summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--src/core/arm/dynarmic/arm_dynarmic.cpp2
-rw-r--r--src/core/arm/unicorn/arm_unicorn.cpp2
-rw-r--r--src/core/core_cpu.cpp14
-rw-r--r--src/core/core_timing.cpp70
-rw-r--r--src/core/core_timing.h25
-rw-r--r--src/core/cpu_core_manager.cpp19
-rw-r--r--src/tests/core/core_timing.cpp149
7 files changed, 147 insertions, 134 deletions
diff --git a/src/core/arm/dynarmic/arm_dynarmic.cpp b/src/core/arm/dynarmic/arm_dynarmic.cpp
index f1506b372..700c4afff 100644
--- a/src/core/arm/dynarmic/arm_dynarmic.cpp
+++ b/src/core/arm/dynarmic/arm_dynarmic.cpp
@@ -116,7 +116,7 @@ public:
116 num_interpreted_instructions = 0; 116 num_interpreted_instructions = 0;
117 } 117 }
118 u64 GetTicksRemaining() override { 118 u64 GetTicksRemaining() override {
119 return std::max(parent.system.CoreTiming().GetDowncount(), 0); 119 return std::max(parent.system.CoreTiming().GetDowncount(), s64{0});
120 } 120 }
121 u64 GetCNTPCT() override { 121 u64 GetCNTPCT() override {
122 return Timing::CpuCyclesToClockCycles(parent.system.CoreTiming().GetTicks()); 122 return Timing::CpuCyclesToClockCycles(parent.system.CoreTiming().GetTicks());
diff --git a/src/core/arm/unicorn/arm_unicorn.cpp b/src/core/arm/unicorn/arm_unicorn.cpp
index 97d5c2a8a..d4f41bfc1 100644
--- a/src/core/arm/unicorn/arm_unicorn.cpp
+++ b/src/core/arm/unicorn/arm_unicorn.cpp
@@ -156,7 +156,7 @@ void ARM_Unicorn::Run() {
156 if (GDBStub::IsServerEnabled()) { 156 if (GDBStub::IsServerEnabled()) {
157 ExecuteInstructions(std::max(4000000, 0)); 157 ExecuteInstructions(std::max(4000000, 0));
158 } else { 158 } else {
159 ExecuteInstructions(std::max(system.CoreTiming().GetDowncount(), 0)); 159 ExecuteInstructions(std::max(system.CoreTiming().GetDowncount(), s64{0}));
160 } 160 }
161} 161}
162 162
diff --git a/src/core/core_cpu.cpp b/src/core/core_cpu.cpp
index 21c410e34..6bd9639c6 100644
--- a/src/core/core_cpu.cpp
+++ b/src/core/core_cpu.cpp
@@ -85,24 +85,16 @@ void Cpu::RunLoop(bool tight_loop) {
85 // instead advance to the next event and try to yield to the next thread 85 // instead advance to the next event and try to yield to the next thread
86 if (Kernel::GetCurrentThread() == nullptr) { 86 if (Kernel::GetCurrentThread() == nullptr) {
87 LOG_TRACE(Core, "Core-{} idling", core_index); 87 LOG_TRACE(Core, "Core-{} idling", core_index);
88 88 core_timing.Idle();
89 if (IsMainCore()) { 89 core_timing.Advance();
90 // TODO(Subv): Only let CoreTiming idle if all 4 cores are idling.
