diff options
Diffstat (limited to 'externals/FidelityFX-FSR/ffx-fsr/ffx_fsr1.h')
| -rw-r--r-- | externals/FidelityFX-FSR/ffx-fsr/ffx_fsr1.h | 1199 |
1 files changed, 1199 insertions, 0 deletions
diff --git a/externals/FidelityFX-FSR/ffx-fsr/ffx_fsr1.h b/externals/FidelityFX-FSR/ffx-fsr/ffx_fsr1.h new file mode 100644 index 000000000..15ecfde5c --- /dev/null +++ b/externals/FidelityFX-FSR/ffx-fsr/ffx_fsr1.h | |||
| @@ -0,0 +1,1199 @@ | |||
| 1 | //_____________________________________________________________/\_______________________________________________________________ | ||
| 2 | //============================================================================================================================== | ||
| 3 | // | ||
| 4 | // | ||
| 5 | // AMD FidelityFX SUPER RESOLUTION [FSR 1] ::: SPATIAL SCALING & EXTRAS - v1.20210629 | ||
| 6 | // | ||
| 7 | // | ||
| 8 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 9 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 10 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 11 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 12 | // FidelityFX Super Resolution Sample | ||
| 13 | // | ||
| 14 | // Copyright (c) 2021 Advanced Micro Devices, Inc. All rights reserved. | ||
| 15 | // Permission is hereby granted, free of charge, to any person obtaining a copy | ||
| 16 | // of this software and associated documentation files(the "Software"), to deal | ||
| 17 | // in the Software without restriction, including without limitation the rights | ||
| 18 | // to use, copy, modify, merge, publish, distribute, sublicense, and / or sell | ||
| 19 | // copies of the Software, and to permit persons to whom the Software is | ||
| 20 | // furnished to do so, subject to the following conditions : | ||
| 21 | // The above copyright notice and this permission notice shall be included in | ||
| 22 | // all copies or substantial portions of the Software. | ||
| 23 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
| 24 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
| 25 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE | ||
| 26 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
| 27 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
| 28 | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | ||
| 29 | // THE SOFTWARE. | ||
| 30 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 31 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 32 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 33 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 34 | // ABOUT | ||
| 35 | // ===== | ||
| 36 | // FSR is a collection of algorithms relating to generating a higher resolution image. | ||
| 37 | // This specific header focuses on single-image non-temporal image scaling, and related tools. | ||
| 38 | // | ||
| 39 | // The core functions are EASU and RCAS: | ||
| 40 | // [EASU] Edge Adaptive Spatial Upsampling ....... 1x to 4x area range spatial scaling, clamped adaptive elliptical filter. | ||
| 41 | // [RCAS] Robust Contrast Adaptive Sharpening .... A non-scaling variation on CAS. | ||
| 42 | // RCAS needs to be applied after EASU as a separate pass. | ||
| 43 | // | ||
| 44 | // Optional utility functions are: | ||
| 45 | // [LFGA] Linear Film Grain Applicator ........... Tool to apply film grain after scaling. | ||
| 46 | // [SRTM] Simple Reversible Tone-Mapper .......... Linear HDR {0 to FP16_MAX} to {0 to 1} and back. | ||
| 47 | // [TEPD] Temporal Energy Preserving Dither ...... Temporally energy preserving dithered {0 to 1} linear to gamma 2.0 conversion. | ||
| 48 | // See each individual sub-section for inline documentation. | ||
| 49 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 50 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 51 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 52 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 53 | // FUNCTION PERMUTATIONS | ||
| 54 | // ===================== | ||
| 55 | // *F() ..... Single item computation with 32-bit. | ||
| 56 | // *H() ..... Single item computation with 16-bit, with packing (aka two 16-bit ops in parallel) when possible. | ||
| 57 | // *Hx2() ... Processing two items in parallel with 16-bit, easier packing. | ||
| 58 | // Not all interfaces in this file have a *Hx2() form. | ||
| 59 | //============================================================================================================================== | ||
| 60 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 61 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 62 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 63 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 64 | //_____________________________________________________________/\_______________________________________________________________ | ||
| 65 | //============================================================================================================================== | ||
| 66 | // | ||
| 67 | // FSR - [EASU] EDGE ADAPTIVE SPATIAL UPSAMPLING | ||
| 68 | // | ||
| 69 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 70 | // EASU provides a high quality spatial-only scaling at relatively low cost. | ||
| 71 | // Meaning EASU is appropiate for laptops and other low-end GPUs. | ||
| 72 | // Quality from 1x to 4x area scaling is good. | ||
| 73 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 74 | // The scalar uses a modified fast approximation to the standard lanczos(size=2) kernel. | ||
| 75 | // EASU runs in a single pass, so it applies a directionally and anisotropically adaptive radial lanczos. | ||
| 76 | // This is also kept as simple as possible to have minimum runtime. | ||
| 77 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 78 | // The lanzcos filter has negative lobes, so by itself it will introduce ringing. | ||
| 79 | // To remove all ringing, the algorithm uses the nearest 2x2 input texels as a neighborhood, | ||
| 80 | // and limits output to the minimum and maximum of that neighborhood. | ||
| 81 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 82 | // Input image requirements: | ||
| 83 | // | ||
| 84 | // Color needs to be encoded as 3 channel[red, green, blue](e.g.XYZ not supported) | ||
| 85 | // Each channel needs to be in the range[0, 1] | ||
| 86 | // Any color primaries are supported | ||
| 87 | // Display / tonemapping curve needs to be as if presenting to sRGB display or similar(e.g.Gamma 2.0) | ||
| 88 | // There should be no banding in the input | ||
| 89 | // There should be no high amplitude noise in the input | ||
| 90 | // There should be no noise in the input that is not at input pixel granularity | ||
| 91 | // For performance purposes, use 32bpp formats | ||
| 92 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 93 | // Best to apply EASU at the end of the frame after tonemapping | ||
| 94 | // but before film grain or composite of the UI. | ||
| 95 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 96 | // Example of including this header for D3D HLSL : | ||
| 97 | // | ||
| 98 | // #define A_GPU 1 | ||
| 99 | // #define A_HLSL 1 | ||
| 100 | // #define A_HALF 1 | ||
| 101 | // #include "ffx_a.h" | ||
| 102 | // #define FSR_EASU_H 1 | ||
| 103 | // #define FSR_RCAS_H 1 | ||
| 104 | // //declare input callbacks | ||
| 105 | // #include "ffx_fsr1.h" | ||
| 106 | // | ||
| 107 | // Example of including this header for Vulkan GLSL : | ||
| 108 | // | ||
| 109 | // #define A_GPU 1 | ||
| 110 | // #define A_GLSL 1 | ||
| 111 | // #define A_HALF 1 | ||
| 112 | // #include "ffx_a.h" | ||
| 113 | // #define FSR_EASU_H 1 | ||
| 114 | // #define FSR_RCAS_H 1 | ||
| 115 | // //declare input callbacks | ||
| 116 | // #include "ffx_fsr1.h" | ||
| 117 | // | ||
| 118 | // Example of including this header for Vulkan HLSL : | ||
| 119 | // | ||
| 120 | // #define A_GPU 1 | ||
| 121 | // #define A_HLSL 1 | ||
| 122 | // #define A_HLSL_6_2 1 | ||
| 123 | // #define A_NO_16_BIT_CAST 1 | ||
| 124 | // #define A_HALF 1 | ||
| 125 | // #include "ffx_a.h" | ||
| 126 | // #define FSR_EASU_H 1 | ||
| 127 | // #define FSR_RCAS_H 1 | ||
| 128 | // //declare input callbacks | ||
| 129 | // #include "ffx_fsr1.h" | ||
| 130 | // | ||
| 131 | // Example of declaring the required input callbacks for GLSL : | ||
