 | |||
| 1663 | //There are a few more left | ||
| 1664 | |||
| 1665 | // Also some integer instructions are missing | ||
| 1666 | void XEmitter::PACKSSDW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x6B, dest, arg);} | ||
| 1667 | void XEmitter::PACKSSWB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x63, dest, arg);} | ||
| 1668 | void XEmitter::PACKUSWB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x67, dest, arg);} | ||
| 1669 | |||
| 1670 | void XEmitter::PUNPCKLBW(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x60, dest, arg);} | ||
| 1671 | void XEmitter::PUNPCKLWD(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x61, dest, arg);} | ||
| 1672 | void XEmitter::PUNPCKLDQ(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x62, dest, arg);} | ||
| 1673 | void XEmitter::PUNPCKLQDQ(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x6C, dest, arg);} | ||
| 1674 | |||
| 1675 | void XEmitter::PSRLW(X64Reg reg, int shift) | ||
| 1676 | { | ||
| 1677 | WriteSSEOp(0x66, 0x71, (X64Reg)2, R(reg)); | ||
| 1678 | Write8(shift); | ||
| 1679 | } | ||
| 1680 | |||
| 1681 | void XEmitter::PSRLD(X64Reg reg, int shift) | ||
| 1682 | { | ||
| 1683 | WriteSSEOp(0x66, 0x72, (X64Reg)2, R(reg)); | ||
| 1684 | Write8(shift); | ||
| 1685 | } | ||
| 1686 | |||
| 1687 | void XEmitter::PSRLQ(X64Reg reg, int shift) | ||
| 1688 | { | ||
| 1689 | WriteSSEOp(0x66, 0x73, (X64Reg)2, R(reg)); | ||
| 1690 | Write8(shift); | ||
| 1691 | } | ||
| 1692 | |||
| 1693 | void XEmitter::PSRLQ(X64Reg reg, OpArg arg) | ||
| 1694 | { | ||
| 1695 | WriteSSEOp(0x66, 0xd3, reg, arg); | ||
| 1696 | } | ||
| 1697 | |||
| 1698 | void XEmitter::PSRLDQ(X64Reg reg, int shift) { | ||
| 1699 | WriteSSEOp(0x66, 0x73, (X64Reg)3, R(reg)); | ||
| 1700 | Write8(shift); | ||
| 1701 | } | ||
| 1702 | |||
| 1703 | void XEmitter::PSLLW(X64Reg reg, int shift) | ||
| 1704 | { | ||
| 1705 | WriteSSEOp(0x66, 0x71, (X64Reg)6, R(reg)); | ||
| 1706 | Write8(shift); | ||
| 1707 | } | ||
| 1708 | |||
| 1709 | void XEmitter::PSLLD(X64Reg reg, int shift) | ||
| 1710 | { | ||
| 1711 | WriteSSEOp(0x66, 0x72, (X64Reg)6, R(reg)); | ||
| 1712 | Write8(shift); | ||
| 1713 | } | ||
| 1714 | |||
| 1715 | void XEmitter::PSLLQ(X64Reg reg, int shift) | ||
| 1716 | { | ||
| 1717 | WriteSSEOp(0x66, 0x73, (X64Reg)6, R(reg)); | ||
| 1718 | Write8(shift); | ||
| 1719 | } | ||
| 1720 | |||
| 1721 | void XEmitter::PSLLDQ(X64Reg reg, int shift) { | ||
| 1722 | WriteSSEOp(0x66, 0x73, (X64Reg)7, R(reg)); | ||
| 1723 | Write8(shift); | ||
| 1724 | } | ||
| 1725 | |||
| 1726 | void XEmitter::PSRAW(X64Reg reg, int shift) | ||
| 1727 | { | ||
| 1728 | WriteSSEOp(0x66, 0x71, (X64Reg)4, R(reg)); | ||
| 1729 | Write8(shift); | ||
| 1730 | } | ||
| 1731 | |||
| 1732 | void XEmitter::PSRAD(X64Reg reg, int shift) | ||
| 1733 | { | ||
| 1734 | WriteSSEOp(0x66, 0x72, (X64Reg)4, R(reg)); | ||
| 1735 | Write8(shift); | ||
| 1736 | } | ||
| 1737 | |||
| 1738 | void XEmitter::WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes) | ||
| 1739 | { | ||
| 1740 | if (!Common::GetCPUCaps().ssse3) | ||
| 1741 | ASSERT_MSG(0, "Trying to use SSSE3 on a system that doesn't support it. Bad programmer."); | ||
| 1742 | WriteSSEOp(opPrefix, op, regOp, arg, extrabytes); | ||
| 1743 | } | ||
| 1744 | |||
| 1745 | void XEmitter::WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes) | ||
| 1746 | { | ||
| 1747 | if (!Common::GetCPUCaps().sse4_1) | ||
| 1748 | ASSERT_MSG(0, "Trying to use SSE4.1 on a system that doesn't support it. Bad programmer."); | ||
| 1749 | WriteSSEOp(opPrefix, op, regOp, arg, extrabytes); | ||
| 1750 | } | ||
| 1751 | |||
| 1752 | void XEmitter::PSHUFB(X64Reg dest, OpArg arg) {WriteSSSE3Op(0x66, 0x3800, dest, arg);} | ||
| 1753 | void XEmitter::PTEST(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3817, dest, arg);} | ||
| 1754 | void XEmitter::PACKUSDW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x382b, dest, arg);} | ||
| 1755 | void XEmitter::DPPS(X64Reg dest, OpArg arg, u8 mask) {WriteSSE41Op(0x66, 0x3A40, dest, arg, 1); Write8(mask);} | ||
| 1756 | |||
| 1757 | void XEmitter::PMINSB(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3838, dest, arg);} | ||
| 1758 | void XEmitter::PMINSD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3839, dest, arg);} | ||