91 core_timing.Idle();
92 core_timing.Advance();
93 }
94
95 PrepareReschedule(); 90 PrepareReschedule();
96 } else { 91 } else {
97 if (IsMainCore()) {
98 core_timing.Advance();
99 }
100
101 if (tight_loop) { 92 if (tight_loop) {
102 arm_interface->Run(); 93 arm_interface->Run();
103 } else { 94 } else {
104 arm_interface->Step(); 95 arm_interface->Step();
105 } 96 }
97 core_timing.Advance();
106 } 98 }
107 99
108 Reschedule(); 100 Reschedule();
diff --git a/src/core/core_timing.cpp b/src/core/core_timing.cpp
index a58f7b131..0e9570685 100644
--- a/src/core/core_timing.cpp
+++ b/src/core/core_timing.cpp
@@ -15,7 +15,7 @@
15 15
16namespace Core::Timing { 16namespace Core::Timing {
17 17
18constexpr int MAX_SLICE_LENGTH = 20000; 18constexpr int MAX_SLICE_LENGTH = 10000;
19 19
20struct CoreTiming::Event { 20struct CoreTiming::Event {
21 s64 time; 21 s64 time;
@@ -38,10 +38,12 @@ CoreTiming::CoreTiming() = default;
38CoreTiming::~CoreTiming() = default; 38CoreTiming::~CoreTiming() = default;
39 39
40void CoreTiming::Initialize() { 40void CoreTiming::Initialize() {
41 downcount = MAX_SLICE_LENGTH; 41 downcounts.fill(MAX_SLICE_LENGTH);
42 time_slice.fill(MAX_SLICE_LENGTH);
42 slice_length = MAX_SLICE_LENGTH; 43 slice_length = MAX_SLICE_LENGTH;
43 global_timer = 0; 44 global_timer = 0;
44 idled_cycles = 0; 45 idled_cycles = 0;
46 current_context = 0;
45 47
46 // The time between CoreTiming being initialized and the first call to Advance() is considered 48 // The time between CoreTiming being initialized and the first call to Advance() is considered
47 // the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before 49 // the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before
@@ -110,7 +112,7 @@ void CoreTiming::UnscheduleEvent(const EventType* event_type, u64 userdata) {
110u64 CoreTiming::GetTicks() const { 112u64 CoreTiming::GetTicks() const {
111 u64 ticks = static_cast<u64>(global_timer); 113 u64 ticks = static_cast<u64>(global_timer);
112 if (!is_global_timer_sane) { 114 if (!is_global_timer_sane) {
113 ticks += slice_length - downcount; 115 ticks += accumulated_ticks;
114 } 116 }
115 return ticks; 117 return ticks;
116} 118}
@@ -120,7 +122,8 @@ u64 CoreTiming::GetIdleTicks() const {
120} 122}
121 123
122void CoreTiming::AddTicks(u64 ticks) { 124void CoreTiming::AddTicks(u64 ticks) {
123 downcount -= static_cast<int>(ticks); 125 accumulated_ticks += ticks;
126 downcounts[current_context] -= static_cast<s64>(ticks);
124} 127}
125 128
126void CoreTiming::ClearPendingEvents() { 129void CoreTiming::ClearPendingEvents() {
@@ -141,22 +144,35 @@ void CoreTiming::RemoveEvent(const EventType* event_type) {
141 144
142void CoreTiming::ForceExceptionCheck(s64 cycles) { 145void CoreTiming::ForceExceptionCheck(s64 cycles) {
143 cycles = std::max<s64>(0, cycles); 146 cycles = std::max<s64>(0, cycles);
144 if (downcount <= cycles) { 147 if (downcounts[current_context] <= cycles) {
145 return; 148 return;
146 } 149 }
147 150
148 // downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int 151 // downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int
149 // here. Account for cycles already executed by adjusting the g.slice_length 152 // here. Account for cycles already executed by adjusting the g.slice_length
150 slice_length -= downcount - static_cast<int>(cycles); 153 downcounts[current_context] = static_cast<int>(cycles);
151 downcount = static_cast<int>(cycles); 154}
155
156std::optional<u64> CoreTiming::NextAvailableCore(const s64 needed_ticks) const {
157 const u64 original_context = current_context;
158 u64 next_context = (original_context + 1) % num_cpu_cores;
159 while (next_context != original_context) {
160 if (time_slice[next_context] >= needed_ticks) {
161 return {next_context};
162 } else if (time_slice[next_context] >= 0) {
163 return std::nullopt;