| 132 | // The callbacks need to gather4 for each color channel using the specified texture coordinate 'p'. | ||
| 133 | // EASU uses gather4 to reduce position computation logic and for free Arrays of Structures to Structures of Arrays conversion. | ||
| 134 | // | ||
| 135 | // AH4 FsrEasuRH(AF2 p){return AH4(textureGather(sampler2D(tex,sam),p,0));} | ||
| 136 | // AH4 FsrEasuGH(AF2 p){return AH4(textureGather(sampler2D(tex,sam),p,1));} | ||
| 137 | // AH4 FsrEasuBH(AF2 p){return AH4(textureGather(sampler2D(tex,sam),p,2));} | ||
| 138 | // ... | ||
| 139 | // The FsrEasuCon function needs to be called from the CPU or GPU to set up constants. | ||
| 140 | // The difference in viewport and input image size is there to support Dynamic Resolution Scaling. | ||
| 141 | // To use FsrEasuCon() on the CPU, define A_CPU before including ffx_a and ffx_fsr1. | ||
| 142 | // Including a GPU example here, the 'con0' through 'con3' values would be stored out to a constant buffer. | ||
| 143 | // AU4 con0,con1,con2,con3; | ||
| 144 | // FsrEasuCon(con0,con1,con2,con3, | ||
| 145 | // 1920.0,1080.0, // Viewport size (top left aligned) in the input image which is to be scaled. | ||
| 146 | // 3840.0,2160.0, // The size of the input image. | ||
| 147 | // 2560.0,1440.0); // The output resolution. | ||
| 148 | //============================================================================================================================== | ||
| 149 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 150 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 151 | //_____________________________________________________________/\_______________________________________________________________ | ||
| 152 | //============================================================================================================================== | ||
| 153 | // CONSTANT SETUP | ||
| 154 | //============================================================================================================================== | ||
| 155 | // Call to setup required constant values (works on CPU or GPU). | ||
| 156 | A_STATIC void FsrEasuCon( | ||
| 157 | outAU4 con0, | ||
| 158 | outAU4 con1, | ||
| 159 | outAU4 con2, | ||
| 160 | outAU4 con3, | ||
| 161 | // This the rendered image resolution being upscaled | ||
| 162 | AF1 inputViewportInPixelsX, | ||
| 163 | AF1 inputViewportInPixelsY, | ||
| 164 | // This is the resolution of the resource containing the input image (useful for dynamic resolution) | ||
| 165 | AF1 inputSizeInPixelsX, | ||
| 166 | AF1 inputSizeInPixelsY, | ||
| 167 | // This is the display resolution which the input image gets upscaled to | ||
| 168 | AF1 outputSizeInPixelsX, | ||
| 169 | AF1 outputSizeInPixelsY){ | ||
| 170 | // Output integer position to a pixel position in viewport. | ||
| 171 | con0[0]=AU1_AF1(inputViewportInPixelsX*ARcpF1(outputSizeInPixelsX)); | ||
| 172 | con0[1]=AU1_AF1(inputViewportInPixelsY*ARcpF1(outputSizeInPixelsY)); | ||
| 173 | con0[2]=AU1_AF1(AF1_(0.5)*inputViewportInPixelsX*ARcpF1(outputSizeInPixelsX)-AF1_(0.5)); | ||
| 174 | con0[3]=AU1_AF1(AF1_(0.5)*inputViewportInPixelsY*ARcpF1(outputSizeInPixelsY)-AF1_(0.5)); | ||
| 175 | // Viewport pixel position to normalized image space. | ||
| 176 | // This is used to get upper-left of 'F' tap. | ||
| 177 | con1[0]=AU1_AF1(ARcpF1(inputSizeInPixelsX)); | ||
| 178 | con1[1]=AU1_AF1(ARcpF1(inputSizeInPixelsY)); | ||
| 179 | // Centers of gather4, first offset from upper-left of 'F'. | ||
| 180 | // +---+---+ | ||
| 181 | // | | | | ||
| 182 | // +--(0)--+ | ||
| 183 | // | b | c | | ||
| 184 | // +---F---+---+---+ | ||
| 185 | // | e | f | g | h | | ||
| 186 | // +--(1)--+--(2)--+ | ||
| 187 | // | i | j | k | l | | ||
| 188 | // +---+---+---+---+ | ||
| 189 | // | n | o | | ||
| 190 | // +--(3)--+ | ||
| 191 | // | | | | ||
| 192 | // +---+---+ | ||
| 193 | con1[2]=AU1_AF1(AF1_( 1.0)*ARcpF1(inputSizeInPixelsX)); | ||
| 194 | con1[3]=AU1_AF1(AF1_(-1.0)*ARcpF1(inputSizeInPixelsY)); | ||
| 195 | // These are from (0) instead of 'F'. | ||
| 196 | con2[0]=AU1_AF1(AF1_(-1.0)*ARcpF1(inputSizeInPixelsX)); | ||
| 197 | con2[1]=AU1_AF1(AF1_( 2.0)*ARcpF1(inputSizeInPixelsY)); | ||
| 198 | con2[2]=AU1_AF1(AF1_( 1.0)*ARcpF1(inputSizeInPixelsX)); | ||
| 199 | con2[3]=AU1_AF1(AF1_( 2.0)*ARcpF1(inputSizeInPixelsY)); | ||
| 200 | con3[0]=AU1_AF1(AF1_( 0.0)*ARcpF1(inputSizeInPixelsX)); | ||
| 201 | con3[1]=AU1_AF1(AF1_( 4.0)*ARcpF1(inputSizeInPixelsY)); | ||
| 202 | con3[2]=con3[3]=0;} | ||
| 203 | |||
| 204 | //If the an offset into the input image resource | ||
| 205 | A_STATIC void FsrEasuConOffset( | ||
| 206 | outAU4 con0, | ||
| 207 | outAU4 con1, | ||
| 208 | outAU4 con2, | ||
| 209 | outAU4 con3, | ||
| 210 | // This the rendered image resolution being upscaled | ||
| 211 | AF1 inputViewportInPixelsX, | ||
| 212 | AF1 inputViewportInPixelsY, | ||
| 213 | // This is the resolution of the resource containing the input image (useful for dynamic resolution) | ||
| 214 | AF1 inputSizeInPixelsX, | ||
| 215 | AF1 inputSizeInPixelsY, | ||
| 216 | // This is the display resolution which the input image gets upscaled to | ||
| 217 | AF1 outputSizeInPixelsX, | ||
| 218 | AF1 outputSizeInPixelsY, | ||
| 219 | // This is the input image offset into the resource containing it (useful for dynamic resolution) | ||
| 220 | AF1 inputOffsetInPixelsX, | ||
| 221 | AF1 inputOffsetInPixelsY) { | ||
| 222 | FsrEasuCon(con0, con1, con2, con3, inputViewportInPixelsX, inputViewportInPixelsY, inputSizeInPixelsX, inputSizeInPixelsY, outputSizeInPixelsX, outputSizeInPixelsY); | ||
| 223 | con0[2] = AU1_AF1(AF1_(0.5) * inputViewportInPixelsX * ARcpF1(outputSizeInPixelsX) - AF1_(0.5) + inputOffsetInPixelsX); | ||
| 224 | con0[3] = AU1_AF1(AF1_(0.5) * inputViewportInPixelsY * ARcpF1(outputSizeInPixelsY) - AF1_(0.5) + inputOffsetInPixelsY); | ||
| 225 | } | ||
| 226 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 227 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 228 | //_____________________________________________________________/\_______________________________________________________________ | ||
| 229 | //============================================================================================================================== | ||
| 230 | // NON-PACKED 32-BIT VERSION | ||
| 231 | //============================================================================================================================== | ||
| 232 | #if defined(A_GPU)&&defined(FSR_EASU_F) | ||
| 233 | // Input callback prototypes, need to be implemented by calling shader | ||
| 234 | AF4 FsrEasuRF(AF2 p); | ||
| 235 | AF4 FsrEasuGF(AF2 p); | ||
| 236 | AF4 FsrEasuBF(AF2 p); | ||
| 237 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 238 | // Filtering for a given tap for the scalar. | ||
| 239 | void FsrEasuTapF( | ||
| 240 | inout AF3 aC, // Accumulated color, with negative lobe. | ||
| 241 | inout AF1 aW, // Accumulated weight. | ||
| 242 | AF2 off, // Pixel offset from resolve position to tap. | ||
| 243 | AF2 dir, // Gradient direction. | ||
| 244 | AF2 len, // Length. | ||
| 245 | AF1 lob, // Negative lobe strength. | ||
| 246 | AF1 clp, // Clipping point. | ||
| 247 | AF3 c){ // Tap color. | ||
| 248 | // Rotate offset by direction. | ||
| 249 | AF2 v; | ||
| 250 | v.x=(off.x*( dir.x))+(off.y*dir.y); | ||
| 251 | v.y=(off.x*(-dir.y))+(off.y*dir.x); | ||
| 252 | // Anisotropy. | ||
| 253 | v*=len; | ||
| 254 | // Compute distance^2. | ||
| 255 | AF1 d2=v.x*v.x+v.y*v.y; | ||
| 256 | // Limit to the window as at corner, 2 taps can easily be outside. | ||
| 257 | d2=min(d2,clp); | ||
| 258 | // Approximation of lancos2 without sin() or rcp(), or sqrt() to get x. | ||
| 259 | // (25/16 * (2/5 * x^2 - 1)^2 - (25/16 - 1)) * (1/4 * x^2 - 1)^2 | ||
| 260 | // |_______________________________________| |_______________| | ||
| 261 | // base window | ||
| 262 | // The general form of the 'base' is, | ||
| 263 | // (a*(b*x^2-1)^2-(a-1)) | ||
| 264 | // Where 'a=1/(2*b-b^2)' and 'b' moves around the negative lobe. | ||
| 265 | AF1 wB=AF1_(2.0/5.0)*d2+AF1_(-1.0); | ||
| 266 | AF1 wA=lob*d2+AF1_(-1.0); | ||
| 267 | wB*=wB; | ||
| 268 | wA*=wA; | ||
