diff options
Diffstat (limited to 'src/common/reader_writer_queue.h')
| -rw-r--r-- | src/common/reader_writer_queue.h | 941 |
1 files changed, 941 insertions, 0 deletions
diff --git a/src/common/reader_writer_queue.h b/src/common/reader_writer_queue.h new file mode 100644 index 000000000..8d2c9408c --- /dev/null +++ b/src/common/reader_writer_queue.h | |||
| @@ -0,0 +1,941 @@ | |||
| 1 | // ©2013-2020 Cameron Desrochers. | ||
| 2 | // Distributed under the simplified BSD license (see the license file that | ||
| 3 | // should have come with this header). | ||
| 4 | |||
| 5 | #pragma once | ||
| 6 | |||
| 7 | #include <cassert> | ||
| 8 | #include <cstdint> | ||
| 9 | #include <cstdlib> // For malloc/free/abort & size_t | ||
| 10 | #include <memory> | ||
| 11 | #include <new> | ||
| 12 | #include <stdexcept> | ||
| 13 | #include <type_traits> | ||
| 14 | #include <utility> | ||
| 15 | |||
| 16 | #include "common/atomic_helpers.h" | ||
| 17 | |||
| 18 | #if __cplusplus > 199711L || _MSC_VER >= 1700 // C++11 or VS2012 | ||
| 19 | #include <chrono> | ||
| 20 | #endif | ||
| 21 | |||
| 22 | // A lock-free queue for a single-consumer, single-producer architecture. | ||
| 23 | // The queue is also wait-free in the common path (except if more memory | ||
| 24 | // needs to be allocated, in which case malloc is called). | ||
| 25 | // Allocates memory sparingly, and only once if the original maximum size | ||
| 26 | // estimate is never exceeded. | ||
| 27 | // Tested on x86/x64 processors, but semantics should be correct for all | ||
| 28 | // architectures (given the right implementations in atomicops.h), provided | ||
| 29 | // that aligned integer and pointer accesses are naturally atomic. | ||
| 30 | // Note that there should only be one consumer thread and producer thread; | ||
| 31 | // Switching roles of the threads, or using multiple consecutive threads for | ||
| 32 | // one role, is not safe unless properly synchronized. | ||
| 33 | // Using the queue exclusively from one thread is fine, though a bit silly. | ||
| 34 | |||
| 35 | #ifndef MOODYCAMEL_CACHE_LINE_SIZE | ||
| 36 | #define MOODYCAMEL_CACHE_LINE_SIZE 64 | ||
| 37 | #endif | ||
| 38 | |||
| 39 | #ifndef MOODYCAMEL_EXCEPTIONS_ENABLED | ||
| 40 | #if (defined(_MSC_VER) && defined(_CPPUNWIND)) || (defined(__GNUC__) && defined(__EXCEPTIONS)) || \ | ||
| 41 | (!defined(_MSC_VER) && !defined(__GNUC__)) | ||
| 42 | #define MOODYCAMEL_EXCEPTIONS_ENABLED | ||
| 43 | #endif | ||
| 44 | #endif | ||
| 45 | |||
| 46 | #ifndef MOODYCAMEL_HAS_EMPLACE | ||
| 47 | #if !defined(_MSC_VER) || \ | ||
| 48 | _MSC_VER >= 1800 // variadic templates: either a non-MS compiler or VS >= 2013 | ||
| 49 | #define MOODYCAMEL_HAS_EMPLACE 1 | ||
| 50 | #endif | ||
| 51 | #endif | ||
| 52 | |||
| 53 | #ifndef MOODYCAMEL_MAYBE_ALIGN_TO_CACHELINE | ||
| 54 | #if defined(__APPLE__) && defined(__MACH__) && __cplusplus >= 201703L | ||
| 55 | // This is required to find out what deployment target we are using | ||
| 56 | #include <CoreFoundation/CoreFoundation.h> | ||
| 57 | #if !defined(MAC_OS_X_VERSION_MIN_REQUIRED) || \ | ||
| 58 | MAC_OS_X_VERSION_MIN_REQUIRED < MAC_OS_X_VERSION_10_14 | ||
| 59 | // C++17 new(size_t, align_val_t) is not backwards-compatible with older versions of macOS, so we | ||
| 60 | // can't support over-alignment in this case | ||
| 61 | #define MOODYCAMEL_MAYBE_ALIGN_TO_CACHELINE | ||
| 62 | #endif | ||
| 63 | #endif | ||
| 64 | #endif | ||
| 65 | |||
| 66 | #ifndef MOODYCAMEL_MAYBE_ALIGN_TO_CACHELINE | ||
| 67 | #define MOODYCAMEL_MAYBE_ALIGN_TO_CACHELINE AE_ALIGN(MOODYCAMEL_CACHE_LINE_SIZE) | ||
| 68 | #endif | ||
| 69 | |||
| 70 | #ifdef AE_VCPP | ||
| 71 | #pragma warning(push) | ||
| 72 | #pragma warning(disable : 4324) // structure was padded due to __declspec(align()) | ||
| 73 | #pragma warning(disable : 4820) // padding was added | ||
| 74 | #pragma warning(disable : 4127) // conditional expression is constant | ||
| 75 | #endif | ||
| 76 | |||
| 77 | namespace Common { | ||
| 78 | |||
| 79 | template <typename T, size_t MAX_BLOCK_SIZE = 512> | ||
| 80 | class MOODYCAMEL_MAYBE_ALIGN_TO_CACHELINE ReaderWriterQueue { | ||
| 81 | // Design: Based on a queue-of-queues. The low-level queues are just | ||
| 82 | // circular buffers with front and tail indices indicating where the | ||
| 83 | // next element to dequeue is and where the next element can be enqueued, | ||
| 84 | // respectively. Each low-level queue is called a "block". Each block | ||
| 85 | // wastes exactly one element's worth of space to keep the design simple | ||
| 86 | // (if front == tail then the queue is empty, and can't be full). | ||
| 87 | // The high-level queue is a circular linked list of blocks; again there | ||
| 88 | // is a front and tail, but this time they are pointers to the blocks. | ||
| 89 | // The front block is where the next element to be dequeued is, provided | ||
| 90 | // the block is not empty. The back block is where elements are to be | ||
| 91 | // enqueued, provided the block is not full. | ||
| 92 | // The producer thread owns all the tail indices/pointers. The consumer | ||
| 93 | // thread owns all the front indices/pointers. Both threads read each | ||
| 94 | // other's variables, but only the owning thread updates them. E.g. After | ||
| 95 | // the consumer reads the producer's tail, the tail may change before the | ||