| 1759 | void XEmitter::PMINUW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383a, dest, arg);} | ||
| 1760 | void XEmitter::PMINUD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383b, dest, arg);} | ||
| 1761 | void XEmitter::PMAXSB(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383c, dest, arg);} | ||
| 1762 | void XEmitter::PMAXSD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383d, dest, arg);} | ||
| 1763 | void XEmitter::PMAXUW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383e, dest, arg);} | ||
| 1764 | void XEmitter::PMAXUD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383f, dest, arg);} | ||
| 1765 | |||
| 1766 | void XEmitter::PMOVSXBW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3820, dest, arg);} | ||
| 1767 | void XEmitter::PMOVSXBD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3821, dest, arg);} | ||
| 1768 | void XEmitter::PMOVSXBQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3822, dest, arg);} | ||
| 1769 | void XEmitter::PMOVSXWD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3823, dest, arg);} | ||
| 1770 | void XEmitter::PMOVSXWQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3824, dest, arg);} | ||
| 1771 | void XEmitter::PMOVSXDQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3825, dest, arg);} | ||
| 1772 | void XEmitter::PMOVZXBW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3830, dest, arg);} | ||
| 1773 | void XEmitter::PMOVZXBD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3831, dest, arg);} | ||
| 1774 | void XEmitter::PMOVZXBQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3832, dest, arg);} | ||
| 1775 | void XEmitter::PMOVZXWD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3833, dest, arg);} | ||
| 1776 | void XEmitter::PMOVZXWQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3834, dest, arg);} | ||
| 1777 | void XEmitter::PMOVZXDQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3835, dest, arg);} | ||
| 1778 | |||
| 1779 | void XEmitter::PBLENDVB(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3810, dest, arg);} | ||
| 1780 | void XEmitter::BLENDVPS(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3814, dest, arg);} | ||
| 1781 | void XEmitter::BLENDVPD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3815, dest, arg);} | ||
| 1782 | void XEmitter::BLENDPS(X64Reg dest, const OpArg& arg, u8 blend) { WriteSSE41Op(0x66, 0x3A0C, dest, arg, 1); Write8(blend); } | ||
| 1783 | void XEmitter::BLENDPD(X64Reg dest, const OpArg& arg, u8 blend) { WriteSSE41Op(0x66, 0x3A0D, dest, arg, 1); Write8(blend); } | ||
| 1784 | |||
| 1785 | void XEmitter::ROUNDSS(X64Reg dest, OpArg arg, u8 mode) {WriteSSE41Op(0x66, 0x3A0A, dest, arg, 1); Write8(mode);} | ||
| 1786 | void XEmitter::ROUNDSD(X64Reg dest, OpArg arg, u8 mode) {WriteSSE41Op(0x66, 0x3A0B, dest, arg, 1); Write8(mode);} | ||
| 1787 | void XEmitter::ROUNDPS(X64Reg dest, OpArg arg, u8 mode) {WriteSSE41Op(0x66, 0x3A08, dest, arg, 1); Write8(mode);} | ||
| 1788 | void XEmitter::ROUNDPD(X64Reg dest, OpArg arg, u8 mode) {WriteSSE41Op(0x66, 0x3A09, dest, arg, 1); Write8(mode);} | ||
| 1789 | |||
| 1790 | void XEmitter::PAND(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDB, dest, arg);} | ||
| 1791 | void XEmitter::PANDN(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDF, dest, arg);} | ||
| 1792 | void XEmitter::PXOR(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xEF, dest, arg);} | ||
| 1793 | void XEmitter::POR(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xEB, dest, arg);} | ||
| 1794 | |||
| 1795 | void XEmitter::PADDB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xFC, dest, arg);} | ||
| 1796 | void XEmitter::PADDW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xFD, dest, arg);} | ||
| 1797 | void XEmitter::PADDD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xFE, dest, arg);} | ||
| 1798 | void XEmitter::PADDQ(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xD4, dest, arg);} | ||
| 1799 | |||
| 1800 | void XEmitter::PADDSB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xEC, dest, arg);} | ||
| 1801 | void XEmitter::PADDSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xED, dest, arg);} | ||