164 }
165 next_context = (next_context + 1) % num_cpu_cores;
166 }
167 return std::nullopt;
152} 168}
153 169
154void CoreTiming::Advance() { 170void CoreTiming::Advance() {
155 std::unique_lock<std::mutex> guard(inner_mutex); 171 std::unique_lock<std::mutex> guard(inner_mutex);
156 172
157 const int cycles_executed = slice_length - downcount; 173 const u64 cycles_executed = accumulated_ticks;
174 time_slice[current_context] = std::max<s64>(0, time_slice[current_context] - accumulated_ticks);
158 global_timer += cycles_executed; 175 global_timer += cycles_executed;
159 slice_length = MAX_SLICE_LENGTH;
160 176
161 is_global_timer_sane = true; 177 is_global_timer_sane = true;
162 178
@@ -173,24 +189,46 @@ void CoreTiming::Advance() {
173 189
174 // Still events left (scheduled in the future) 190 // Still events left (scheduled in the future)
175 if (!event_queue.empty()) { 191 if (!event_queue.empty()) {
176 slice_length = static_cast<int>( 192 const s64 needed_ticks =
177 std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH)); 193 std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH);
194 const auto next_core = NextAvailableCore(needed_ticks);
195 if (next_core) {
196 downcounts[*next_core] = needed_ticks;
197 }
198 }
199
200 accumulated_ticks = 0;
201
202 downcounts[current_context] = time_slice[current_context];
203}
204
205void CoreTiming::ResetRun() {
206 downcounts.fill(MAX_SLICE_LENGTH);
207 time_slice.fill(MAX_SLICE_LENGTH);
208 current_context = 0;
209 // Still events left (scheduled in the future)
210 if (!event_queue.empty()) {
211 const s64 needed_ticks =
212 std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH);
213 downcounts[current_context] = needed_ticks;
178 } 214 }
179 215
180 downcount = slice_length; 216 is_global_timer_sane = false;
217 accumulated_ticks = 0;
181} 218}
182 219
183void CoreTiming::Idle() { 220void CoreTiming::Idle() {
184 idled_cycles += downcount; 221 accumulated_ticks += downcounts[current_context];
185 downcount = 0; 222 idled_cycles += downcounts[current_context];
223 downcounts[current_context] = 0;
186} 224}
187 225
188std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const { 226std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
189 return std::chrono::microseconds{GetTicks() * 1000000 / BASE_CLOCK_RATE}; 227 return std::chrono::microseconds{GetTicks() * 1000000 / BASE_CLOCK_RATE};
190} 228}
191 229
192int CoreTiming::GetDowncount() const { 230s64 CoreTiming::GetDowncount() const {
193 return downcount; 231 return downcounts[current_context];
194} 232}
195 233
196} // namespace Core::Timing 234} // namespace Core::Timing
diff --git a/src/core/core_timing.h b/src/core/core_timing.h
index 161c7007d..3bb88c810 100644
--- a/src/core/core_timing.h
+++ b/src/core/core_timing.h
@@ -7,6 +7,7 @@
7#include <chrono> 7#include <chrono>
8#include <functional> 8#include <functional>
9#include <mutex> 9#include <mutex>
10#include <optional>
10#include <string> 11#include <string>
11#include <unordered_map> 12#include <unordered_map>
12#include <vector> 13#include <vector>
@@ -104,7 +105,19 @@ public:
104 105
105 std::chrono::microseconds GetGlobalTimeUs() const; 106 std::chrono::microseconds GetGlobalTimeUs() const;
106 107
107 int GetDowncount() const; 108 void ResetRun();
109
110 s64 GetDowncount() const;
111
112 void SwitchContext(u64 new_context) {
113 current_context = new_context;
114 }
115
116 bool CanCurrentContextRun() const {
117 return time_slice[current_context] > 0;
118 }
119
120 std::optional<u64> NextAvailableCore(const s64 needed_ticks) const;
108 121
109private: 122private:
110 struct Event; 123 struct Event;
@@ -112,10 +125,16 @@ private:
112 /// Clear all pending events. This should ONLY be done on exit. 125 /// Clear all pending events. This should ONLY be done on exit.