| 96 | // consumer is done dequeuing an object, but the consumer knows the tail | ||
| 97 | // will never go backwards, only forwards. | ||
| 98 | // If there is no room to enqueue an object, an additional block (of | ||
| 99 | // equal size to the last block) is added. Blocks are never removed. | ||
| 100 | |||
| 101 | public: | ||
| 102 | typedef T value_type; | ||
| 103 | |||
| 104 | // Constructs a queue that can hold at least `size` elements without further | ||
| 105 | // allocations. If more than MAX_BLOCK_SIZE elements are requested, | ||
| 106 | // then several blocks of MAX_BLOCK_SIZE each are reserved (including | ||
| 107 | // at least one extra buffer block). | ||
| 108 | AE_NO_TSAN explicit ReaderWriterQueue(size_t size = 15) | ||
| 109 | #ifndef NDEBUG | ||
| 110 | : enqueuing(false), dequeuing(false) | ||
| 111 | #endif | ||
| 112 | { | ||
| 113 | assert(MAX_BLOCK_SIZE == ceilToPow2(MAX_BLOCK_SIZE) && | ||
| 114 | "MAX_BLOCK_SIZE must be a power of 2"); | ||
| 115 | assert(MAX_BLOCK_SIZE >= 2 && "MAX_BLOCK_SIZE must be at least 2"); | ||
| 116 | |||
| 117 | Block* firstBlock = nullptr; | ||
| 118 | |||
| 119 | largestBlockSize = | ||
| 120 | ceilToPow2(size + 1); // We need a spare slot to fit size elements in the block | ||
| 121 | if (largestBlockSize > MAX_BLOCK_SIZE * 2) { | ||
| 122 | // We need a spare block in case the producer is writing to a different block the | ||
| 123 | // consumer is reading from, and wants to enqueue the maximum number of elements. We | ||
| 124 | // also need a spare element in each block to avoid the ambiguity between front == tail | ||
| 125 | // meaning "empty" and "full". So the effective number of slots that are guaranteed to | ||
| 126 | // be usable at any time is the block size - 1 times the number of blocks - 1. Solving | ||
| 127 | // for size and applying a ceiling to the division gives us (after simplifying): | ||
| 128 | size_t initialBlockCount = (size + MAX_BLOCK_SIZE * 2 - 3) / (MAX_BLOCK_SIZE - 1); | ||
| 129 | largestBlockSize = MAX_BLOCK_SIZE; | ||
| 130 | Block* lastBlock = nullptr; | ||
| 131 | for (size_t i = 0; i != initialBlockCount; ++i) { | ||
| 132 | auto block = make_block(largestBlockSize); | ||
| 133 | if (block == nullptr) { | ||
| 134 | #ifdef MOODYCAMEL_EXCEPTIONS_ENABLED | ||
| 135 | throw std::bad_alloc(); | ||
| 136 | #else | ||
| 137 | abort(); | ||
| 138 | #endif | ||
| 139 | } | ||
| 140 | if (firstBlock == nullptr) { | ||
| 141 | firstBlock = block; | ||
| 142 | } else { | ||
| 143 | lastBlock->next = block; | ||
| 144 | } | ||
| 145 | lastBlock = block; | ||
| 146 | block->next = firstBlock; | ||
| 147 | } | ||
| 148 | } else { | ||
| 149 | firstBlock = make_block(largestBlockSize); | ||
| 150 | if (firstBlock == nullptr) { | ||
| 151 | #ifdef MOODYCAMEL_EXCEPTIONS_ENABLED | ||
| 152 | throw std::bad_alloc(); | ||
| 153 | #else | ||
| 154 | abort(); | ||
| 155 | #endif | ||
| 156 | } | ||
| 157 | firstBlock->next = firstBlock; | ||
| 158 | } | ||
| 159 | frontBlock = firstBlock; | ||
| 160 | tailBlock = firstBlock; | ||
| 161 | |||
| 162 | // Make sure the reader/writer threads will have the initialized memory setup above: | ||
| 163 | fence(memory_order_sync); | ||
| 164 | } | ||
| 165 | |||
| 166 | // Note: The queue should not be accessed concurrently while it's | ||
| 167 | // being moved. It's up to the user to synchronize this. | ||
| 168 | AE_NO_TSAN ReaderWriterQueue(ReaderWriterQueue&& other) | ||
| 169 | : frontBlock(other.frontBlock.load()), tailBlock(other.tailBlock.load()), | ||
| 170 | largestBlockSize(other.largestBlockSize) | ||
| 171 | #ifndef NDEBUG | ||
| 172 | , | ||
| 173 | enqueuing(false), dequeuing(false) | ||
| 174 | #endif | ||
| 175 | { | ||
| 176 | other.largestBlockSize = 32; | ||
| 177 | Block* b = other.make_block(other.largestBlockSize); | ||
| 178 | if (b == nullptr) { | ||
| 179 | #ifdef MOODYCAMEL_EXCEPTIONS_ENABLED | ||
| 180 | throw std::bad_alloc(); | ||
| 181 | #else | ||
| 182 | abort(); | ||
| 183 | #endif | ||
| 184 | } | ||
| 185 | b->next = b; | ||
| 186 | other.frontBlock = b; | ||
| 187 | other.tailBlock = b; | ||
| 188 | } | ||
| 189 | |||
| 190 | // Note: The queue should not be accessed concurrently while it's | ||
| 191 | // being moved. It's up to the user to synchronize this. | ||
| 192 | ReaderWriterQueue& operator=(ReaderWriterQueue&& other) AE_NO_TSAN { | ||
| 193 | Block* b = frontBlock.load(); | ||
| 194 | frontBlock = other.frontBlock.load(); | ||
| 195 | other.frontBlock = b; | ||
| 196 | b = tailBlock.load(); | ||
| 197 | tailBlock = other.tailBlock.load(); | ||
| 198 | other.tailBlock = b; | ||
| 199 | std::swap(largestBlockSize, other.largestBlockSize); | ||
| 200 | return *this; | ||
| 201 | } | ||
| 202 | |||
| 203 | // Note: The queue should not be accessed concurrently while it's | ||
| 204 | // being deleted. It's up to the user to synchronize this. | ||
| 205 | AE_NO_TSAN ~ReaderWriterQueue() { | ||
| 206 | // Make sure we get the latest version of all variables from other CPUs: | ||
| 207 | fence(memory_order_sync); | ||
| 208 | |||
| 209 | // Destroy any remaining objects in queue and free memory | ||
| 210 | Block* frontBlock_ = frontBlock; | ||
| 211 | Block* block = frontBlock_; | ||
| 212 | do { | ||
| 213 | Block* nextBlock = block->next; | ||
| 214 | size_t blockFront = block->front; | ||
| 215 | size_t blockTail = block->tail; | ||
| 216 | |||