| 1802 | void XEmitter::PADDUSB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDC, dest, arg);} | ||
| 1803 | void XEmitter::PADDUSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDD, dest, arg);} | ||
| 1804 | |||
| 1805 | void XEmitter::PSUBB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xF8, dest, arg);} | ||
| 1806 | void XEmitter::PSUBW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xF9, dest, arg);} | ||
| 1807 | void XEmitter::PSUBD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xFA, dest, arg);} | ||
| 1808 | void XEmitter::PSUBQ(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xFB, dest, arg);} | ||
| 1809 | |||
| 1810 | void XEmitter::PSUBSB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xE8, dest, arg);} | ||
| 1811 | void XEmitter::PSUBSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xE9, dest, arg);} | ||
| 1812 | void XEmitter::PSUBUSB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xD8, dest, arg);} | ||
| 1813 | void XEmitter::PSUBUSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xD9, dest, arg);} | ||
| 1814 | |||
| 1815 | void XEmitter::PAVGB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xE0, dest, arg);} | ||
| 1816 | void XEmitter::PAVGW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xE3, dest, arg);} | ||
| 1817 | |||
| 1818 | void XEmitter::PCMPEQB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x74, dest, arg);} | ||
| 1819 | void XEmitter::PCMPEQW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x75, dest, arg);} | ||
| 1820 | void XEmitter::PCMPEQD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x76, dest, arg);} | ||
| 1821 | |||
| 1822 | void XEmitter::PCMPGTB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x64, dest, arg);} | ||
| 1823 | void XEmitter::PCMPGTW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x65, dest, arg);} | ||
| 1824 | void XEmitter::PCMPGTD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x66, dest, arg);} | ||
| 1825 | |||
| 1826 | void XEmitter::PEXTRW(X64Reg dest, OpArg arg, u8 subreg) {WriteSSEOp(0x66, 0xC5, dest, arg, 1); Write8(subreg);} | ||
| 1827 | void XEmitter::PINSRW(X64Reg dest, OpArg arg, u8 subreg) {WriteSSEOp(0x66, 0xC4, dest, arg, 1); Write8(subreg);} | ||
| 1828 | |||
| 1829 | void XEmitter::PMADDWD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xF5, dest, arg); } | ||
| 1830 | void XEmitter::PSADBW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xF6, dest, arg);} | ||
| 1831 | |||
| 1832 | void XEmitter::PMAXSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xEE, dest, arg); } | ||
| 1833 | void XEmitter::PMAXUB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDE, dest, arg); } | ||
| 1834 | void XEmitter::PMINSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xEA, dest, arg); } | ||
| 1835 | void XEmitter::PMINUB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDA, dest, arg); } | ||
| 1836 | |||
| 1837 | void XEmitter::PMOVMSKB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xD7, dest, arg); } | ||
| 1838 | void XEmitter::PSHUFD(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0x66, 0x70, regOp, arg, 1); Write8(shuffle);} | ||
| 1839 | void XEmitter::PSHUFLW(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0xF2, 0x70, regOp, arg, 1); Write8(shuffle);} | ||
| 1840 | void XEmitter::PSHUFHW(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0xF3, 0x70, regOp, arg, 1); Write8(shuffle);} | ||
| 1841 | |||
| 1842 | // VEX | ||
| 1843 | void XEmitter::VADDSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0xF2, sseADD, regOp1, regOp2, arg);} | ||
| 1844 | void XEmitter::VSUBSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0xF2, sseSUB, regOp1, regOp2, arg);} | ||
| 1845 | void XEmitter::VMULSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0xF2, sseMUL, regOp1, regOp2, arg);} | ||
| 1846 | void XEmitter::VDIVSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0xF2, sseDIV, regOp1, regOp2, arg);} | ||
| 1847 | void XEmitter::VADDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0x66, sseADD, regOp1, regOp2, arg);} | ||
| 1848 | void XEmitter::VSUBPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0x66, sseSUB, regOp1, regOp2, arg);} | ||
| 1849 | void XEmitter::VMULPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0x66, sseMUL, regOp1, regOp2, arg);} | ||