113 void ClearPendingEvents(); 126 void ClearPendingEvents();
114 127
128 static constexpr u64 num_cpu_cores = 4;
129
115 s64 global_timer = 0; 130 s64 global_timer = 0;
116 s64 idled_cycles = 0; 131 s64 idled_cycles = 0;
117 int slice_length = 0; 132 s64 slice_length = 0;
118 int downcount = 0; 133 u64 accumulated_ticks = 0;
134 std::array<s64, num_cpu_cores> downcounts{};
135 // Slice of time assigned to each core per run.
136 std::array<s64, num_cpu_cores> time_slice{};
137 u64 current_context = 0;
119 138
120 // Are we in a function that has been called from Advance() 139 // Are we in a function that has been called from Advance()
121 // If events are scheduled from a function that gets called from Advance(), 140 // If events are scheduled from a function that gets called from Advance(),
diff --git a/src/core/cpu_core_manager.cpp b/src/core/cpu_core_manager.cpp
index 8fcb4eeb1..16b384076 100644
--- a/src/core/cpu_core_manager.cpp
+++ b/src/core/cpu_core_manager.cpp
@@ -6,6 +6,7 @@
6#include "core/arm/exclusive_monitor.h" 6#include "core/arm/exclusive_monitor.h"
7#include "core/core.h" 7#include "core/core.h"
8#include "core/core_cpu.h" 8#include "core/core_cpu.h"
9#include "core/core_timing.h"
9#include "core/cpu_core_manager.h" 10#include "core/cpu_core_manager.h"
10#include "core/gdbstub/gdbstub.h" 11#include "core/gdbstub/gdbstub.h"
11#include "core/settings.h" 12#include "core/settings.h"
@@ -122,13 +123,19 @@ void CpuCoreManager::RunLoop(bool tight_loop) {
122 } 123 }
123 } 124 }
124 125
125 for (active_core = 0; active_core < NUM_CPU_CORES; ++active_core) { 126 auto& core_timing = system.CoreTiming();
126 cores[active_core]->RunLoop(tight_loop); 127 core_timing.ResetRun();
127 if (Settings::values.use_multi_core) { 128 bool keep_running{};
128 // Cores 1-3 are run on other threads in this mode 129 do {
129 break; 130 keep_running = false;
131 for (active_core = 0; active_core < NUM_CPU_CORES; ++active_core) {
132 core_timing.SwitchContext(active_core);
133 if (core_timing.CanCurrentContextRun()) {
134 cores[active_core]->RunLoop(tight_loop);
135 }
136 keep_running |= core_timing.CanCurrentContextRun();
130 } 137 }
131 } 138 } while (keep_running);
132 139
133 if (GDBStub::IsServerEnabled()) { 140 if (GDBStub::IsServerEnabled()) {
134 GDBStub::SetCpuStepFlag(false); 141 GDBStub::SetCpuStepFlag(false);
diff --git a/src/tests/core/core_timing.cpp b/src/tests/core/core_timing.cpp
index f8be8fd19..3443bf05e 100644
--- a/src/tests/core/core_timing.cpp
+++ b/src/tests/core/core_timing.cpp
@@ -6,6 +6,7 @@
6 6
7#include <array> 7#include <array>
8#include <bitset> 8#include <bitset>
9#include <cstdlib>
9#include <string> 10#include <string>
10#include "common/file_util.h" 11#include "common/file_util.h"
11#include "core/core.h" 12#include "core/core.h"
@@ -13,7 +14,7 @@
13 14
14// Numbers are chosen randomly to make sure the correct one is given. 15// Numbers are chosen randomly to make sure the correct one is given.