| 269 | wB=AF1_(25.0/16.0)*wB+AF1_(-(25.0/16.0-1.0)); | ||
| 270 | AF1 w=wB*wA; | ||
| 271 | // Do weighted average. | ||
| 272 | aC+=c*w;aW+=w;} | ||
| 273 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 274 | // Accumulate direction and length. | ||
| 275 | void FsrEasuSetF( | ||
| 276 | inout AF2 dir, | ||
| 277 | inout AF1 len, | ||
| 278 | AF2 pp, | ||
| 279 | AP1 biS,AP1 biT,AP1 biU,AP1 biV, | ||
| 280 | AF1 lA,AF1 lB,AF1 lC,AF1 lD,AF1 lE){ | ||
| 281 | // Compute bilinear weight, branches factor out as predicates are compiler time immediates. | ||
| 282 | // s t | ||
| 283 | // u v | ||
| 284 | AF1 w = AF1_(0.0); | ||
| 285 | if(biS)w=(AF1_(1.0)-pp.x)*(AF1_(1.0)-pp.y); | ||
| 286 | if(biT)w= pp.x *(AF1_(1.0)-pp.y); | ||
| 287 | if(biU)w=(AF1_(1.0)-pp.x)* pp.y ; | ||
| 288 | if(biV)w= pp.x * pp.y ; | ||
| 289 | // Direction is the '+' diff. | ||
| 290 | // a | ||
| 291 | // b c d | ||
| 292 | // e | ||
| 293 | // Then takes magnitude from abs average of both sides of 'c'. | ||
| 294 | // Length converts gradient reversal to 0, smoothly to non-reversal at 1, shaped, then adding horz and vert terms. | ||
| 295 | AF1 dc=lD-lC; | ||
| 296 | AF1 cb=lC-lB; | ||
| 297 | AF1 lenX=max(abs(dc),abs(cb)); | ||
| 298 | lenX=APrxLoRcpF1(lenX); | ||
| 299 | AF1 dirX=lD-lB; | ||
| 300 | dir.x+=dirX*w; | ||
| 301 | lenX=ASatF1(abs(dirX)*lenX); | ||
| 302 | lenX*=lenX; | ||
| 303 | len+=lenX*w; | ||
| 304 | // Repeat for the y axis. | ||
| 305 | AF1 ec=lE-lC; | ||
| 306 | AF1 ca=lC-lA; | ||
| 307 | AF1 lenY=max(abs(ec),abs(ca)); | ||
| 308 | lenY=APrxLoRcpF1(lenY); | ||
| 309 | AF1 dirY=lE-lA; | ||
| 310 | dir.y+=dirY*w; | ||
| 311 | lenY=ASatF1(abs(dirY)*lenY); | ||
| 312 | lenY*=lenY; | ||
| 313 | len+=lenY*w;} | ||
| 314 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 315 | void FsrEasuF( | ||
| 316 | out AF3 pix, | ||
| 317 | AU2 ip, // Integer pixel position in output. | ||
| 318 | AU4 con0, // Constants generated by FsrEasuCon(). | ||
| 319 | AU4 con1, | ||
| 320 | AU4 con2, | ||
| 321 | AU4 con3){ | ||
| 322 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 323 | // Get position of 'f'. | ||
| 324 | AF2 pp=AF2(ip)*AF2_AU2(con0.xy)+AF2_AU2(con0.zw); | ||
| 325 | AF2 fp=floor(pp); | ||
| 326 | pp-=fp; | ||
| 327 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 328 | // 12-tap kernel. | ||
| 329 | // b c | ||
| 330 | // e f g h | ||
| 331 | // i j k l | ||
| 332 | // n o | ||
| 333 | // Gather 4 ordering. | ||
| 334 | // a b | ||
| 335 | // r g | ||
| 336 | // For packed FP16, need either {rg} or {ab} so using the following setup for gather in all versions, | ||
| 337 | // a b <- unused (z) | ||
| 338 | // r g | ||
| 339 | // a b a b | ||
| 340 | // r g r g | ||
| 341 | // a b | ||
| 342 | // r g <- unused (z) | ||
| 343 | // Allowing dead-code removal to remove the 'z's. | ||
| 344 | AF2 p0=fp*AF2_AU2(con1.xy)+AF2_AU2(con1.zw); | ||
| 345 | // These are from p0 to avoid pulling two constants on pre-Navi hardware. | ||
| 346 | AF2 p1=p0+AF2_AU2(con2.xy); | ||
| 347 | AF2 p2=p0+AF2_AU2(con2.zw); | ||
| 348 | AF2 p3=p0+AF2_AU2(con3.xy); | ||
| 349 | AF4 bczzR=FsrEasuRF(p0); | ||
| 350 | AF4 bczzG=FsrEasuGF(p0); | ||
| 351 | AF4 bczzB=FsrEasuBF(p0); | ||
| 352 | AF4 ijfeR=FsrEasuRF(p1); | ||
| 353 | AF4 ijfeG=FsrEasuGF(p1); | ||
| 354 | AF4 ijfeB=FsrEasuBF(p1); | ||
| 355 | AF4 klhgR=FsrEasuRF(p2); | ||
| 356 | AF4 klhgG=FsrEasuGF(p2); | ||
| 357 | AF4 klhgB=FsrEasuBF(p2); | ||
| 358 | AF4 zzonR=FsrEasuRF(p3); | ||
| 359 | AF4 zzonG=FsrEasuGF(p3); | ||
| 360 | AF4 zzonB=FsrEasuBF(p3); | ||
| 361 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 362 | // Simplest multi-channel approximate luma possible (luma times 2, in 2 FMA/MAD). | ||
| 363 | AF4 bczzL=bczzB*AF4_(0.5)+(bczzR*AF4_(0.5)+bczzG); | ||
| 364 | AF4 ijfeL=ijfeB*AF4_(0.5)+(ijfeR*AF4_(0.5)+ijfeG); | ||
| 365 | AF4 klhgL=klhgB*AF4_(0.5)+(klhgR*AF4_(0.5)+klhgG); | ||
| 366 | AF4 zzonL=zzonB*AF4_(0.5)+(zzonR*AF4_(0.5)+zzonG); | ||
| 367 | // Rename. | ||
| 368 | AF1 bL=bczzL.x; | ||
| 369 | AF1 cL=bczzL.y; | ||
| 370 | AF1 iL=ijfeL.x; | ||
| 371 | AF1 jL=ijfeL.y; | ||
| 372 | AF1 fL=ijfeL.z; | ||
| 373 | AF1 eL=ijfeL.w; | ||
| 374 | AF1 kL=klhgL.x; | ||
| 375 | AF1 lL=klhgL.y; | ||
| 376 | AF1 hL=klhgL.z; | ||
| 377 | AF1 gL=klhgL.w; | ||
| 378 | AF1 oL=zzonL.z; | ||
| 379 | AF1 nL=zzonL.w; | ||
| 380 | // Accumulate for bilinear interpolation. | ||
| 381 | AF2 dir=AF2_(0.0); | ||
| 382 | AF1 len=AF1_(0.0); | ||
| 383 | FsrEasuSetF(dir,len,pp,true, false,false,false,bL,eL,fL,gL,jL); | ||
| 384 | FsrEasuSetF(dir,len,pp,false,true ,false,false,cL,fL,gL,hL,kL); | ||
| 385 | FsrEasuSetF(dir,len,pp,false,false,true ,false,fL,iL,jL,kL,nL); | ||
| 386 | FsrEasuSetF(dir,len,pp,false,false,false,true ,gL,jL,kL,lL,oL); | ||
| 387 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 388 | // Normalize with approximation, and cleanup close to zero. | ||
| 389 | AF2 dir2=dir*dir; | ||
| 390 | AF1 dirR=dir2.x+dir2.y; | ||
| 391 | AP1 zro=dirR<AF1_(1.0/32768.0); | ||
| 392 | dirR=APrxLoRsqF1(dirR); | ||
| 393 | dirR=zro?AF1_(1.0):dirR; | ||
| 394 | dir.x=zro?AF1_(1.0):dir.x; | ||
| 395 | dir*=AF2_(dirR); | ||
| 396 | // Transform from {0 to 2} to {0 to 1} range, and shape with square. | ||
| 397 | len=len*AF1_(0.5); | ||
| 398 | len*=len; | ||
| 399 | // Stretch kernel {1.0 vert|horz, to sqrt(2.0) on diagonal}. | ||
| 400 | AF1 stretch=(dir.x*dir.x+dir.y*dir.y)*APrxLoRcpF1(max(abs(dir.x),abs(dir.y))); | ||
| 401 | // Anisotropic length after rotation, | ||
| 402 | // x := 1.0 lerp to 'stretch' on edges | ||
| 403 | // y := 1.0 lerp to 2x on edges | ||
| 404 | AF2 len2=AF2(AF1_(1.0)+(stretch-AF1_(1.0))*len,AF1_(1.0)+AF1_(-0.5)*len); | ||
| 405 | // Based on the amount of 'edge', | ||
| 406 | // the window shifts from +/-{sqrt(2.0) to slightly beyond 2.0}. | ||
| 407 | AF1 lob=AF1_(0.5)+AF1_((1.0/4.0-0.04)-0.5)*len; | ||
| 408 | // Set distance^2 clipping point to the end of the adjustable window. | ||
| 409 | AF1 clp=APrxLoRcpF1(lob); | ||
| 410 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 411 | // Accumulation mixed with min/max of 4 nearest. | ||
| 412 | // b c | ||
| 413 | // e f g h | ||
| 414 | // i j k l | ||
| 415 | // n o | ||
| 416 | AF3 min4=min(AMin3F3(AF3(ijfeR.z,ijfeG.z,ijfeB.z),AF3(klhgR.w,klhgG.w,klhgB.w),AF3(ijfeR.y,ijfeG.y,ijfeB.y)), | ||
| 417 | AF3(klhgR.x,klhgG.x,klhgB.x)); | ||
| 418 | AF3 max4=max(AMax3F3(AF3(ijfeR.z,ijfeG.z,ijfeB.z),AF3(klhgR.w,klhgG.w,klhgB.w),AF3(ijfeR.y,ijfeG.y,ijfeB.y)), | ||
| 419 | AF3(klhgR.x,klhgG.x,klhgB.x)); | ||
| 420 | // Accumulation. | ||
| 421 | AF3 aC=AF3_(0.0); | ||
| 422 | AF1 aW=AF1_(0.0); | ||
| 423 | FsrEasuTapF(aC,aW,AF2( 0.0,-1.0)-pp,dir,len2,lob,clp,AF3(bczzR.x,bczzG.x,bczzB.x)); // b | ||
| 424 | FsrEasuTapF(aC,aW,AF2( 1.0,-1.0)-pp,dir,len2,lob,clp,AF3(bczzR.y,bczzG.y,bczzB.y)); // c | ||
| 425 | FsrEasuTapF(aC,aW,AF2(-1.0, 1.0)-pp,dir,len2,lob,clp,AF3(ijfeR.x,ijfeG.x,ijfeB.x)); // i | ||
| 426 | FsrEasuTapF(aC,aW,AF2( 0.0, 1.0)-pp,dir,len2,lob,clp,AF3(ijfeR.y,ijfeG.y,ijfeB.y)); // j | ||
| 427 | FsrEasuTapF(aC,aW,AF2( 0.0, 0.0)-pp,dir,len2,lob,clp,AF3(ijfeR.z,ijfeG.z,ijfeB.z)); // f | ||
| 428 | FsrEasuTapF(aC,aW,AF2(-1.0, 0.0)-pp,dir,len2,lob,clp,AF3(ijfeR.w,ijfeG.w,ijfeB.w)); // e | ||
| 429 | FsrEasuTapF(aC,aW,AF2( 1.0, 1.0)-pp,dir,len2,lob,clp,AF3(klhgR.x,klhgG.x,klhgB.x)); // k | ||
| 430 | FsrEasuTapF(aC,aW,AF2( 2.0, 1.0)-pp,dir,len2,lob,clp,AF3(klhgR.y,klhgG.y,klhgB.y)); // l | ||
| 431 | FsrEasuTapF(aC,aW,AF2( 2.0, 0.0)-pp,dir,len2,lob,clp,AF3(klhgR.z,klhgG.z,klhgB.z)); // h | ||
| 432 | FsrEasuTapF(aC,aW,AF2( 1.0, 0.0)-pp,dir,len2,lob,clp,AF3(klhgR.w,klhgG.w,klhgB.w)); // g | ||
| 433 | FsrEasuTapF(aC,aW,AF2( 1.0, 2.0)-pp,dir,len2,lob,clp,AF3(zzonR.z,zzonG.z,zzonB.z)); // o | ||
| 434 | FsrEasuTapF(aC,aW,AF2( 0.0, 2.0)-pp,dir,len2,lob,clp,AF3(zzonR.w,zzonG.w,zzonB.w)); // n | ||
| 435 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 436 | // Normalize and dering. | ||
| 437 | pix=min(max4,max(min4,aC*AF3_(ARcpF1(aW))));} | ||
| 438 | #endif | ||
| 439 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 440 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 441 | //_____________________________________________________________/\_______________________________________________________________ | ||