| 1850 | void XEmitter::VDIVPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0x66, sseDIV, regOp1, regOp2, arg);} | ||
| 1851 | void XEmitter::VSQRTSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0xF2, sseSQRT, regOp1, regOp2, arg);} | ||
| 1852 | void XEmitter::VSHUFPD(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 shuffle) {WriteAVXOp(0x66, sseSHUF, regOp1, regOp2, arg, 1); Write8(shuffle);} | ||
| 1853 | void XEmitter::VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, OpArg arg){WriteAVXOp(0x66, 0x14, regOp1, regOp2, arg);} | ||
| 1854 | void XEmitter::VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, OpArg arg){WriteAVXOp(0x66, 0x15, regOp1, regOp2, arg);} | ||
| 1855 | |||
| 1856 | void XEmitter::VANDPS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x00, sseAND, regOp1, regOp2, arg); } | ||
| 1857 | void XEmitter::VANDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, sseAND, regOp1, regOp2, arg); } | ||
| 1858 | void XEmitter::VANDNPS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x00, sseANDN, regOp1, regOp2, arg); } | ||
| 1859 | void XEmitter::VANDNPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, sseANDN, regOp1, regOp2, arg); } | ||
| 1860 | void XEmitter::VORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x00, sseOR, regOp1, regOp2, arg); } | ||
| 1861 | void XEmitter::VORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, sseOR, regOp1, regOp2, arg); } | ||
| 1862 | void XEmitter::VXORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x00, sseXOR, regOp1, regOp2, arg); } | ||
| 1863 | void XEmitter::VXORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, sseXOR, regOp1, regOp2, arg); } | ||
| 1864 | |||
| 1865 | void XEmitter::VPAND(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0xDB, regOp1, regOp2, arg); } | ||
| 1866 | void XEmitter::VPANDN(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0xDF, regOp1, regOp2, arg); } | ||
| 1867 | void XEmitter::VPOR(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0xEB, regOp1, regOp2, arg); } | ||
| 1868 | void XEmitter::VPXOR(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0xEF, regOp1, regOp2, arg); } | ||
| 1869 | |||
| 1870 | void XEmitter::VFMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3898, regOp1, regOp2, arg); } | ||
| 1871 | void XEmitter::VFMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A8, regOp1, regOp2, arg); } | ||
| 1872 | void XEmitter::VFMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B8, regOp1, regOp2, arg); } | ||
| 1873 | void XEmitter::VFMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3898, regOp1, regOp2, arg, 1); } | ||
| 1874 | void XEmitter::VFMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A8, regOp1, regOp2, arg, 1); } | ||
| 1875 | void XEmitter::VFMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B8, regOp1, regOp2, arg, 1); } | ||
| 1876 | void XEmitter::VFMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3899, regOp1, regOp2, arg); } | ||
| 1877 | void XEmitter::VFMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A9, regOp1, regOp2, arg); } | ||
| 1878 | void XEmitter::VFMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B9, regOp1, regOp2, arg); } | ||
| 1879 | void XEmitter::VFMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3899, regOp1, regOp2, arg, 1); } | ||
| 1880 | void XEmitter::VFMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A9, regOp1, regOp2, arg, 1); } | ||
| 1881 | void XEmitter::VFMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B9, regOp1, regOp2, arg, 1); } | ||
| 1882 | void XEmitter::VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389A, regOp1, regOp2, arg); } | ||
| 1883 | void XEmitter::VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AA, regOp1, regOp2, arg); } | ||
| 1884 | void XEmitter::VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BA, regOp1, regOp2, arg); } | ||
| 1885 | void XEmitter::VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389A, regOp1, regOp2, arg, 1); } | ||
| 1886 | void XEmitter::VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AA, regOp1, regOp2, arg, 1); } | ||
| 1887 | void XEmitter::VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BA, regOp1, regOp2, arg, 1); } | ||