| 217 | for (size_t i = blockFront; i != blockTail; i = (i + 1) & block->sizeMask) { | ||
| 218 | auto element = reinterpret_cast<T*>(block->data + i * sizeof(T)); | ||
| 219 | element->~T(); | ||
| 220 | (void)element; | ||
| 221 | } | ||
| 222 | |||
| 223 | auto rawBlock = block->rawThis; | ||
| 224 | block->~Block(); | ||
| 225 | std::free(rawBlock); | ||
| 226 | block = nextBlock; | ||
| 227 | } while (block != frontBlock_); | ||
| 228 | } | ||
| 229 | |||
| 230 | // Enqueues a copy of element if there is room in the queue. | ||
| 231 | // Returns true if the element was enqueued, false otherwise. | ||
| 232 | // Does not allocate memory. | ||
| 233 | AE_FORCEINLINE bool try_enqueue(T const& element) AE_NO_TSAN { | ||
| 234 | return inner_enqueue<CannotAlloc>(element); | ||
| 235 | } | ||
| 236 | |||
| 237 | // Enqueues a moved copy of element if there is room in the queue. | ||
| 238 | // Returns true if the element was enqueued, false otherwise. | ||
| 239 | // Does not allocate memory. | ||
| 240 | AE_FORCEINLINE bool try_enqueue(T&& element) AE_NO_TSAN { | ||
| 241 | return inner_enqueue<CannotAlloc>(std::forward<T>(element)); | ||
| 242 | } | ||
| 243 | |||
| 244 | #if MOODYCAMEL_HAS_EMPLACE | ||
| 245 | // Like try_enqueue() but with emplace semantics (i.e. construct-in-place). | ||
| 246 | template <typename... Args> | ||
| 247 | AE_FORCEINLINE bool try_emplace(Args&&... args) AE_NO_TSAN { | ||
| 248 | return inner_enqueue<CannotAlloc>(std::forward<Args>(args)...); | ||
| 249 | } | ||
| 250 | #endif | ||
| 251 | |||
| 252 | // Enqueues a copy of element on the queue. | ||
| 253 | // Allocates an additional block of memory if needed. | ||
| 254 | // Only fails (returns false) if memory allocation fails. | ||
| 255 | AE_FORCEINLINE bool enqueue(T const& element) AE_NO_TSAN { | ||
| 256 | return inner_enqueue<CanAlloc>(element); | ||
| 257 | } | ||
| 258 | |||
| 259 | // Enqueues a moved copy of element on the queue. | ||
| 260 | // Allocates an additional block of memory if needed. | ||
| 261 | // Only fails (returns false) if memory allocation fails. | ||
| 262 | AE_FORCEINLINE bool enqueue(T&& element) AE_NO_TSAN { | ||
| 263 | return inner_enqueue<CanAlloc>(std::forward<T>(element)); | ||
| 264 | } | ||
| 265 | |||
| 266 | #if MOODYCAMEL_HAS_EMPLACE | ||
| 267 | // Like enqueue() but with emplace semantics (i.e. construct-in-place). | ||
| 268 | template <typename... Args> | ||
| 269 | AE_FORCEINLINE bool emplace(Args&&... args) AE_NO_TSAN { | ||
| 270 | return inner_enqueue<CanAlloc>(std::forward<Args>(args)...); | ||
| 271 | } | ||
| 272 | #endif | ||
| 273 | |||
| 274 | // Attempts to dequeue an element; if the queue is empty, | ||
| 275 | // returns false instead. If the queue has at least one element, | ||
| 276 | // moves front to result using operator=, then returns true. | ||
| 277 | template <typename U> | ||
| 278 | bool try_dequeue(U& result) AE_NO_TSAN { | ||
| 279 | #ifndef NDEBUG | ||
| 280 | ReentrantGuard guard(this->dequeuing); | ||
| 281 | #endif | ||
| 282 | |||
| 283 | // High-level pseudocode: | ||
| 284 | // Remember where the tail block is | ||
| 285 | // If the front block has an element in it, dequeue it | ||
| 286 | // Else | ||
| 287 | // If front block was the tail block when we entered the function, return false | ||
| 288 | // Else advance to next block and dequeue the item there | ||
| 289 | |||
| 290 | // Note that we have to use the value of the tail block from before we check if the front | ||
| 291 | // block is full or not, in case the front block is empty and then, before we check if the | ||
| 292 | // tail block is at the front block or not, the producer fills up the front block *and | ||
| 293 | // moves on*, which would make us skip a filled block. Seems unlikely, but was consistently | ||
| 294 | // reproducible in practice. | ||
| 295 | // In order to avoid overhead in the common case, though, we do a double-checked pattern | ||
| 296 | // where we have the fast path if the front block is not empty, then read the tail block, | ||
| 297 | // then re-read the front block and check if it's not empty again, then check if the tail | ||
| 298 | // block has advanced. | ||
| 299 | |||
| 300 | Block* frontBlock_ = frontBlock.load(); | ||
| 301 | size_t blockTail = frontBlock_->localTail; | ||
| 302 | size_t blockFront = frontBlock_->front.load(); | ||
| 303 | |||
| 304 | if (blockFront != blockTail || | ||
| 305 | blockFront != (frontBlock_->localTail = frontBlock_->tail.load())) { | ||
| 306 | fence(memory_order_acquire); | ||
| 307 | |||
| 308 | non_empty_front_block: | ||
| 309 | // Front block not empty, dequeue from here | ||
| 310 | auto element = reinterpret_cast<T*>(frontBlock_->data + blockFront * sizeof(T)); | ||
| 311 | result = std::move(*element); | ||
| 312 | element->~T(); | ||
| 313 | |||
| 314 | blockFront = (blockFront + 1) & frontBlock_->sizeMask; | ||
| 315 | |||
| 316 | fence(memory_order_release); | ||
| 317 | frontBlock_->front = blockFront; | ||
| 318 | } else if (frontBlock_ != tailBlock.load()) { | ||
| 319 | fence(memory_order_acquire); | ||
| 320 | |||
| 321 | frontBlock_ = frontBlock.load(); | ||
| 322 | blockTail = frontBlock_->localTail = frontBlock_->tail.load(); | ||
| 323 | blockFront = frontBlock_->front.load(); | ||
| 324 | fence(memory_order_acquire); | ||
| 325 | |||
| 326 | if (blockFront != blockTail) { | ||
| 327 | // Oh look, the front block isn't empty after all | ||