15static constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}}; 16static constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}};
16static constexpr int MAX_SLICE_LENGTH = 20000; // Copied from CoreTiming internals 17static constexpr int MAX_SLICE_LENGTH = 10000; // Copied from CoreTiming internals
17 18
18static std::bitset<CB_IDS.size()> callbacks_ran_flags; 19static std::bitset<CB_IDS.size()> callbacks_ran_flags;
19static u64 expected_callback = 0; 20static u64 expected_callback = 0;
@@ -28,6 +29,12 @@ void CallbackTemplate(u64 userdata, s64 cycles_late) {
28 REQUIRE(lateness == cycles_late); 29 REQUIRE(lateness == cycles_late);
29} 30}
30 31
32static u64 callbacks_done = 0;
33
34void EmptyCallback(u64 userdata, s64 cycles_late) {
35 ++callbacks_done;
36}
37
31struct ScopeInit final { 38struct ScopeInit final {
32 ScopeInit() { 39 ScopeInit() {
33 core_timing.Initialize(); 40 core_timing.Initialize();
@@ -39,18 +46,19 @@ struct ScopeInit final {
39 Core::Timing::CoreTiming core_timing; 46 Core::Timing::CoreTiming core_timing;
40}; 47};
41 48
42static void AdvanceAndCheck(Core::Timing::CoreTiming& core_timing, u32 idx, int downcount, 49static void AdvanceAndCheck(Core::Timing::CoreTiming& core_timing, u32 idx, u32 context = 0,
43 int expected_lateness = 0, int cpu_downcount = 0) { 50 int expected_lateness = 0, int cpu_downcount = 0) {
44 callbacks_ran_flags = 0; 51 callbacks_ran_flags = 0;
45 expected_callback = CB_IDS[idx]; 52 expected_callback = CB_IDS[idx];
46 lateness = expected_lateness; 53 lateness = expected_lateness;
47 54
48 // Pretend we executed X cycles of instructions. 55 // Pretend we executed X cycles of instructions.
56 core_timing.SwitchContext(context);
49 core_timing.AddTicks(core_timing.GetDowncount() - cpu_downcount); 57 core_timing.AddTicks(core_timing.GetDowncount() - cpu_downcount);
50 core_timing.Advance(); 58 core_timing.Advance();
59 core_timing.SwitchContext((context + 1) % 4);
51 60
52 REQUIRE(decltype(callbacks_ran_flags)().set(idx) == callbacks_ran_flags); 61 REQUIRE(decltype(callbacks_ran_flags)().set(idx) == callbacks_ran_flags);
53 REQUIRE(downcount == core_timing.GetDowncount());
54} 62}
55 63
56TEST_CASE("CoreTiming[BasicOrder]", "[core]") { 64TEST_CASE("CoreTiming[BasicOrder]", "[core]") {
@@ -64,112 +72,61 @@ TEST_CASE("CoreTiming[BasicOrder]", "[core]") {
64 Core::Timing::EventType* cb_e = core_timing.RegisterEvent("callbackE", CallbackTemplate<4>); 72 Core::Timing::EventType* cb_e = core_timing.RegisterEvent("callbackE", CallbackTemplate<4>);
65 73
66 // Enter slice 0 74 // Enter slice 0
67 core_timing.Advance(); 75 core_timing.ResetRun();
68
69 // D -> B -> C -> A -> E
70 core_timing.ScheduleEvent(1000, cb_a, CB_IDS[0]);
71 REQUIRE(1000 == core_timing.GetDowncount());
72 core_timing.ScheduleEvent(500, cb_b, CB_IDS[1]);
73 REQUIRE(500 == core_timing.GetDowncount());