| 1888 | void XEmitter::VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389B, regOp1, regOp2, arg); } | ||
| 1889 | void XEmitter::VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AB, regOp1, regOp2, arg); } | ||
| 1890 | void XEmitter::VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BB, regOp1, regOp2, arg); } | ||
| 1891 | void XEmitter::VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389B, regOp1, regOp2, arg, 1); } | ||
| 1892 | void XEmitter::VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AB, regOp1, regOp2, arg, 1); } | ||
| 1893 | void XEmitter::VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BB, regOp1, regOp2, arg, 1); } | ||
| 1894 | void XEmitter::VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389C, regOp1, regOp2, arg); } | ||
| 1895 | void XEmitter::VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AC, regOp1, regOp2, arg); } | ||
| 1896 | void XEmitter::VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BC, regOp1, regOp2, arg); } | ||
| 1897 | void XEmitter::VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389C, regOp1, regOp2, arg, 1); } | ||
| 1898 | void XEmitter::VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AC, regOp1, regOp2, arg, 1); } | ||
| 1899 | void XEmitter::VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BC, regOp1, regOp2, arg, 1); } | ||
| 1900 | void XEmitter::VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389D, regOp1, regOp2, arg); } | ||
| 1901 | void XEmitter::VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AD, regOp1, regOp2, arg); } | ||
| 1902 | void XEmitter::VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BD, regOp1, regOp2, arg); } | ||
| 1903 | void XEmitter::VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389D, regOp1, regOp2, arg, 1); } | ||
| 1904 | void XEmitter::VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AD, regOp1, regOp2, arg, 1); } | ||
| 1905 | void XEmitter::VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BD, regOp1, regOp2, arg, 1); } | ||
| 1906 | void XEmitter::VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389E, regOp1, regOp2, arg); } | ||
| 1907 | void XEmitter::VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AE, regOp1, regOp2, arg); } | ||
| 1908 | void XEmitter::VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BE, regOp1, regOp2, arg); } | ||
| 1909 | void XEmitter::VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389E, regOp1, regOp2, arg, 1); } | ||
| 1910 | void XEmitter::VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AE, regOp1, regOp2, arg, 1); } | ||
| 1911 | void XEmitter::VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BE, regOp1, regOp2, arg, 1); } | ||
| 1912 | void XEmitter::VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389F, regOp1, regOp2, arg); } | ||
| 1913 | void XEmitter::VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AF, regOp1, regOp2, arg); } | ||
| 1914 | void XEmitter::VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BF, regOp1, regOp2, arg); } | ||
| 1915 | void XEmitter::VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389F, regOp1, regOp2, arg, 1); } | ||
| 1916 | void XEmitter::VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AF, regOp1, regOp2, arg, 1); } | ||
| 1917 | void XEmitter::VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BF, regOp1, regOp2, arg, 1); } | ||
| 1918 | void XEmitter::VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3896, regOp1, regOp2, arg); } | ||
| 1919 | void XEmitter::VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A6, regOp1, regOp2, arg); } | ||
| 1920 | void XEmitter::VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B6, regOp1, regOp2, arg); } | ||
| 1921 | void XEmitter::VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3896, regOp1, regOp2, arg, 1); } | ||
| 1922 | void XEmitter::VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A6, regOp1, regOp2, arg, 1); } | ||
| 1923 | void XEmitter::VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B6, regOp1, regOp2, arg, 1); } | ||
| 1924 | void XEmitter::VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3897, regOp1, regOp2, arg); } | ||