| 442 | //============================================================================================================================== | ||
| 443 | // PACKED 16-BIT VERSION | ||
| 444 | //============================================================================================================================== | ||
| 445 | #if defined(A_GPU)&&defined(A_HALF)&&defined(FSR_EASU_H) | ||
| 446 | // Input callback prototypes, need to be implemented by calling shader | ||
| 447 | AH4 FsrEasuRH(AF2 p); | ||
| 448 | AH4 FsrEasuGH(AF2 p); | ||
| 449 | AH4 FsrEasuBH(AF2 p); | ||
| 450 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 451 | // This runs 2 taps in parallel. | ||
| 452 | void FsrEasuTapH( | ||
| 453 | inout AH2 aCR,inout AH2 aCG,inout AH2 aCB, | ||
| 454 | inout AH2 aW, | ||
| 455 | AH2 offX,AH2 offY, | ||
| 456 | AH2 dir, | ||
| 457 | AH2 len, | ||
| 458 | AH1 lob, | ||
| 459 | AH1 clp, | ||
| 460 | AH2 cR,AH2 cG,AH2 cB){ | ||
| 461 | AH2 vX,vY; | ||
| 462 | vX=offX* dir.xx +offY*dir.yy; | ||
| 463 | vY=offX*(-dir.yy)+offY*dir.xx; | ||
| 464 | vX*=len.x;vY*=len.y; | ||
| 465 | AH2 d2=vX*vX+vY*vY; | ||
| 466 | d2=min(d2,AH2_(clp)); | ||
| 467 | AH2 wB=AH2_(2.0/5.0)*d2+AH2_(-1.0); | ||
| 468 | AH2 wA=AH2_(lob)*d2+AH2_(-1.0); | ||
| 469 | wB*=wB; | ||
| 470 | wA*=wA; | ||
| 471 | wB=AH2_(25.0/16.0)*wB+AH2_(-(25.0/16.0-1.0)); | ||
| 472 | AH2 w=wB*wA; | ||
| 473 | aCR+=cR*w;aCG+=cG*w;aCB+=cB*w;aW+=w;} | ||
| 474 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 475 | // This runs 2 taps in parallel. | ||
| 476 | void FsrEasuSetH( | ||
| 477 | inout AH2 dirPX,inout AH2 dirPY, | ||
| 478 | inout AH2 lenP, | ||
| 479 | AH2 pp, | ||
| 480 | AP1 biST,AP1 biUV, | ||
| 481 | AH2 lA,AH2 lB,AH2 lC,AH2 lD,AH2 lE){ | ||
| 482 | AH2 w = AH2_(0.0); | ||
| 483 | if(biST)w=(AH2(1.0,0.0)+AH2(-pp.x,pp.x))*AH2_(AH1_(1.0)-pp.y); | ||
| 484 | if(biUV)w=(AH2(1.0,0.0)+AH2(-pp.x,pp.x))*AH2_( pp.y); | ||
| 485 | // ABS is not free in the packed FP16 path. | ||
| 486 | AH2 dc=lD-lC; | ||
| 487 | AH2 cb=lC-lB; | ||
| 488 | AH2 lenX=max(abs(dc),abs(cb)); | ||
| 489 | lenX=ARcpH2(lenX); | ||
| 490 | AH2 dirX=lD-lB; | ||
| 491 | dirPX+=dirX*w; | ||
| 492 | lenX=ASatH2(abs(dirX)*lenX); | ||
| 493 | lenX*=lenX; | ||
| 494 | lenP+=lenX*w; | ||
| 495 | AH2 ec=lE-lC; | ||
| 496 | AH2 ca=lC-lA; | ||
| 497 | AH2 lenY=max(abs(ec),abs(ca)); | ||
| 498 | lenY=ARcpH2(lenY); | ||
| 499 | AH2 dirY=lE-lA; | ||
| 500 | dirPY+=dirY*w; | ||
| 501 | lenY=ASatH2(abs(dirY)*lenY); | ||
| 502 | lenY*=lenY; | ||
| 503 | lenP+=lenY*w;} | ||
| 504 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 505 | void FsrEasuH( | ||
| 506 | out AH3 pix, | ||
| 507 | AU2 ip, | ||
| 508 | AU4 con0, | ||
| 509 | AU4 con1, | ||
| 510 | AU4 con2, | ||
| 511 | AU4 con3){ | ||
| 512 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 513 | AF2 pp=AF2(ip)*AF2_AU2(con0.xy)+AF2_AU2(con0.zw); | ||
| 514 | AF2 fp=floor(pp); | ||
| 515 | pp-=fp; | ||
| 516 | AH2 ppp=AH2(pp); | ||
| 517 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 518 | AF2 p0=fp*AF2_AU2(con1.xy)+AF2_AU2(con1.zw); | ||
| 519 | AF2 p1=p0+AF2_AU2(con2.xy); | ||
| 520 | AF2 p2=p0+AF2_AU2(con2.zw); | ||
| 521 | AF2 p3=p0+AF2_AU2(con3.xy); | ||
| 522 | AH4 bczzR=FsrEasuRH(p0); | ||
| 523 | AH4 bczzG=FsrEasuGH(p0); | ||
| 524 | AH4 bczzB=FsrEasuBH(p0); | ||
| 525 | AH4 ijfeR=FsrEasuRH(p1); | ||
| 526 | AH4 ijfeG=FsrEasuGH(p1); | ||
| 527 | AH4 ijfeB=FsrEasuBH(p1); | ||
| 528 | AH4 klhgR=FsrEasuRH(p2); | ||
| 529 | AH4 klhgG=FsrEasuGH(p2); | ||
| 530 | AH4 klhgB=FsrEasuBH(p2); | ||
| 531 | AH4 zzonR=FsrEasuRH(p3); | ||
| 532 | AH4 zzonG=FsrEasuGH(p3); | ||
| 533 | AH4 zzonB=FsrEasuBH(p3); | ||
| 534 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 535 | AH4 bczzL=bczzB*AH4_(0.5)+(bczzR*AH4_(0.5)+bczzG); | ||
| 536 | AH4 ijfeL=ijfeB*AH4_(0.5)+(ijfeR*AH4_(0.5)+ijfeG); | ||
| 537 | AH4 klhgL=klhgB*AH4_(0.5)+(klhgR*AH4_(0.5)+klhgG); | ||
| 538 | AH4 zzonL=zzonB*AH4_(0.5)+(zzonR*AH4_(0.5)+zzonG); | ||
| 539 | AH1 bL=bczzL.x; | ||
| 540 | AH1 cL=bczzL.y; | ||
| 541 | AH1 iL=ijfeL.x; | ||
| 542 | AH1 jL=ijfeL.y; | ||
| 543 | AH1 fL=ijfeL.z; | ||
| 544 | AH1 eL=ijfeL.w; | ||
| 545 | AH1 kL=klhgL.x; | ||
| 546 | AH1 lL=klhgL.y; | ||
| 547 | AH1 hL=klhgL.z; | ||
| 548 | AH1 gL=klhgL.w; | ||
| 549 | AH1 oL=zzonL.z; | ||
| 550 | AH1 nL=zzonL.w; | ||
| 551 | // This part is different, accumulating 2 taps in parallel. | ||
| 552 | AH2 dirPX=AH2_(0.0); | ||
| 553 | AH2 dirPY=AH2_(0.0); | ||
| 554 | AH2 lenP=AH2_(0.0); | ||
| 555 | FsrEasuSetH(dirPX,dirPY,lenP,ppp,true, false,AH2(bL,cL),AH2(eL,fL),AH2(fL,gL),AH2(gL,hL),AH2(jL,kL)); | ||
| 556 | FsrEasuSetH(dirPX,dirPY,lenP,ppp,false,true ,AH2(fL,gL),AH2(iL,jL),AH2(jL,kL),AH2(kL,lL),AH2(nL,oL)); | ||
| 557 | AH2 dir=AH2(dirPX.r+dirPX.g,dirPY.r+dirPY.g); | ||
| 558 | AH1 len=lenP.r+lenP.g; | ||
| 559 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 560 | AH2 dir2=dir*dir; | ||
| 561 | AH1 dirR=dir2.x+dir2.y; | ||
| 562 | AP1 zro=dirR<AH1_(1.0/32768.0); | ||
| 563 | dirR=APrxLoRsqH1(dirR); | ||
| 564 | dirR=zro?AH1_(1.0):dirR; | ||
| 565 | dir.x=zro?AH1_(1.0):dir.x; | ||
| 566 | dir*=AH2_(dirR); | ||
| 567 | len=len*AH1_(0.5); | ||
| 568 | len*=len; | ||
| 569 | AH1 stretch=(dir.x*dir.x+dir.y*dir.y)*APrxLoRcpH1(max(abs(dir.x),abs(dir.y))); | ||
| 570 | AH2 len2=AH2(AH1_(1.0)+(stretch-AH1_(1.0))*len,AH1_(1.0)+AH1_(-0.5)*len); | ||
| 571 | AH1 lob=AH1_(0.5)+AH1_((1.0/4.0-0.04)-0.5)*len; | ||
| 572 | AH1 clp=APrxLoRcpH1(lob); | ||
| 573 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 574 | // FP16 is different, using packed trick to do min and max in same operation. | ||
| 575 | AH2 bothR=max(max(AH2(-ijfeR.z,ijfeR.z),AH2(-klhgR.w,klhgR.w)),max(AH2(-ijfeR.y,ijfeR.y),AH2(-klhgR.x,klhgR.x))); | ||
| 576 | AH2 bothG=max(max(AH2(-ijfeG.z,ijfeG.z),AH2(-klhgG.w,klhgG.w)),max(AH2(-ijfeG.y,ijfeG.y),AH2(-klhgG.x,klhgG.x))); | ||
| 577 | AH2 bothB=max(max(AH2(-ijfeB.z,ijfeB.z),AH2(-klhgB.w,klhgB.w)),max(AH2(-ijfeB.y,ijfeB.y),AH2(-klhgB.x,klhgB.x))); | ||
| 578 | // This part is different for FP16, working pairs of taps at a time. | ||
| 579 | AH2 pR=AH2_(0.0); | ||
| 580 | AH2 pG=AH2_(0.0); | ||
| 581 | AH2 pB=AH2_(0.0); | ||
| 582 | AH2 pW=AH2_(0.0); | ||
| 583 | FsrEasuTapH(pR,pG,pB,pW,AH2( 0.0, 1.0)-ppp.xx,AH2(-1.0,-1.0)-ppp.yy,dir,len2,lob,clp,bczzR.xy,bczzG.xy,bczzB.xy); | ||
| 584 | FsrEasuTapH(pR,pG,pB,pW,AH2(-1.0, 0.0)-ppp.xx,AH2( 1.0, 1.0)-ppp.yy,dir,len2,lob,clp,ijfeR.xy,ijfeG.xy,ijfeB.xy); | ||
| 585 | FsrEasuTapH(pR,pG,pB,pW,AH2( 0.0,-1.0)-ppp.xx,AH2( 0.0, 0.0)-ppp.yy,dir,len2,lob,clp,ijfeR.zw,ijfeG.zw,ijfeB.zw); | ||
| 586 | FsrEasuTapH(pR,pG,pB,pW,AH2( 1.0, 2.0)-ppp.xx,AH2( 1.0, 1.0)-ppp.yy,dir,len2,lob,clp,klhgR.xy,klhgG.xy,klhgB.xy); | ||
| 587 | FsrEasuTapH(pR,pG,pB,pW,AH2( 2.0, 1.0)-ppp.xx,AH2( 0.0, 0.0)-ppp.yy,dir,len2,lob,clp,klhgR.zw,klhgG.zw,klhgB.zw); | ||
| 588 | FsrEasuTapH(pR,pG,pB,pW,AH2( 1.0, 0.0)-ppp.xx,AH2( 2.0, 2.0)-ppp.yy,dir,len2,lob,clp,zzonR.zw,zzonG.zw,zzonB.zw); | ||
| 589 | AH3 aC=AH3(pR.x+pR.y,pG.x+pG.y,pB.x+pB.y); | ||
| 590 | AH1 aW=pW.x+pW.y; | ||
| 591 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 592 | // Slightly different for FP16 version due to combined min and max. | ||
| 593 | pix=min(AH3(bothR.y,bothG.y,bothB.y),max(-AH3(bothR.x,bothG.x,bothB.x),aC*AH3_(ARcpH1(aW))));} | ||
| 594 | #endif | ||
| 595 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 596 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 597 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 598 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 599 | //_____________________________________________________________/\_______________________________________________________________ | ||
| 600 | //============================================================================================================================== | ||
| 601 | // | ||
| 602 | // FSR - [RCAS] ROBUST CONTRAST ADAPTIVE SHARPENING | ||
| 603 | // | ||
| 604 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 605 | // CAS uses a simplified mechanism to convert local contrast into a variable amount of sharpness. | ||
| 606 | // RCAS uses a more exact mechanism, solving for the maximum local sharpness possible before clipping. | ||