| 328 | goto non_empty_front_block; | ||
| 329 | } | ||
| 330 | |||
| 331 | // Front block is empty but there's another block ahead, advance to it | ||
| 332 | Block* nextBlock = frontBlock_->next; | ||
| 333 | // Don't need an acquire fence here since next can only ever be set on the tailBlock, | ||
| 334 | // and we're not the tailBlock, and we did an acquire earlier after reading tailBlock | ||
| 335 | // which ensures next is up-to-date on this CPU in case we recently were at tailBlock. | ||
| 336 | |||
| 337 | size_t nextBlockFront = nextBlock->front.load(); | ||
| 338 | size_t nextBlockTail = nextBlock->localTail = nextBlock->tail.load(); | ||
| 339 | fence(memory_order_acquire); | ||
| 340 | |||
| 341 | // Since the tailBlock is only ever advanced after being written to, | ||
| 342 | // we know there's for sure an element to dequeue on it | ||
| 343 | assert(nextBlockFront != nextBlockTail); | ||
| 344 | AE_UNUSED(nextBlockTail); | ||
| 345 | |||
| 346 | // We're done with this block, let the producer use it if it needs | ||
| 347 | fence(memory_order_release); // Expose possibly pending changes to frontBlock->front | ||
| 348 | // from last dequeue | ||
| 349 | frontBlock = frontBlock_ = nextBlock; | ||
| 350 | |||
| 351 | compiler_fence(memory_order_release); // Not strictly needed | ||
| 352 | |||
| 353 | auto element = reinterpret_cast<T*>(frontBlock_->data + nextBlockFront * sizeof(T)); | ||
| 354 | |||
| 355 | result = std::move(*element); | ||
| 356 | element->~T(); | ||
| 357 | |||
| 358 | nextBlockFront = (nextBlockFront + 1) & frontBlock_->sizeMask; | ||
| 359 | |||
| 360 | fence(memory_order_release); | ||
| 361 | frontBlock_->front = nextBlockFront; | ||
| 362 | } else { | ||
| 363 | // No elements in current block and no other block to advance to | ||
| 364 | return false; | ||
| 365 | } | ||
| 366 | |||
| 367 | return true; | ||
| 368 | } | ||
| 369 | |||
| 370 | // Returns a pointer to the front element in the queue (the one that | ||
| 371 | // would be removed next by a call to `try_dequeue` or `pop`). If the | ||
| 372 | // queue appears empty at the time the method is called, nullptr is | ||
| 373 | // returned instead. | ||
| 374 | // Must be called only from the consumer thread. | ||
| 375 | T* peek() const AE_NO_TSAN { | ||
| 376 | #ifndef NDEBUG | ||
| 377 | ReentrantGuard guard(this->dequeuing); | ||
| 378 | #endif | ||
| 379 | // See try_dequeue() for reasoning | ||
| 380 | |||
| 381 | Block* frontBlock_ = frontBlock.load(); | ||
| 382 | size_t blockTail = frontBlock_->localTail; | ||
| 383 | size_t blockFront = frontBlock_->front.load(); | ||
| 384 | |||
| 385 | if (blockFront != blockTail || | ||
| 386 | blockFront != (frontBlock_->localTail = frontBlock_->tail.load())) { | ||
| 387 | fence(memory_order_acquire); | ||
| 388 | non_empty_front_block: | ||
| 389 | return reinterpret_cast<T*>(frontBlock_->data + blockFront * sizeof(T)); | ||
| 390 | } else if (frontBlock_ != tailBlock.load()) { | ||
| 391 | fence(memory_order_acquire); | ||
| 392 | frontBlock_ = frontBlock.load(); | ||
| 393 | blockTail = frontBlock_->localTail = frontBlock_->tail.load(); | ||
| 394 | blockFront = frontBlock_->front.load(); | ||
| 395 | fence(memory_order_acquire); | ||
| 396 | |||
| 397 | if (blockFront != blockTail) { | ||
| 398 | goto non_empty_front_block; | ||
| 399 | } | ||
| 400 | |||
| 401 | Block* nextBlock = frontBlock_->next; | ||
| 402 | |||
| 403 | size_t nextBlockFront = nextBlock->front.load(); | ||
| 404 | fence(memory_order_acquire); | ||
| 405 | |||
| 406 | assert(nextBlockFront != nextBlock->tail.load()); | ||
| 407 | return reinterpret_cast<T*>(nextBlock->data + nextBlockFront * sizeof(T)); | ||
| 408 | } | ||
| 409 | |||
| 410 | return nullptr; | ||
| 411 | } | ||
| 412 | |||
| 413 | // Removes the front element from the queue, if any, without returning it. | ||
| 414 | // Returns true on success, or false if the queue appeared empty at the time | ||
| 415 | // `pop` was called. | ||
| 416 | bool pop() AE_NO_TSAN { | ||
| 417 | #ifndef NDEBUG | ||
| 418 | ReentrantGuard guard(this->dequeuing); | ||
| 419 | #endif | ||
| 420 | // See try_dequeue() for reasoning | ||
| 421 | |||
| 422 | Block* frontBlock_ = frontBlock.load(); | ||
| 423 | size_t blockTail = frontBlock_->localTail; | ||
| 424 | size_t blockFront = frontBlock_->front.load(); | ||
| 425 | |||
| 426 | if (blockFront != blockTail || | ||
| 427 | blockFront != (frontBlock_->localTail = frontBlock_->tail.load())) { | ||
| 428 | fence(memory_order_acquire); | ||
| 429 | |||
| 430 | non_empty_front_block: | ||
| 431 | auto element = reinterpret_cast<T*>(frontBlock_->data + blockFront * sizeof(T)); | ||
| 432 | element->~T(); | ||
| 433 | |||
| 434 | blockFront = (blockFront + 1) & frontBlock_->sizeMask; | ||
| 435 | |||
| 436 | fence(memory_order_release); | ||
| 437 | frontBlock_->front = blockFront; | ||
| 438 | } else if (frontBlock_ != tailBlock.load()) { | ||
| 439 | fence(memory_order_acquire); | ||
| 440 | frontBlock_ = frontBlock.load(); | ||
| 441 | blockTail = frontBlock_->localTail = frontBlock_->tail.load(); | ||
| 442 | blockFront = frontBlock_->front.load(); | ||
| 443 | fence(memory_order_acquire); | ||
| 444 | |||
| 445 | if (blockFront != blockTail) { | ||
| 446 | goto non_empty_front_block; | ||
| 447 | } | ||
| 448 | |||
| 449 | // Front block is empty but there's another block ahead, advance to it | ||