| 1925 | void XEmitter::VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A7, regOp1, regOp2, arg); } | ||
| 1926 | void XEmitter::VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B7, regOp1, regOp2, arg); } | ||
| 1927 | void XEmitter::VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3897, regOp1, regOp2, arg, 1); } | ||
| 1928 | void XEmitter::VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A7, regOp1, regOp2, arg, 1); } | ||
| 1929 | void XEmitter::VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B7, regOp1, regOp2, arg, 1); } | ||
| 1930 | |||
| 1931 | void XEmitter::SARX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0xF3, 0x38F7, regOp1, regOp2, arg);} | ||
| 1932 | void XEmitter::SHLX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0x66, 0x38F7, regOp1, regOp2, arg);} | ||
| 1933 | void XEmitter::SHRX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0xF2, 0x38F7, regOp1, regOp2, arg);} | ||
| 1934 | void XEmitter::RORX(int bits, X64Reg regOp, OpArg arg, u8 rotate) {WriteBMI2Op(bits, 0xF2, 0x3AF0, regOp, INVALID_REG, arg, 1); Write8(rotate);} | ||
| 1935 | void XEmitter::PEXT(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI2Op(bits, 0xF3, 0x38F5, regOp1, regOp2, arg);} | ||
| 1936 | void XEmitter::PDEP(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI2Op(bits, 0xF2, 0x38F5, regOp1, regOp2, arg);} | ||
| 1937 | void XEmitter::MULX(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI2Op(bits, 0xF2, 0x38F6, regOp2, regOp1, arg);} | ||
| 1938 | void XEmitter::BZHI(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0x00, 0x38F5, regOp1, regOp2, arg);} | ||
| 1939 | void XEmitter::BLSR(int bits, X64Reg regOp, OpArg arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x1, regOp, arg);} | ||
| 1940 | void XEmitter::BLSMSK(int bits, X64Reg regOp, OpArg arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x2, regOp, arg);} | ||
| 1941 | void XEmitter::BLSI(int bits, X64Reg regOp, OpArg arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x3, regOp, arg);} | ||
| 1942 | void XEmitter::BEXTR(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2){WriteBMI1Op(bits, 0x00, 0x38F7, regOp1, regOp2, arg);} | ||
| 1943 | void XEmitter::ANDN(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI1Op(bits, 0x00, 0x38F2, regOp1, regOp2, arg);} | ||
| 1944 | |||
| 1945 | // Prefixes | ||
| 1946 | |||
| 1947 | void XEmitter::LOCK() { Write8(0xF0); } | ||
| 1948 | void XEmitter::REP() { Write8(0xF3); } | ||
| 1949 | void XEmitter::REPNE() { Write8(0xF2); } | ||
| 1950 | void XEmitter::FSOverride() { Write8(0x64); } | ||
| 1951 | void XEmitter::GSOverride() { Write8(0x65); } | ||
| 1952 | |||
| 1953 | void XEmitter::FWAIT() | ||
| 1954 | { | ||
| 1955 | Write8(0x9B); | ||
| 1956 | } | ||
| 1957 | |||
| 1958 | // TODO: make this more generic | ||
| 1959 | void XEmitter::WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, OpArg arg) | ||
| 1960 | { | ||
| 1961 | int mf = 0; | ||
| 1962 | ASSERT_MSG(!(bits == 80 && op_80b == floatINVALID), "WriteFloatLoadStore: 80 bits not supported for this instruction"); | ||
| 1963 | switch (bits) | ||
| 1964 | { | ||
| 1965 | case 32: mf = 0; break; | ||
| 1966 | case 64: mf = 4; break; | ||
| 1967 | case 80: mf = 2; break; | ||
| 1968 | default: ASSERT_MSG(0, "WriteFloatLoadStore: invalid bits (should be 32/64/80)"); | ||
| 1969 | } | ||
| 1970 | Write8(0xd9 | mf); | ||
| 1971 | // x87 instructions use the reg field of the ModR/M byte as opcode: | ||
| 1972 | if (bits == 80) | ||
| 1973 | op = op_80b; | ||
| 1974 | arg.WriteRest(this, 0, (X64Reg) op); | ||
| 1975 | } | ||
| 1976 | |||
| 1977 | void XEmitter::FLD(int bits, OpArg src) {WriteFloatLoadStore(bits, floatLD, floatLD80, src);} | ||
| 1978 | void XEmitter::FST(int bits, OpArg dest) {WriteFloatLoadStore(bits, floatST, floatINVALID, dest);} | ||
| 1979 | void XEmitter::FSTP(int bits, OpArg dest) {WriteFloatLoadStore(bits, floatSTP, floatSTP80, dest);} | ||
| 1980 | void XEmitter::FNSTSW_AX() { Write8(0xDF); Write8(0xE0); } | ||
| 1981 | |||
| 1982 | void XEmitter::RDTSC() { Write8(0x0F); Write8(0x31); } | ||
| 1983 | |||
| 1984 | void XCodeBlock::PoisonMemory() { | ||
| 1985 | // x86/64: 0xCC = breakpoint | ||
| 1986 | memset(region, 0xCC, region_size); | ||
| 1987 | } | ||
| 1988 | |||
| 1989 | } | ||