| 607 | // RCAS also has a built in process to limit sharpening of what it detects as possible noise. | ||
| 608 | // RCAS sharper does not support scaling, as it should be applied after EASU scaling. | ||
| 609 | // Pass EASU output straight into RCAS, no color conversions necessary. | ||
| 610 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 611 | // RCAS is based on the following logic. | ||
| 612 | // RCAS uses a 5 tap filter in a cross pattern (same as CAS), | ||
| 613 | // w n | ||
| 614 | // w 1 w for taps w m e | ||
| 615 | // w s | ||
| 616 | // Where 'w' is the negative lobe weight. | ||
| 617 | // output = (w*(n+e+w+s)+m)/(4*w+1) | ||
| 618 | // RCAS solves for 'w' by seeing where the signal might clip out of the {0 to 1} input range, | ||
| 619 | // 0 == (w*(n+e+w+s)+m)/(4*w+1) -> w = -m/(n+e+w+s) | ||
| 620 | // 1 == (w*(n+e+w+s)+m)/(4*w+1) -> w = (1-m)/(n+e+w+s-4*1) | ||
| 621 | // Then chooses the 'w' which results in no clipping, limits 'w', and multiplies by the 'sharp' amount. | ||
| 622 | // This solution above has issues with MSAA input as the steps along the gradient cause edge detection issues. | ||
| 623 | // So RCAS uses 4x the maximum and 4x the minimum (depending on equation)in place of the individual taps. | ||
| 624 | // As well as switching from 'm' to either the minimum or maximum (depending on side), to help in energy conservation. | ||
| 625 | // This stabilizes RCAS. | ||
| 626 | // RCAS does a simple highpass which is normalized against the local contrast then shaped, | ||
| 627 | // 0.25 | ||
| 628 | // 0.25 -1 0.25 | ||
| 629 | // 0.25 | ||
| 630 | // This is used as a noise detection filter, to reduce the effect of RCAS on grain, and focus on real edges. | ||
| 631 | // | ||
| 632 | // GLSL example for the required callbacks : | ||
| 633 | // | ||
| 634 | // AH4 FsrRcasLoadH(ASW2 p){return AH4(imageLoad(imgSrc,ASU2(p)));} | ||
| 635 | // void FsrRcasInputH(inout AH1 r,inout AH1 g,inout AH1 b) | ||
| 636 | // { | ||
| 637 | // //do any simple input color conversions here or leave empty if none needed | ||
| 638 | // } | ||
| 639 | // | ||
| 640 | // FsrRcasCon need to be called from the CPU or GPU to set up constants. | ||
| 641 | // Including a GPU example here, the 'con' value would be stored out to a constant buffer. | ||
| 642 | // | ||
| 643 | // AU4 con; | ||
| 644 | // FsrRcasCon(con, | ||
| 645 | // 0.0); // The scale is {0.0 := maximum sharpness, to N>0, where N is the number of stops (halving) of the reduction of sharpness}. | ||
| 646 | // --------------- | ||
| 647 | // RCAS sharpening supports a CAS-like pass-through alpha via, | ||
| 648 | // #define FSR_RCAS_PASSTHROUGH_ALPHA 1 | ||
| 649 | // RCAS also supports a define to enable a more expensive path to avoid some sharpening of noise. | ||
| 650 | // Would suggest it is better to apply film grain after RCAS sharpening (and after scaling) instead of using this define, | ||
| 651 | // #define FSR_RCAS_DENOISE 1 | ||
| 652 | //============================================================================================================================== | ||
| 653 | // This is set at the limit of providing unnatural results for sharpening. | ||
| 654 | #define FSR_RCAS_LIMIT (0.25-(1.0/16.0)) | ||
| 655 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 656 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 657 | //_____________________________________________________________/\_______________________________________________________________ | ||
| 658 | //============================================================================================================================== | ||
| 659 | // CONSTANT SETUP | ||
| 660 | //============================================================================================================================== | ||
| 661 | // Call to setup required constant values (works on CPU or GPU). | ||
| 662 | A_STATIC void FsrRcasCon( | ||
| 663 | outAU4 con, | ||
| 664 | // The scale is {0.0 := maximum, to N>0, where N is the number of stops (halving) of the reduction of sharpness}. | ||
| 665 | AF1 sharpness){ | ||
| 666 | // Transform from stops to linear value. | ||
| 667 | sharpness=AExp2F1(-sharpness); | ||
| 668 | varAF2(hSharp)=initAF2(sharpness,sharpness); | ||
| 669 | con[0]=AU1_AF1(sharpness); | ||
| 670 | con[1]=AU1_AH2_AF2(hSharp); | ||
| 671 | con[2]=0; | ||
| 672 | con[3]=0;} | ||
| 673 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 674 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 675 | //_____________________________________________________________/\_______________________________________________________________ | ||
| 676 | //============================================================================================================================== | ||
| 677 | // NON-PACKED 32-BIT VERSION | ||
| 678 | //============================================================================================================================== | ||
| 679 | #if defined(A_GPU)&&defined(FSR_RCAS_F) | ||
| 680 | // Input callback prototypes that need to be implemented by calling shader | ||
| 681 | AF4 FsrRcasLoadF(ASU2 p); | ||
| 682 | void FsrRcasInputF(inout AF1 r,inout AF1 g,inout AF1 b); | ||
| 683 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 684 | void FsrRcasF( | ||
| 685 | out AF1 pixR, // Output values, non-vector so port between RcasFilter() and RcasFilterH() is easy. | ||
| 686 | out AF1 pixG, | ||
| 687 | out AF1 pixB, | ||
| 688 | #ifdef FSR_RCAS_PASSTHROUGH_ALPHA | ||
| 689 | out AF1 pixA, | ||
| 690 | #endif | ||
| 691 | AU2 ip, // Integer pixel position in output. | ||
| 692 | AU4 con){ // Constant generated by RcasSetup(). | ||
| 693 | // Algorithm uses minimal 3x3 pixel neighborhood. | ||
| 694 | // b | ||
| 695 | // d e f | ||
| 696 | // h | ||
| 697 | ASU2 sp=ASU2(ip); | ||
| 698 | AF3 b=FsrRcasLoadF(sp+ASU2( 0,-1)).rgb; | ||
| 699 | AF3 d=FsrRcasLoadF(sp+ASU2(-1, 0)).rgb; | ||
| 700 | #ifdef FSR_RCAS_PASSTHROUGH_ALPHA | ||
| 701 | AF4 ee=FsrRcasLoadF(sp); | ||
| 702 | AF3 e=ee.rgb;pixA=ee.a; | ||
| 703 | #else | ||
| 704 | AF3 e=FsrRcasLoadF(sp).rgb; | ||
| 705 | #endif | ||
| 706 | AF3 f=FsrRcasLoadF(sp+ASU2( 1, 0)).rgb; | ||
| 707 | AF3 h=FsrRcasLoadF(sp+ASU2( 0, 1)).rgb; | ||
| 708 | // Rename (32-bit) or regroup (16-bit). | ||
| 709 | AF1 bR=b.r; | ||
| 710 | AF1 bG=b.g; | ||
| 711 | AF1 bB=b.b; | ||
| 712 | AF1 dR=d.r; | ||
| 713 | AF1 dG=d.g; | ||
| 714 | AF1 dB=d.b; | ||
| 715 | AF1 eR=e.r; | ||
| 716 | AF1 eG=e.g; | ||
| 717 | AF1 eB=e.b; | ||
| 718 | AF1 fR=f.r; | ||
| 719 | AF1 fG=f.g; | ||
| 720 | AF1 fB=f.b; | ||
| 721 | AF1 hR=h.r; | ||
| 722 | AF1 hG=h.g; | ||
| 723 | AF1 hB=h.b; | ||
| 724 | // Run optional input transform. | ||
| 725 | FsrRcasInputF(bR,bG,bB); | ||
| 726 | FsrRcasInputF(dR,dG,dB); | ||
| 727 | FsrRcasInputF(eR,eG,eB); | ||
| 728 | FsrRcasInputF(fR,fG,fB); | ||
| 729 | FsrRcasInputF(hR,hG,hB); | ||
| 730 | // Luma times 2. | ||
| 731 | AF1 bL=bB*AF1_(0.5)+(bR*AF1_(0.5)+bG); | ||
| 732 | AF1 dL=dB*AF1_(0.5)+(dR*AF1_(0.5)+dG); | ||
| 733 | AF1 eL=eB*AF1_(0.5)+(eR*AF1_(0.5)+eG); | ||
| 734 | AF1 fL=fB*AF1_(0.5)+(fR*AF1_(0.5)+fG); | ||
| 735 | AF1 hL=hB*AF1_(0.5)+(hR*AF1_(0.5)+hG); | ||
| 736 | // Noise detection. | ||
| 737 | AF1 nz=AF1_(0.25)*bL+AF1_(0.25)*dL+AF1_(0.25)*fL+AF1_(0.25)*hL-eL; | ||
| 738 | nz=ASatF1(abs(nz)*APrxMedRcpF1(AMax3F1(AMax3F1(bL,dL,eL),fL,hL)-AMin3F1(AMin3F1(bL,dL,eL),fL,hL))); | ||
| 739 | nz=AF1_(-0.5)*nz+AF1_(1.0); | ||
| 740 | // Min and max of ring. | ||
| 741 | AF1 mn4R=min(AMin3F1(bR,dR,fR),hR); | ||
| 742 | AF1 mn4G=min(AMin3F1(bG,dG,fG),hG); | ||
| 743 | AF1 mn4B=min(AMin3F1(bB,dB,fB),hB); | ||
| 744 | AF1 mx4R=max(AMax3F1(bR,dR,fR),hR); | ||
| 745 | AF1 mx4G=max(AMax3F1(bG,dG,fG),hG); | ||
| 746 | AF1 mx4B=max(AMax3F1(bB,dB,fB),hB); | ||
| 747 | // Immediate constants for peak range. | ||
| 748 | AF2 peakC=AF2(1.0,-1.0*4.0); | ||
| 749 | // Limiters, these need to be high precision RCPs. | ||
| 750 | AF1 hitMinR=mn4R*ARcpF1(AF1_(4.0)*mx4R); | ||
| 751 | AF1 hitMinG=mn4G*ARcpF1(AF1_(4.0)*mx4G); | ||
| 752 | AF1 hitMinB=mn4B*ARcpF1(AF1_(4.0)*mx4B); | ||
| 753 | AF1 hitMaxR=(peakC.x-mx4R)*ARcpF1(AF1_(4.0)*mn4R+peakC.y); | ||
| 754 | AF1 hitMaxG=(peakC.x-mx4G)*ARcpF1(AF1_(4.0)*mn4G+peakC.y); | ||