| 450 | Block* nextBlock = frontBlock_->next; | ||
| 451 | |||
| 452 | size_t nextBlockFront = nextBlock->front.load(); | ||
| 453 | size_t nextBlockTail = nextBlock->localTail = nextBlock->tail.load(); | ||
| 454 | fence(memory_order_acquire); | ||
| 455 | |||
| 456 | assert(nextBlockFront != nextBlockTail); | ||
| 457 | AE_UNUSED(nextBlockTail); | ||
| 458 | |||
| 459 | fence(memory_order_release); | ||
| 460 | frontBlock = frontBlock_ = nextBlock; | ||
| 461 | |||
| 462 | compiler_fence(memory_order_release); | ||
| 463 | |||
| 464 | auto element = reinterpret_cast<T*>(frontBlock_->data + nextBlockFront * sizeof(T)); | ||
| 465 | element->~T(); | ||
| 466 | |||
| 467 | nextBlockFront = (nextBlockFront + 1) & frontBlock_->sizeMask; | ||
| 468 | |||
| 469 | fence(memory_order_release); | ||
| 470 | frontBlock_->front = nextBlockFront; | ||
| 471 | } else { | ||
| 472 | // No elements in current block and no other block to advance to | ||
| 473 | return false; | ||
| 474 | } | ||
| 475 | |||
| 476 | return true; | ||
| 477 | } | ||
| 478 | |||
| 479 | // Returns the approximate number of items currently in the queue. | ||
| 480 | // Safe to call from both the producer and consumer threads. | ||
| 481 | inline size_t size_approx() const AE_NO_TSAN { | ||
| 482 | size_t result = 0; | ||
| 483 | Block* frontBlock_ = frontBlock.load(); | ||
| 484 | Block* block = frontBlock_; | ||
| 485 | do { | ||
| 486 | fence(memory_order_acquire); | ||
| 487 | size_t blockFront = block->front.load(); | ||
| 488 | size_t blockTail = block->tail.load(); | ||
| 489 | result += (blockTail - blockFront) & block->sizeMask; | ||
| 490 | block = block->next.load(); | ||
| 491 | } while (block != frontBlock_); | ||
| 492 | return result; | ||
| 493 | } | ||
| 494 | |||
| 495 | // Returns the total number of items that could be enqueued without incurring | ||
| 496 | // an allocation when this queue is empty. | ||
| 497 | // Safe to call from both the producer and consumer threads. | ||
| 498 | // | ||
| 499 | // NOTE: The actual capacity during usage may be different depending on the consumer. | ||
| 500 | // If the consumer is removing elements concurrently, the producer cannot add to | ||
| 501 | // the block the consumer is removing from until it's completely empty, except in | ||
| 502 | // the case where the producer was writing to the same block the consumer was | ||
| 503 | // reading from the whole time. | ||
| 504 | inline size_t max_capacity() const { | ||
| 505 | size_t result = 0; | ||
| 506 | Block* frontBlock_ = frontBlock.load(); | ||
| 507 | Block* block = frontBlock_; | ||
| 508 | do { | ||
| 509 | fence(memory_order_acquire); | ||
| 510 | result += block->sizeMask; | ||
| 511 | block = block->next.load(); | ||
| 512 | } while (block != frontBlock_); | ||
| 513 | return result; | ||
| 514 | } | ||
| 515 | |||
| 516 | private: | ||
| 517 | enum AllocationMode { CanAlloc, CannotAlloc }; | ||
| 518 | |||
| 519 | #if MOODYCAMEL_HAS_EMPLACE | ||
| 520 | template <AllocationMode canAlloc, typename... Args> | ||
| 521 | bool inner_enqueue(Args&&... args) AE_NO_TSAN | ||
| 522 | #else | ||
| 523 | template <AllocationMode canAlloc, typename U> | ||
| 524 | bool inner_enqueue(U&& element) AE_NO_TSAN | ||
| 525 | #endif | ||
| 526 | { | ||
| 527 | #ifndef NDEBUG | ||
| 528 | ReentrantGuard guard(this->enqueuing); | ||
| 529 | #endif | ||
| 530 | |||
| 531 | // High-level pseudocode (assuming we're allowed to alloc a new block): | ||
| 532 | // If room in tail block, add to tail | ||
| 533 | // Else check next block | ||
| 534 | // If next block is not the head block, enqueue on next block | ||
| 535 | // Else create a new block and enqueue there | ||
| 536 | // Advance tail to the block we just enqueued to | ||
| 537 | |||
| 538 | Block* tailBlock_ = tailBlock.load(); | ||
| 539 | size_t blockFront = tailBlock_->localFront; | ||
| 540 | size_t blockTail = tailBlock_->tail.load(); | ||
| 541 | |||
| 542 | size_t nextBlockTail = (blockTail + 1) & tailBlock_->sizeMask; | ||
| 543 | if (nextBlockTail != blockFront || | ||
| 544 | nextBlockTail != (tailBlock_->localFront = tailBlock_->front.load())) { | ||
| 545 | fence(memory_order_acquire); | ||
| 546 | // This block has room for at least one more element | ||
| 547 | char* location = tailBlock_->data + blockTail * sizeof(T); | ||
| 548 | #if MOODYCAMEL_HAS_EMPLACE | ||
| 549 | new (location) T(std::forward<Args>(args)...); | ||
| 550 | #else | ||
| 551 | new (location) T(std::forward<U>(element)); | ||
| 552 | #endif | ||
| 553 | |||
| 554 | fence(memory_order_release); | ||
| 555 | tailBlock_->tail = nextBlockTail; | ||
| 556 | } else { | ||
| 557 | fence(memory_order_acquire); | ||
| 558 | if (tailBlock_->next.load() != frontBlock) { | ||
| 559 | // Note that the reason we can't advance to the frontBlock and start adding new | ||
| 560 | // entries there is because if we did, then dequeue would stay in that block, | ||
| 561 | // eventually reading the new values, instead of advancing to the next full block | ||
| 562 | // (whose values were enqueued first and so should be consumed first). | ||
| 563 | |||
| 564 | fence(memory_order_acquire); // Ensure we get latest writes if we got the latest | ||
| 565 | // frontBlock | ||
| 566 | |||
| 567 | // tailBlock is full, but there's a free block ahead, use it | ||
| 568 | Block* tailBlockNext = tailBlock_->next.load(); | ||
| 569 | size_t nextBlockFront = tailBlockNext->localFront = tailBlockNext->front.load(); | ||
| 570 | nextBlockTail = tailBlockNext->tail.load(); | ||
| 571 | fence(memory_order_acquire); | ||
| 572 | |||
| 573 | // This block must be empty since it's not the head block and we | ||
| 574 | // go through the blocks in a circle | ||
| 575 | assert(nextBlockFront == nextBlockTail); | ||
| 576 | tailBlockNext->localFront = nextBlockFront; | ||
| 577 | |||
| 578 | char* location = tailBlockNext->data + nextBlockTail * sizeof(T); | ||
| 579 | #if MOODYCAMEL_HAS_EMPLACE | ||
| 580 | new (location) T(std::forward<Args>(args)...); | ||
| 581 | #else | ||
| 582 | new (location) T(std::forward<U>(element)); | ||
| 583 | #endif | ||
| 584 | |||
| 585 | tailBlockNext->tail = (nextBlockTail + 1) & tailBlockNext->sizeMask; | ||
| 586 | |||
| 587 | fence(memory_order_release); | ||
| 588 | tailBlock = tailBlockNext; | ||
| 589 | } else if (canAlloc == CanAlloc) { | ||
| 590 | // tailBlock is full and there's no free block ahead; create a new block | ||
| 591 | auto newBlockSize = | ||
| 592 | largestBlockSize >= MAX_BLOCK_SIZE ? largestBlockSize : largestBlockSize * 2; | ||
| 593 | auto newBlock = make_block(newBlockSize); | ||
| 594 | if (newBlock == nullptr) { | ||
| 595 | // Could not allocate a block! | ||
| 596 | return false; | ||
| 597 | } | ||
| 598 | largestBlockSize = newBlockSize; | ||
| 599 | |||
| 600 | #if MOODYCAMEL_HAS_EMPLACE | ||
| 601 | new (newBlock->data) T(std::forward<Args>(args)...); | ||
| 602 | #else | ||
| 603 | new (newBlock->data) T(std::forward<U>(element)); | ||
| 604 | #endif | ||
| 605 | assert(newBlock->front == 0); | ||
| 606 | newBlock->tail = newBlock->localTail = 1; | ||
| 607 | |||
| 608 | newBlock->next = tailBlock_->next.load(); | ||
| 609 | tailBlock_->next = newBlock; | ||
| 610 | |||
| 611 | // Might be possible for the dequeue thread to see the new tailBlock->next | ||
| 612 | // *without* seeing the new tailBlock value, but this is OK since it can't | ||
| 613 | // advance to the next block until tailBlock is set anyway (because the only | ||
| 614 | // case where it could try to read the next is if it's already at the tailBlock, | ||
| 615 | // and it won't advance past tailBlock in any circumstance). | ||
| 616 | |||
| 617 | fence(memory_order_release); | ||
| 618 | tailBlock = newBlock; | ||
| 619 | } else if (canAlloc == CannotAlloc) { | ||
| 620 | // Would have had to allocate a new block to enqueue, but not allowed | ||
| 621 | return false; | ||
| 622 | } else { | ||
| 623 | assert(false && "Should be unreachable code"); | ||
| 624 | return false; | ||
| 625 | } | ||
| 626 | } | ||
| 627 | |||
| 628 | return true; | ||
| 629 | } | ||
| 630 | |||
| 631 | // Disable copying | ||
| 632 | ReaderWriterQueue(ReaderWriterQueue const&) {} | ||
| 633 | |||
| 634 | // Disable assignment | ||
| 635 | ReaderWriterQueue& operator=(ReaderWriterQueue const&) {} | ||
| 636 | |||
| 637 | AE_FORCEINLINE static size_t ceilToPow2(size_t x) { | ||
| 638 | // From http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2 | ||
| 639 | --x; | ||
| 640 | x |= x >> 1; | ||
| 641 | x |= x >> 2; | ||
| 642 | x |= x >> 4; | ||
| 643 | for (size_t i = 1; i < sizeof(size_t); i <<= 1) { | ||
| 644 | x |= x >> (i << 3); | ||
| 645 | } | ||
| 646 | ++x; | ||
| 647 | return x; | ||
| 648 | } | ||
| 649 | |||
| 650 | template <typename U> | ||
| 651 | static AE_FORCEINLINE char* align_for(char* ptr) AE_NO_TSAN { | ||
| 652 | const std::size_t alignment = std::alignment_of<U>::value; | ||
| 653 | return ptr + (alignment - (reinterpret_cast<std::uintptr_t>(ptr) % alignment)) % alignment; | ||
| 654 | } | ||
| 655 | |||
| 656 | private: | ||
| 657 | #ifndef NDEBUG | ||
| 658 | struct ReentrantGuard { | ||
| 659 | AE_NO_TSAN ReentrantGuard(weak_atomic<bool>& _inSection) : inSection(_inSection) { | ||
| 660 | assert(!inSection && | ||
| 661 | "Concurrent (or re-entrant) enqueue or dequeue operation detected (only one " | ||
| 662 | "thread at a time may hold the producer or consumer role)"); | ||
| 663 | inSection = true; | ||
| 664 | } | ||
| 665 | |||
| 666 | AE_NO_TSAN ~ReentrantGuard() { | ||
| 667 | inSection = false; | ||
| 668 | } | ||
| 669 | |||
| 670 | private: | ||
| 671 | ReentrantGuard& operator=(ReentrantGuard const&); | ||
| 672 | |||
| 673 | private: | ||
| 674 | weak_atomic<bool>& inSection; | ||
| 675 | }; | ||
| 676 | #endif | ||
| 677 | |||
| 678 | struct Block { | ||
| 679 | // Avoid false-sharing by putting highly contended variables on their own cache lines | ||
| 680 | weak_atomic<size_t> front; // (Atomic) Elements are read from here | ||
| 681 | size_t localTail; // An uncontended shadow copy of tail, owned by the consumer | ||
| 682 | |||
| 683 | char cachelineFiller0[MOODYCAMEL_CACHE_LINE_SIZE - sizeof(weak_atomic<size_t>) - | ||
| 684 | sizeof(size_t)]; | ||
| 685 | weak_atomic<size_t> tail; // (Atomic) Elements are enqueued here | ||
| 686 | size_t localFront; | ||
| 687 | |||
| 688 | char cachelineFiller1[MOODYCAMEL_CACHE_LINE_SIZE - sizeof(weak_atomic<size_t>) - | ||
| 689 | sizeof(size_t)]; // next isn't very contended, but we don't want it on | ||
| 690 | // the same cache line as tail (which is) | ||
| 691 | weak_atomic<Block*> next; // (Atomic) | ||
| 692 | |||
| 693 | char* data; // Contents (on heap) are aligned to T's alignment | ||
| 694 | |||