| 755 | AF1 hitMaxB=(peakC.x-mx4B)*ARcpF1(AF1_(4.0)*mn4B+peakC.y); | ||
| 756 | AF1 lobeR=max(-hitMinR,hitMaxR); | ||
| 757 | AF1 lobeG=max(-hitMinG,hitMaxG); | ||
| 758 | AF1 lobeB=max(-hitMinB,hitMaxB); | ||
| 759 | AF1 lobe=max(AF1_(-FSR_RCAS_LIMIT),min(AMax3F1(lobeR,lobeG,lobeB),AF1_(0.0)))*AF1_AU1(con.x); | ||
| 760 | // Apply noise removal. | ||
| 761 | #ifdef FSR_RCAS_DENOISE | ||
| 762 | lobe*=nz; | ||
| 763 | #endif | ||
| 764 | // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes. | ||
| 765 | AF1 rcpL=APrxMedRcpF1(AF1_(4.0)*lobe+AF1_(1.0)); | ||
| 766 | pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL; | ||
| 767 | pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL; | ||
| 768 | pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL; | ||
| 769 | return;} | ||
| 770 | #endif | ||
| 771 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 772 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 773 | //_____________________________________________________________/\_______________________________________________________________ | ||
| 774 | //============================================================================================================================== | ||
| 775 | // NON-PACKED 16-BIT VERSION | ||
| 776 | //============================================================================================================================== | ||
| 777 | #if defined(A_GPU)&&defined(A_HALF)&&defined(FSR_RCAS_H) | ||
| 778 | // Input callback prototypes that need to be implemented by calling shader | ||
| 779 | AH4 FsrRcasLoadH(ASW2 p); | ||
| 780 | void FsrRcasInputH(inout AH1 r,inout AH1 g,inout AH1 b); | ||
| 781 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 782 | void FsrRcasH( | ||
| 783 | out AH1 pixR, // Output values, non-vector so port between RcasFilter() and RcasFilterH() is easy. | ||
| 784 | out AH1 pixG, | ||
| 785 | out AH1 pixB, | ||
| 786 | #ifdef FSR_RCAS_PASSTHROUGH_ALPHA | ||
| 787 | out AH1 pixA, | ||
| 788 | #endif | ||
| 789 | AU2 ip, // Integer pixel position in output. | ||
| 790 | AU4 con){ // Constant generated by RcasSetup(). | ||
| 791 | // Sharpening algorithm uses minimal 3x3 pixel neighborhood. | ||
| 792 | // b | ||
| 793 | // d e f | ||
| 794 | // h | ||
| 795 | ASW2 sp=ASW2(ip); | ||
| 796 | AH3 b=FsrRcasLoadH(sp+ASW2( 0,-1)).rgb; | ||
| 797 | AH3 d=FsrRcasLoadH(sp+ASW2(-1, 0)).rgb; | ||
| 798 | #ifdef FSR_RCAS_PASSTHROUGH_ALPHA | ||
| 799 | AH4 ee=FsrRcasLoadH(sp); | ||
| 800 | AH3 e=ee.rgb;pixA=ee.a; | ||
| 801 | #else | ||
| 802 | AH3 e=FsrRcasLoadH(sp).rgb; | ||
| 803 | #endif | ||
| 804 | AH3 f=FsrRcasLoadH(sp+ASW2( 1, 0)).rgb; | ||
| 805 | AH3 h=FsrRcasLoadH(sp+ASW2( 0, 1)).rgb; | ||
| 806 | // Rename (32-bit) or regroup (16-bit). | ||
| 807 | AH1 bR=b.r; | ||
| 808 | AH1 bG=b.g; | ||
| 809 | AH1 bB=b.b; | ||
| 810 | AH1 dR=d.r; | ||
| 811 | AH1 dG=d.g; | ||
| 812 | AH1 dB=d.b; | ||
| 813 | AH1 eR=e.r; | ||
| 814 | AH1 eG=e.g; | ||
| 815 | AH1 eB=e.b; | ||
| 816 | AH1 fR=f.r; | ||
| 817 | AH1 fG=f.g; | ||
| 818 | AH1 fB=f.b; | ||
| 819 | AH1 hR=h.r; | ||
| 820 | AH1 hG=h.g; | ||
| 821 | AH1 hB=h.b; | ||
| 822 | // Run optional input transform. | ||
| 823 | FsrRcasInputH(bR,bG,bB); | ||
| 824 | FsrRcasInputH(dR,dG,dB); | ||
| 825 | FsrRcasInputH(eR,eG,eB); | ||
| 826 | FsrRcasInputH(fR,fG,fB); | ||
| 827 | FsrRcasInputH(hR,hG,hB); | ||
| 828 | // Luma times 2. | ||
| 829 | AH1 bL=bB*AH1_(0.5)+(bR*AH1_(0.5)+bG); | ||
| 830 | AH1 dL=dB*AH1_(0.5)+(dR*AH1_(0.5)+dG); | ||
| 831 | AH1 eL=eB*AH1_(0.5)+(eR*AH1_(0.5)+eG); | ||
| 832 | AH1 fL=fB*AH1_(0.5)+(fR*AH1_(0.5)+fG); | ||
| 833 | AH1 hL=hB*AH1_(0.5)+(hR*AH1_(0.5)+hG); | ||
| 834 | // Noise detection. | ||
| 835 | AH1 nz=AH1_(0.25)*bL+AH1_(0.25)*dL+AH1_(0.25)*fL+AH1_(0.25)*hL-eL; | ||
| 836 | nz=ASatH1(abs(nz)*APrxMedRcpH1(AMax3H1(AMax3H1(bL,dL,eL),fL,hL)-AMin3H1(AMin3H1(bL,dL,eL),fL,hL))); | ||
| 837 | nz=AH1_(-0.5)*nz+AH1_(1.0); | ||
| 838 | // Min and max of ring. | ||
| 839 | AH1 mn4R=min(AMin3H1(bR,dR,fR),hR); | ||
| 840 | AH1 mn4G=min(AMin3H1(bG,dG,fG),hG); | ||
| 841 | AH1 mn4B=min(AMin3H1(bB,dB,fB),hB); | ||
| 842 | AH1 mx4R=max(AMax3H1(bR,dR,fR),hR); | ||
| 843 | AH1 mx4G=max(AMax3H1(bG,dG,fG),hG); | ||
| 844 | AH1 mx4B=max(AMax3H1(bB,dB,fB),hB); | ||
| 845 | // Immediate constants for peak range. | ||
| 846 | AH2 peakC=AH2(1.0,-1.0*4.0); | ||
| 847 | // Limiters, these need to be high precision RCPs. | ||
| 848 | AH1 hitMinR=mn4R*ARcpH1(AH1_(4.0)*mx4R); | ||
| 849 | AH1 hitMinG=mn4G*ARcpH1(AH1_(4.0)*mx4G); | ||
| 850 | AH1 hitMinB=mn4B*ARcpH1(AH1_(4.0)*mx4B); | ||
| 851 | AH1 hitMaxR=(peakC.x-mx4R)*ARcpH1(AH1_(4.0)*mn4R+peakC.y); | ||
| 852 | AH1 hitMaxG=(peakC.x-mx4G)*ARcpH1(AH1_(4.0)*mn4G+peakC.y); | ||
| 853 | AH1 hitMaxB=(peakC.x-mx4B)*ARcpH1(AH1_(4.0)*mn4B+peakC.y); | ||
| 854 | AH1 lobeR=max(-hitMinR,hitMaxR); | ||
| 855 | AH1 lobeG=max(-hitMinG,hitMaxG); | ||
| 856 | AH1 lobeB=max(-hitMinB,hitMaxB); | ||
| 857 | AH1 lobe=max(AH1_(-FSR_RCAS_LIMIT),min(AMax3H1(lobeR,lobeG,lobeB),AH1_(0.0)))*AH2_AU1(con.y).x; | ||
| 858 | // Apply noise removal. | ||
| 859 | #ifdef FSR_RCAS_DENOISE | ||
| 860 | lobe*=nz; | ||
| 861 | #endif | ||
| 862 | // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes. | ||
| 863 | AH1 rcpL=APrxMedRcpH1(AH1_(4.0)*lobe+AH1_(1.0)); | ||
| 864 | pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL; | ||
| 865 | pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL; | ||
| 866 | pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL;} | ||
| 867 | #endif | ||
| 868 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 869 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 870 | //_____________________________________________________________/\_______________________________________________________________ | ||
| 871 | //============================================================================================================================== | ||
| 872 | // PACKED 16-BIT VERSION | ||
| 873 | //============================================================================================================================== | ||
| 874 | #if defined(A_GPU)&&defined(A_HALF)&&defined(FSR_RCAS_HX2) | ||
| 875 | // Input callback prototypes that need to be implemented by the calling shader | ||
| 876 | AH4 FsrRcasLoadHx2(ASW2 p); | ||
| 877 | void FsrRcasInputHx2(inout AH2 r,inout AH2 g,inout AH2 b); | ||
| 878 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 879 | // Can be used to convert from packed Structures of Arrays to Arrays of Structures for store. | ||
| 880 | void FsrRcasDepackHx2(out AH4 pix0,out AH4 pix1,AH2 pixR,AH2 pixG,AH2 pixB){ | ||
| 881 | #ifdef A_HLSL | ||
| 882 | // Invoke a slower path for DX only, since it won't allow uninitialized values. | ||
| 883 | pix0.a=pix1.a=0.0; | ||
| 884 | #endif | ||
| 885 | pix0.rgb=AH3(pixR.x,pixG.x,pixB.x); | ||
| 886 | pix1.rgb=AH3(pixR.y,pixG.y,pixB.y);} | ||
| 887 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 888 | void FsrRcasHx2( | ||
| 889 | // Output values are for 2 8x8 tiles in a 16x8 region. | ||
| 890 | // pix<R,G,B>.x = left 8x8 tile | ||
| 891 | // pix<R,G,B>.y = right 8x8 tile | ||
| 892 | // This enables later processing to easily be packed as well. | ||
| 893 | out AH2 pixR, | ||
| 894 | out AH2 pixG, | ||
| 895 | out AH2 pixB, | ||
| 896 | #ifdef FSR_RCAS_PASSTHROUGH_ALPHA | ||
| 897 | out AH2 pixA, | ||
| 898 | #endif | ||
| 899 | AU2 ip, // Integer pixel position in output. | ||
| 900 | AU4 con){ // Constant generated by RcasSetup(). | ||
| 901 | // No scaling algorithm uses minimal 3x3 pixel neighborhood. | ||
| 902 | ASW2 sp0=ASW2(ip); | ||
| 903 | AH3 b0=FsrRcasLoadHx2(sp0+ASW2( 0,-1)).rgb; | ||
| 904 | AH3 d0=FsrRcasLoadHx2(sp0+ASW2(-1, 0)).rgb; | ||
| 905 | #ifdef FSR_RCAS_PASSTHROUGH_ALPHA | ||
| 906 | AH4 ee0=FsrRcasLoadHx2(sp0); | ||
| 907 | AH3 e0=ee0.rgb;pixA.r=ee0.a; | ||
| 908 | #else | ||
| 909 | AH3 e0=FsrRcasLoadHx2(sp0).rgb; | ||
| 910 | #endif | ||
| 911 | AH3 f0=FsrRcasLoadHx2(sp0+ASW2( 1, 0)).rgb; | ||
| 912 | AH3 h0=FsrRcasLoadHx2(sp0+ASW2( 0, 1)).rgb; | ||
| 913 | ASW2 sp1=sp0+ASW2(8,0); | ||
| 914 | AH3 b1=FsrRcasLoadHx2(sp1+ASW2( 0,-1)).rgb; | ||
| 915 | AH3 d1=FsrRcasLoadHx2(sp1+ASW2(-1, 0)).rgb; | ||