| 695 | const size_t sizeMask; | ||
| 696 | |||
| 697 | // size must be a power of two (and greater than 0) | ||
| 698 | AE_NO_TSAN Block(size_t const& _size, char* _rawThis, char* _data) | ||
| 699 | : front(0UL), localTail(0), tail(0UL), localFront(0), next(nullptr), data(_data), | ||
| 700 | sizeMask(_size - 1), rawThis(_rawThis) {} | ||
| 701 | |||
| 702 | private: | ||
| 703 | // C4512 - Assignment operator could not be generated | ||
| 704 | Block& operator=(Block const&); | ||
| 705 | |||
| 706 | public: | ||
| 707 | char* rawThis; | ||
| 708 | }; | ||
| 709 | |||
| 710 | static Block* make_block(size_t capacity) AE_NO_TSAN { | ||
| 711 | // Allocate enough memory for the block itself, as well as all the elements it will contain | ||
| 712 | auto size = sizeof(Block) + std::alignment_of<Block>::value - 1; | ||
| 713 | size += sizeof(T) * capacity + std::alignment_of<T>::value - 1; | ||
| 714 | auto newBlockRaw = static_cast<char*>(std::malloc(size)); | ||
| 715 | if (newBlockRaw == nullptr) { | ||
| 716 | return nullptr; | ||
| 717 | } | ||
| 718 | |||
| 719 | auto newBlockAligned = align_for<Block>(newBlockRaw); | ||
| 720 | auto newBlockData = align_for<T>(newBlockAligned + sizeof(Block)); | ||
| 721 | return new (newBlockAligned) Block(capacity, newBlockRaw, newBlockData); | ||
| 722 | } | ||
| 723 | |||
| 724 | private: | ||
| 725 | weak_atomic<Block*> frontBlock; // (Atomic) Elements are dequeued from this block | ||
| 726 | |||
| 727 | char cachelineFiller[MOODYCAMEL_CACHE_LINE_SIZE - sizeof(weak_atomic<Block*>)]; | ||
| 728 | weak_atomic<Block*> tailBlock; // (Atomic) Elements are enqueued to this block | ||
| 729 | |||
| 730 | size_t largestBlockSize; | ||
| 731 | |||
| 732 | #ifndef NDEBUG | ||
| 733 | weak_atomic<bool> enqueuing; | ||
| 734 | mutable weak_atomic<bool> dequeuing; | ||
| 735 | #endif | ||
| 736 | }; | ||
| 737 | |||
| 738 | // Like ReaderWriterQueue, but also providees blocking operations | ||
| 739 | template <typename T, size_t MAX_BLOCK_SIZE = 512> | ||
| 740 | class BlockingReaderWriterQueue { | ||
| 741 | private: | ||
| 742 | typedef ::Common::ReaderWriterQueue<T, MAX_BLOCK_SIZE> ReaderWriterQueue; | ||
| 743 | |||
| 744 | public: | ||
| 745 | explicit BlockingReaderWriterQueue(size_t size = 15) AE_NO_TSAN | ||
| 746 | : inner(size), | ||
| 747 | sema(new spsc_sema::LightweightSemaphore()) {} | ||
| 748 | |||
| 749 | BlockingReaderWriterQueue(BlockingReaderWriterQueue&& other) AE_NO_TSAN | ||
| 750 | : inner(std::move(other.inner)), | ||
| 751 | sema(std::move(other.sema)) {} | ||
| 752 | |||
| 753 | BlockingReaderWriterQueue& operator=(BlockingReaderWriterQueue&& other) AE_NO_TSAN { | ||
| 754 | std::swap(sema, other.sema); | ||
| 755 | std::swap(inner, other.inner); | ||
| 756 | return *this; | ||
| 757 | } | ||
| 758 | |||
| 759 | // Enqueues a copy of element if there is room in the queue. | ||
| 760 | // Returns true if the element was enqueued, false otherwise. | ||
| 761 | // Does not allocate memory. | ||
| 762 | AE_FORCEINLINE bool try_enqueue(T const& element) AE_NO_TSAN { | ||
| 763 | if (inner.try_enqueue(element)) { | ||
| 764 | sema->signal(); | ||
| 765 | return true; | ||
| 766 | } | ||
| 767 | return false; | ||
| 768 | } | ||
| 769 | |||
| 770 | // Enqueues a moved copy of element if there is room in the queue. | ||
| 771 | // Returns true if the element was enqueued, false otherwise. | ||
| 772 | // Does not allocate memory. | ||
| 773 | AE_FORCEINLINE bool try_enqueue(T&& element) AE_NO_TSAN { | ||
| 774 | if (inner.try_enqueue(std::forward<T>(element))) { | ||
| 775 | sema->signal(); | ||
| 776 | return true; | ||
| 777 | } | ||
| 778 | return false; | ||
| 779 | } | ||
| 780 | |||
| 781 | #if MOODYCAMEL_HAS_EMPLACE | ||
| 782 | // Like try_enqueue() but with emplace semantics (i.e. construct-in-place). | ||
| 783 | template <typename... Args> | ||
| 784 | AE_FORCEINLINE bool try_emplace(Args&&... args) AE_NO_TSAN { | ||
| 785 | if (inner.try_emplace(std::forward<Args>(args)...)) { | ||
| 786 | sema->signal(); | ||
| 787 | return true; | ||
| 788 | } | ||
| 789 | return false; | ||
| 790 | } | ||
| 791 | #endif | ||
| 792 | |||
| 793 | // Enqueues a copy of element on the queue. | ||
| 794 | // Allocates an additional block of memory if needed. | ||
| 795 | // Only fails (returns false) if memory allocation fails. | ||
| 796 | AE_FORCEINLINE bool enqueue(T const& element) AE_NO_TSAN { | ||
| 797 | if (inner.enqueue(element)) { | ||
| 798 | sema->signal(); | ||
| 799 | return true; | ||
| 800 | } | ||
| 801 | return false; | ||
| 802 | } | ||
| 803 | |||
| 804 | // Enqueues a moved copy of element on the queue. | ||
| 805 | // Allocates an additional block of memory if needed. | ||
| 806 | // Only fails (returns false) if memory allocation fails. | ||
| 807 | AE_FORCEINLINE bool enqueue(T&& element) AE_NO_TSAN { | ||
| 808 | if (inner.enqueue(std::forward<T>(element))) { | ||
| 809 | sema->signal(); | ||
| 810 | return true; | ||
| 811 | } | ||
| 812 | return false; | ||
| 813 | } | ||
| 814 | |||
| 815 | #if MOODYCAMEL_HAS_EMPLACE | ||
| 816 | // Like enqueue() but with emplace semantics (i.e. construct-in-place). | ||
| 817 | template <typename... Args> | ||
| 818 | AE_FORCEINLINE bool emplace(Args&&... args) AE_NO_TSAN { | ||
| 819 | if (inner.emplace(std::forward<Args>(args)...)) { | ||
| 820 | sema->signal(); | ||
| 821 | return true; | ||