| 916 | #ifdef FSR_RCAS_PASSTHROUGH_ALPHA | ||
| 917 | AH4 ee1=FsrRcasLoadHx2(sp1); | ||
| 918 | AH3 e1=ee1.rgb;pixA.g=ee1.a; | ||
| 919 | #else | ||
| 920 | AH3 e1=FsrRcasLoadHx2(sp1).rgb; | ||
| 921 | #endif | ||
| 922 | AH3 f1=FsrRcasLoadHx2(sp1+ASW2( 1, 0)).rgb; | ||
| 923 | AH3 h1=FsrRcasLoadHx2(sp1+ASW2( 0, 1)).rgb; | ||
| 924 | // Arrays of Structures to Structures of Arrays conversion. | ||
| 925 | AH2 bR=AH2(b0.r,b1.r); | ||
| 926 | AH2 bG=AH2(b0.g,b1.g); | ||
| 927 | AH2 bB=AH2(b0.b,b1.b); | ||
| 928 | AH2 dR=AH2(d0.r,d1.r); | ||
| 929 | AH2 dG=AH2(d0.g,d1.g); | ||
| 930 | AH2 dB=AH2(d0.b,d1.b); | ||
| 931 | AH2 eR=AH2(e0.r,e1.r); | ||
| 932 | AH2 eG=AH2(e0.g,e1.g); | ||
| 933 | AH2 eB=AH2(e0.b,e1.b); | ||
| 934 | AH2 fR=AH2(f0.r,f1.r); | ||
| 935 | AH2 fG=AH2(f0.g,f1.g); | ||
| 936 | AH2 fB=AH2(f0.b,f1.b); | ||
| 937 | AH2 hR=AH2(h0.r,h1.r); | ||
| 938 | AH2 hG=AH2(h0.g,h1.g); | ||
| 939 | AH2 hB=AH2(h0.b,h1.b); | ||
| 940 | // Run optional input transform. | ||
| 941 | FsrRcasInputHx2(bR,bG,bB); | ||
| 942 | FsrRcasInputHx2(dR,dG,dB); | ||
| 943 | FsrRcasInputHx2(eR,eG,eB); | ||
| 944 | FsrRcasInputHx2(fR,fG,fB); | ||
| 945 | FsrRcasInputHx2(hR,hG,hB); | ||
| 946 | // Luma times 2. | ||
| 947 | AH2 bL=bB*AH2_(0.5)+(bR*AH2_(0.5)+bG); | ||
| 948 | AH2 dL=dB*AH2_(0.5)+(dR*AH2_(0.5)+dG); | ||
| 949 | AH2 eL=eB*AH2_(0.5)+(eR*AH2_(0.5)+eG); | ||
| 950 | AH2 fL=fB*AH2_(0.5)+(fR*AH2_(0.5)+fG); | ||
| 951 | AH2 hL=hB*AH2_(0.5)+(hR*AH2_(0.5)+hG); | ||
| 952 | // Noise detection. | ||
| 953 | AH2 nz=AH2_(0.25)*bL+AH2_(0.25)*dL+AH2_(0.25)*fL+AH2_(0.25)*hL-eL; | ||
| 954 | nz=ASatH2(abs(nz)*APrxMedRcpH2(AMax3H2(AMax3H2(bL,dL,eL),fL,hL)-AMin3H2(AMin3H2(bL,dL,eL),fL,hL))); | ||
| 955 | nz=AH2_(-0.5)*nz+AH2_(1.0); | ||
| 956 | // Min and max of ring. | ||
| 957 | AH2 mn4R=min(AMin3H2(bR,dR,fR),hR); | ||
| 958 | AH2 mn4G=min(AMin3H2(bG,dG,fG),hG); | ||
| 959 | AH2 mn4B=min(AMin3H2(bB,dB,fB),hB); | ||
| 960 | AH2 mx4R=max(AMax3H2(bR,dR,fR),hR); | ||
| 961 | AH2 mx4G=max(AMax3H2(bG,dG,fG),hG); | ||
| 962 | AH2 mx4B=max(AMax3H2(bB,dB,fB),hB); | ||
| 963 | // Immediate constants for peak range. | ||
| 964 | AH2 peakC=AH2(1.0,-1.0*4.0); | ||
| 965 | // Limiters, these need to be high precision RCPs. | ||
| 966 | AH2 hitMinR=mn4R*ARcpH2(AH2_(4.0)*mx4R); | ||
| 967 | AH2 hitMinG=mn4G*ARcpH2(AH2_(4.0)*mx4G); | ||
| 968 | AH2 hitMinB=mn4B*ARcpH2(AH2_(4.0)*mx4B); | ||
| 969 | AH2 hitMaxR=(peakC.x-mx4R)*ARcpH2(AH2_(4.0)*mn4R+peakC.y); | ||
| 970 | AH2 hitMaxG=(peakC.x-mx4G)*ARcpH2(AH2_(4.0)*mn4G+peakC.y); | ||
| 971 | AH2 hitMaxB=(peakC.x-mx4B)*ARcpH2(AH2_(4.0)*mn4B+peakC.y); | ||
| 972 | AH2 lobeR=max(-hitMinR,hitMaxR); | ||
| 973 | AH2 lobeG=max(-hitMinG,hitMaxG); | ||
| 974 | AH2 lobeB=max(-hitMinB,hitMaxB); | ||
| 975 | AH2 lobe=max(AH2_(-FSR_RCAS_LIMIT),min(AMax3H2(lobeR,lobeG,lobeB),AH2_(0.0)))*AH2_(AH2_AU1(con.y).x); | ||
| 976 | // Apply noise removal. | ||
| 977 | #ifdef FSR_RCAS_DENOISE | ||
| 978 | lobe*=nz; | ||
| 979 | #endif | ||
| 980 | // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes. | ||
| 981 | AH2 rcpL=APrxMedRcpH2(AH2_(4.0)*lobe+AH2_(1.0)); | ||
| 982 | pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL; | ||
| 983 | pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL; | ||
| 984 | pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL;} | ||
| 985 | #endif | ||
| 986 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 987 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 988 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 989 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 990 | //_____________________________________________________________/\_______________________________________________________________ | ||
| 991 | //============================================================================================================================== | ||
| 992 | // | ||
| 993 | // FSR - [LFGA] LINEAR FILM GRAIN APPLICATOR | ||
| 994 | // | ||
| 995 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 996 | // Adding output-resolution film grain after scaling is a good way to mask both rendering and scaling artifacts. | ||
| 997 | // Suggest using tiled blue noise as film grain input, with peak noise frequency set for a specific look and feel. | ||
| 998 | // The 'Lfga*()' functions provide a convenient way to introduce grain. | ||
| 999 | // These functions limit grain based on distance to signal limits. | ||
| 1000 | // This is done so that the grain is temporally energy preserving, and thus won't modify image tonality. | ||
| 1001 | // Grain application should be done in a linear colorspace. | ||
| 1002 | // The grain should be temporally changing, but have a temporal sum per pixel that adds to zero (non-biased). | ||
| 1003 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 1004 | // Usage, | ||
| 1005 | // FsrLfga*( | ||
| 1006 | // color, // In/out linear colorspace color {0 to 1} ranged. | ||
| 1007 | // grain, // Per pixel grain texture value {-0.5 to 0.5} ranged, input is 3-channel to support colored grain. | ||
| 1008 | // amount); // Amount of grain (0 to 1} ranged. | ||
| 1009 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 1010 | // Example if grain texture is monochrome: 'FsrLfgaF(color,AF3_(grain),amount)' | ||
| 1011 | //============================================================================================================================== | ||
| 1012 | #if defined(A_GPU) | ||
| 1013 | // Maximum grain is the minimum distance to the signal limit. | ||
| 1014 | void FsrLfgaF(inout AF3 c,AF3 t,AF1 a){c+=(t*AF3_(a))*min(AF3_(1.0)-c,c);} | ||
| 1015 | #endif | ||
| 1016 | //============================================================================================================================== | ||
| 1017 | #if defined(A_GPU)&&defined(A_HALF) | ||
| 1018 | // Half precision version (slower). | ||
| 1019 | void FsrLfgaH(inout AH3 c,AH3 t,AH1 a){c+=(t*AH3_(a))*min(AH3_(1.0)-c,c);} | ||
| 1020 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 1021 | // Packed half precision version (faster). | ||
| 1022 | void FsrLfgaHx2(inout AH2 cR,inout AH2 cG,inout AH2 cB,AH2 tR,AH2 tG,AH2 tB,AH1 a){ | ||
| 1023 | cR+=(tR*AH2_(a))*min(AH2_(1.0)-cR,cR);cG+=(tG*AH2_(a))*min(AH2_(1.0)-cG,cG);cB+=(tB*AH2_(a))*min(AH2_(1.0)-cB,cB);} | ||
| 1024 | #endif | ||
| 1025 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 1026 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 1027 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 1028 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 1029 | //_____________________________________________________________/\_______________________________________________________________ | ||
| 1030 | //============================================================================================================================== | ||
| 1031 | // | ||
| 1032 | // FSR - [SRTM] SIMPLE REVERSIBLE TONE-MAPPER | ||
| 1033 | // | ||
| 1034 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 1035 | // This provides a way to take linear HDR color {0 to FP16_MAX} and convert it into a temporary {0 to 1} ranged post-tonemapped linear. | ||
| 1036 | // The tonemapper preserves RGB ratio, which helps maintain HDR color bleed during filtering. | ||
| 1037 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 1038 | // Reversible tonemapper usage, | ||
| 1039 | // FsrSrtm*(color); // {0 to FP16_MAX} converted to {0 to 1}. | ||
| 1040 | // FsrSrtmInv*(color); // {0 to 1} converted into {0 to 32768, output peak safe for FP16}. | ||
| 1041 | //============================================================================================================================== | ||
| 1042 | #if defined(A_GPU) | ||
| 1043 | void FsrSrtmF(inout AF3 c){c*=AF3_(ARcpF1(AMax3F1(c.r,c.g,c.b)+AF1_(1.0)));} | ||
| 1044 | // The extra max solves the c=1.0 case (which is a /0). | ||
| 1045 | void FsrSrtmInvF(inout AF3 c){c*=AF3_(ARcpF1(max(AF1_(1.0/32768.0),AF1_(1.0)-AMax3F1(c.r,c.g,c.b))));} | ||
| 1046 | #endif | ||
| 1047 | //============================================================================================================================== | ||
| 1048 | #if defined(A_GPU)&&defined(A_HALF) | ||