| 822 | } | ||
| 823 | return false; | ||
| 824 | } | ||
| 825 | #endif | ||
| 826 | |||
| 827 | // Attempts to dequeue an element; if the queue is empty, | ||
| 828 | // returns false instead. If the queue has at least one element, | ||
| 829 | // moves front to result using operator=, then returns true. | ||
| 830 | template <typename U> | ||
| 831 | bool try_dequeue(U& result) AE_NO_TSAN { | ||
| 832 | if (sema->tryWait()) { | ||
| 833 | bool success = inner.try_dequeue(result); | ||
| 834 | assert(success); | ||
| 835 | AE_UNUSED(success); | ||
| 836 | return true; | ||
| 837 | } | ||
| 838 | return false; | ||
| 839 | } | ||
| 840 | |||
| 841 | // Attempts to dequeue an element; if the queue is empty, | ||
| 842 | // waits until an element is available, then dequeues it. | ||
| 843 | template <typename U> | ||
| 844 | void wait_dequeue(U& result) AE_NO_TSAN { | ||
| 845 | while (!sema->wait()) | ||
| 846 | ; | ||
| 847 | bool success = inner.try_dequeue(result); | ||
| 848 | AE_UNUSED(result); | ||
| 849 | assert(success); | ||
| 850 | AE_UNUSED(success); | ||
| 851 | } | ||
| 852 | |||
| 853 | // Attempts to dequeue an element; if the queue is empty, | ||
| 854 | // waits until an element is available up to the specified timeout, | ||
| 855 | // then dequeues it and returns true, or returns false if the timeout | ||
| 856 | // expires before an element can be dequeued. | ||
| 857 | // Using a negative timeout indicates an indefinite timeout, | ||
| 858 | // and is thus functionally equivalent to calling wait_dequeue. | ||
| 859 | template <typename U> | ||
| 860 | bool wait_dequeue_timed(U& result, std::int64_t timeout_usecs) AE_NO_TSAN { | ||
| 861 | if (!sema->wait(timeout_usecs)) { | ||
| 862 | return false; | ||
| 863 | } | ||
| 864 | bool success = inner.try_dequeue(result); | ||
| 865 | AE_UNUSED(result); | ||
| 866 | assert(success); | ||
| 867 | AE_UNUSED(success); | ||
| 868 | return true; | ||
| 869 | } | ||
| 870 | |||
| 871 | #if __cplusplus > 199711L || _MSC_VER >= 1700 | ||
| 872 | // Attempts to dequeue an element; if the queue is empty, | ||
| 873 | // waits until an element is available up to the specified timeout, | ||
| 874 | // then dequeues it and returns true, or returns false if the timeout | ||
| 875 | // expires before an element can be dequeued. | ||
| 876 | // Using a negative timeout indicates an indefinite timeout, | ||
| 877 | // and is thus functionally equivalent to calling wait_dequeue. | ||
| 878 | template <typename U, typename Rep, typename Period> | ||
| 879 | inline bool wait_dequeue_timed(U& result, | ||
| 880 | std::chrono::duration<Rep, Period> const& timeout) AE_NO_TSAN { | ||
| 881 | return wait_dequeue_timed( | ||
| 882 | result, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count()); | ||
| 883 | } | ||
| 884 | #endif | ||
| 885 | |||
| 886 | // Returns a pointer to the front element in the queue (the one that | ||
| 887 | // would be removed next by a call to `try_dequeue` or `pop`). If the | ||
| 888 | // queue appears empty at the time the method is called, nullptr is | ||
| 889 | // returned instead. | ||
| 890 | // Must be called only from the consumer thread. | ||
| 891 | AE_FORCEINLINE T* peek() const AE_NO_TSAN { | ||
| 892 | return inner.peek(); | ||
| 893 | } | ||
| 894 | |||
| 895 | // Removes the front element from the queue, if any, without returning it. | ||
| 896 | // Returns true on success, or false if the queue appeared empty at the time | ||
| 897 | // `pop` was called. | ||
| 898 | AE_FORCEINLINE bool pop() AE_NO_TSAN { | ||
| 899 | if (sema->tryWait()) { | ||
| 900 | bool result = inner.pop(); | ||
| 901 | assert(result); | ||
| 902 | AE_UNUSED(result); | ||
| 903 | return true; | ||
| 904 | } | ||
| 905 | return false; | ||
| 906 | } | ||
| 907 | |||
| 908 | // Returns the approximate number of items currently in the queue. | ||
| 909 | // Safe to call from both the producer and consumer threads. | ||
| 910 | AE_FORCEINLINE size_t size_approx() const AE_NO_TSAN { | ||
| 911 | return sema->availableApprox(); | ||
| 912 | } | ||
| 913 | |||
| 914 | // Returns the total number of items that could be enqueued without incurring | ||
| 915 | // an allocation when this queue is empty. | ||
| 916 | // Safe to call from both the producer and consumer threads. | ||
| 917 | // | ||
| 918 | // NOTE: The actual capacity during usage may be different depending on the consumer. | ||
| 919 | // If the consumer is removing elements concurrently, the producer cannot add to | ||
| 920 | // the block the consumer is removing from until it's completely empty, except in | ||
| 921 | // the case where the producer was writing to the same block the consumer was | ||
| 922 | // reading from the whole time. | ||
| 923 | AE_FORCEINLINE size_t max_capacity() const { | ||
| 924 | return inner.max_capacity(); | ||
| 925 | } | ||
| 926 | |||
| 927 | private: | ||
| 928 | // Disable copying & assignment | ||
| 929 | BlockingReaderWriterQueue(BlockingReaderWriterQueue const&) {} | ||
| 930 | BlockingReaderWriterQueue& operator=(BlockingReaderWriterQueue const&) {} | ||
| 931 | |||
| 932 | private: | ||
| 933 | ReaderWriterQueue inner; | ||
| 934 | std::unique_ptr<spsc_sema::LightweightSemaphore> sema; | ||
| 935 | }; | ||
| 936 | |||
| 937 | } // namespace Common | ||
| 938 | |||
| 939 | #ifdef AE_VCPP | ||
| 940 | #pragma warning(pop) | ||
| 941 | #endif | ||