| 1049 | void FsrSrtmH(inout AH3 c){c*=AH3_(ARcpH1(AMax3H1(c.r,c.g,c.b)+AH1_(1.0)));} | ||
| 1050 | void FsrSrtmInvH(inout AH3 c){c*=AH3_(ARcpH1(max(AH1_(1.0/32768.0),AH1_(1.0)-AMax3H1(c.r,c.g,c.b))));} | ||
| 1051 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 1052 | void FsrSrtmHx2(inout AH2 cR,inout AH2 cG,inout AH2 cB){ | ||
| 1053 | AH2 rcp=ARcpH2(AMax3H2(cR,cG,cB)+AH2_(1.0));cR*=rcp;cG*=rcp;cB*=rcp;} | ||
| 1054 | void FsrSrtmInvHx2(inout AH2 cR,inout AH2 cG,inout AH2 cB){ | ||
| 1055 | AH2 rcp=ARcpH2(max(AH2_(1.0/32768.0),AH2_(1.0)-AMax3H2(cR,cG,cB)));cR*=rcp;cG*=rcp;cB*=rcp;} | ||
| 1056 | #endif | ||
| 1057 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 1058 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 1059 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 1060 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | ||
| 1061 | //_____________________________________________________________/\_______________________________________________________________ | ||
| 1062 | //============================================================================================================================== | ||
| 1063 | // | ||
| 1064 | // FSR - [TEPD] TEMPORAL ENERGY PRESERVING DITHER | ||
| 1065 | // | ||
| 1066 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 1067 | // Temporally energy preserving dithered {0 to 1} linear to gamma 2.0 conversion. | ||
| 1068 | // Gamma 2.0 is used so that the conversion back to linear is just to square the color. | ||
| 1069 | // The conversion comes in 8-bit and 10-bit modes, designed for output to 8-bit UNORM or 10:10:10:2 respectively. | ||
| 1070 | // Given good non-biased temporal blue noise as dither input, | ||
| 1071 | // the output dither will temporally conserve energy. | ||
| 1072 | // This is done by choosing the linear nearest step point instead of perceptual nearest. | ||
| 1073 | // See code below for details. | ||
| 1074 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 1075 | // DX SPEC RULES FOR FLOAT->UNORM 8-BIT CONVERSION | ||
| 1076 | // =============================================== | ||
| 1077 | // - Output is 'uint(floor(saturate(n)*255.0+0.5))'. | ||
| 1078 | // - Thus rounding is to nearest. | ||
| 1079 | // - NaN gets converted to zero. | ||
| 1080 | // - INF is clamped to {0.0 to 1.0}. | ||
| 1081 | //============================================================================================================================== | ||
| 1082 | #if defined(A_GPU) | ||
| 1083 | // Hand tuned integer position to dither value, with more values than simple checkerboard. | ||
| 1084 | // Only 32-bit has enough precision for this compddation. | ||
| 1085 | // Output is {0 to <1}. | ||
| 1086 | AF1 FsrTepdDitF(AU2 p,AU1 f){ | ||
| 1087 | AF1 x=AF1_(p.x+f); | ||
| 1088 | AF1 y=AF1_(p.y); | ||
| 1089 | // The 1.61803 golden ratio. | ||
| 1090 | AF1 a=AF1_((1.0+sqrt(5.0))/2.0); | ||
| 1091 | // Number designed to provide a good visual pattern. | ||
| 1092 | AF1 b=AF1_(1.0/3.69); | ||
| 1093 | x=x*a+(y*b); | ||
| 1094 | return AFractF1(x);} | ||
| 1095 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 1096 | // This version is 8-bit gamma 2.0. | ||
| 1097 | // The 'c' input is {0 to 1}. | ||
| 1098 | // Output is {0 to 1} ready for image store. | ||
| 1099 | void FsrTepdC8F(inout AF3 c,AF1 dit){ | ||
| 1100 | AF3 n=sqrt(c); | ||
| 1101 | n=floor(n*AF3_(255.0))*AF3_(1.0/255.0); | ||
| 1102 | AF3 a=n*n; | ||
| 1103 | AF3 b=n+AF3_(1.0/255.0);b=b*b; | ||
| 1104 | // Ratio of 'a' to 'b' required to produce 'c'. | ||
| 1105 | // APrxLoRcpF1() won't work here (at least for very high dynamic ranges). | ||
| 1106 | // APrxMedRcpF1() is an IADD,FMA,MUL. | ||
| 1107 | AF3 r=(c-b)*APrxMedRcpF3(a-b); | ||
| 1108 | // Use the ratio as a cutoff to choose 'a' or 'b'. | ||
| 1109 | // AGtZeroF1() is a MUL. | ||
| 1110 | c=ASatF3(n+AGtZeroF3(AF3_(dit)-r)*AF3_(1.0/255.0));} | ||
| 1111 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 1112 | // This version is 10-bit gamma 2.0. | ||
| 1113 | // The 'c' input is {0 to 1}. | ||
| 1114 | // Output is {0 to 1} ready for image store. | ||
| 1115 | void FsrTepdC10F(inout AF3 c,AF1 dit){ | ||
| 1116 | AF3 n=sqrt(c); | ||
| 1117 | n=floor(n*AF3_(1023.0))*AF3_(1.0/1023.0); | ||
| 1118 | AF3 a=n*n; | ||
| 1119 | AF3 b=n+AF3_(1.0/1023.0);b=b*b; | ||
| 1120 | AF3 r=(c-b)*APrxMedRcpF3(a-b); | ||
| 1121 | c=ASatF3(n+AGtZeroF3(AF3_(dit)-r)*AF3_(1.0/1023.0));} | ||
| 1122 | #endif | ||
| 1123 | //============================================================================================================================== | ||
| 1124 | #if defined(A_GPU)&&defined(A_HALF) | ||
| 1125 | AH1 FsrTepdDitH(AU2 p,AU1 f){ | ||
| 1126 | AF1 x=AF1_(p.x+f); | ||
| 1127 | AF1 y=AF1_(p.y); | ||
| 1128 | AF1 a=AF1_((1.0+sqrt(5.0))/2.0); | ||
| 1129 | AF1 b=AF1_(1.0/3.69); | ||
| 1130 | x=x*a+(y*b); | ||
| 1131 | return AH1(AFractF1(x));} | ||
| 1132 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 1133 | void FsrTepdC8H(inout AH3 c,AH1 dit){ | ||
| 1134 | AH3 n=sqrt(c); | ||
| 1135 | n=floor(n*AH3_(255.0))*AH3_(1.0/255.0); | ||
| 1136 | AH3 a=n*n; | ||
| 1137 | AH3 b=n+AH3_(1.0/255.0);b=b*b; | ||
| 1138 | AH3 r=(c-b)*APrxMedRcpH3(a-b); | ||
| 1139 | c=ASatH3(n+AGtZeroH3(AH3_(dit)-r)*AH3_(1.0/255.0));} | ||
| 1140 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 1141 | void FsrTepdC10H(inout AH3 c,AH1 dit){ | ||
| 1142 | AH3 n=sqrt(c); | ||
| 1143 | n=floor(n*AH3_(1023.0))*AH3_(1.0/1023.0); | ||
| 1144 | AH3 a=n*n; | ||
| 1145 | AH3 b=n+AH3_(1.0/1023.0);b=b*b; | ||
| 1146 | AH3 r=(c-b)*APrxMedRcpH3(a-b); | ||
| 1147 | c=ASatH3(n+AGtZeroH3(AH3_(dit)-r)*AH3_(1.0/1023.0));} | ||
| 1148 | //============================================================================================================================== | ||
| 1149 | // This computes dither for positions 'p' and 'p+{8,0}'. | ||
| 1150 | AH2 FsrTepdDitHx2(AU2 p,AU1 f){ | ||
| 1151 | AF2 x; | ||
| 1152 | x.x=AF1_(p.x+f); | ||
| 1153 | x.y=x.x+AF1_(8.0); | ||
| 1154 | AF1 y=AF1_(p.y); | ||
| 1155 | AF1 a=AF1_((1.0+sqrt(5.0))/2.0); | ||
| 1156 | AF1 b=AF1_(1.0/3.69); | ||
| 1157 | x=x*AF2_(a)+AF2_(y*b); | ||
| 1158 | return AH2(AFractF2(x));} | ||
| 1159 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 1160 | void FsrTepdC8Hx2(inout AH2 cR,inout AH2 cG,inout AH2 cB,AH2 dit){ | ||
| 1161 | AH2 nR=sqrt(cR); | ||
| 1162 | AH2 nG=sqrt(cG); | ||
| 1163 | AH2 nB=sqrt(cB); | ||
| 1164 | nR=floor(nR*AH2_(255.0))*AH2_(1.0/255.0); | ||
| 1165 | nG=floor(nG*AH2_(255.0))*AH2_(1.0/255.0); | ||
| 1166 | nB=floor(nB*AH2_(255.0))*AH2_(1.0/255.0); | ||
| 1167 | AH2 aR=nR*nR; | ||
| 1168 | AH2 aG=nG*nG; | ||
| 1169 | AH2 aB=nB*nB; | ||
| 1170 | AH2 bR=nR+AH2_(1.0/255.0);bR=bR*bR; | ||
| 1171 | AH2 bG=nG+AH2_(1.0/255.0);bG=bG*bG; | ||
| 1172 | AH2 bB=nB+AH2_(1.0/255.0);bB=bB*bB; | ||
| 1173 | AH2 rR=(cR-bR)*APrxMedRcpH2(aR-bR); | ||
| 1174 | AH2 rG=(cG-bG)*APrxMedRcpH2(aG-bG); | ||
| 1175 | AH2 rB=(cB-bB)*APrxMedRcpH2(aB-bB); | ||
| 1176 | cR=ASatH2(nR+AGtZeroH2(dit-rR)*AH2_(1.0/255.0)); | ||
| 1177 | cG=ASatH2(nG+AGtZeroH2(dit-rG)*AH2_(1.0/255.0)); | ||
| 1178 | cB=ASatH2(nB+AGtZeroH2(dit-rB)*AH2_(1.0/255.0));} | ||
| 1179 | //------------------------------------------------------------------------------------------------------------------------------ | ||
| 1180 | void FsrTepdC10Hx2(inout AH2 cR,inout AH2 cG,inout AH2 cB,AH2 dit){ | ||
| 1181 | AH2 nR=sqrt(cR); | ||
| 1182 | AH2 nG=sqrt(cG); | ||
| 1183 | AH2 nB=sqrt(cB); | ||
| 1184 | nR=floor(nR*AH2_(1023.0))*AH2_(1.0/1023.0); | ||
| 1185 | nG=floor(nG*AH2_(1023.0))*AH2_(1.0/1023.0); | ||
| 1186 | nB=floor(nB*AH2_(1023.0))*AH2_(1.0/1023.0); | ||
| 1187 | AH2 aR=nR*nR; | ||
| 1188 | AH2 aG=nG*nG; | ||
| 1189 | AH2 aB=nB*nB; | ||
| 1190 | AH2 bR=nR+AH2_(1.0/1023.0);bR=bR*bR; | ||
| 1191 | AH2 bG=nG+AH2_(1.0/1023.0);bG=bG*bG; | ||
| 1192 | AH2 bB=nB+AH2_(1.0/1023.0);bB=bB*bB; | ||
| 1193 | AH2 rR=(cR-bR)*APrxMedRcpH2(aR-bR); | ||
| 1194 | AH2 rG=(cG-bG)*APrxMedRcpH2(aG-bG); | ||
| 1195 | AH2 rB=(cB-bB)*APrxMedRcpH2(aB-bB); | ||
| 1196 | cR=ASatH2(nR+AGtZeroH2(dit-rR)*AH2_(1.0/1023.0)); | ||
| 1197 | cG=ASatH2(nG+AGtZeroH2(dit-rG)*AH2_(1.0/1023.0)); | ||
| 1198 | cB=ASatH2(nB+AGtZeroH2(dit-rB)*AH2_(1.0/1023.0));} | ||
| 1199 | #endif | ||