74 core_timing.ScheduleEvent(800, cb_c, CB_IDS[2]);
75 REQUIRE(500 == core_timing.GetDowncount());
76 core_timing.ScheduleEvent(100, cb_d, CB_IDS[3]);
77 REQUIRE(100 == core_timing.GetDowncount());
78 core_timing.ScheduleEvent(1200, cb_e, CB_IDS[4]);
79 REQUIRE(100 == core_timing.GetDowncount());
80
81 AdvanceAndCheck(core_timing, 3, 400);
82 AdvanceAndCheck(core_timing, 1, 300);
83 AdvanceAndCheck(core_timing, 2, 200);
84 AdvanceAndCheck(core_timing, 0, 200);
85 AdvanceAndCheck(core_timing, 4, MAX_SLICE_LENGTH);
86}
87
88TEST_CASE("CoreTiming[Threadsave]", "[core]") {
89 ScopeInit guard;
90 auto& core_timing = guard.core_timing;
91
92 Core::Timing::EventType* cb_a = core_timing.RegisterEvent("callbackA", CallbackTemplate<0>);
93 Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>);
94 Core::Timing::EventType* cb_c = core_timing.RegisterEvent("callbackC", CallbackTemplate<2>);
95 Core::Timing::EventType* cb_d = core_timing.RegisterEvent("callbackD", CallbackTemplate<3>);
96 Core::Timing::EventType* cb_e = core_timing.RegisterEvent("callbackE", CallbackTemplate<4>);
97
98 // Enter slice 0
99 core_timing.Advance();
100 76
101 // D -> B -> C -> A -> E 77 // D -> B -> C -> A -> E
78 core_timing.SwitchContext(0);
102 core_timing.ScheduleEvent(1000, cb_a, CB_IDS[0]); 79 core_timing.ScheduleEvent(1000, cb_a, CB_IDS[0]);
103 // Manually force since ScheduleEvent doesn't call it
104 core_timing.ForceExceptionCheck(1000);
105 REQUIRE(1000 == core_timing.GetDowncount()); 80 REQUIRE(1000 == core_timing.GetDowncount());
106 core_timing.ScheduleEvent(500, cb_b, CB_IDS[1]); 81 core_timing.ScheduleEvent(500, cb_b, CB_IDS[1]);
107 // Manually force since ScheduleEvent doesn't call it
108 core_timing.ForceExceptionCheck(500);
109 REQUIRE(500 == core_timing.GetDowncount()); 82 REQUIRE(500 == core_timing.GetDowncount());
110 core_timing.ScheduleEvent(800, cb_c, CB_IDS[2]); 83 core_timing.ScheduleEvent(800, cb_c, CB_IDS[2]);
111 // Manually force since ScheduleEvent doesn't call it
112 core_timing.ForceExceptionCheck(800);
113 REQUIRE(500 == core_timing.GetDowncount()); 84 REQUIRE(500 == core_timing.GetDowncount());
114 core_timing.ScheduleEvent(100, cb_d, CB_IDS[3]); 85 core_timing.ScheduleEvent(100, cb_d, CB_IDS[3]);
115 // Manually force since ScheduleEvent doesn't call it
116 core_timing.ForceExceptionCheck(100);
117 REQUIRE(100 == core_timing.GetDowncount()); 86 REQUIRE(100 == core_timing.GetDowncount());
118 core_timing.ScheduleEvent(1200, cb_e, CB_IDS[4]); 87 core_timing.ScheduleEvent(1200, cb_e, CB_IDS[4]);
119 // Manually force since ScheduleEvent doesn't call it
120 core_timing.ForceExceptionCheck(1200);
121 REQUIRE(100 == core_timing.GetDowncount()); 88 REQUIRE(100 == core_timing.GetDowncount());
122 89
123 AdvanceAndCheck(core_timing, 3, 400); 90 AdvanceAndCheck(core_timing, 3, 0);
124 AdvanceAndCheck(core_timing, 1, 300); 91 AdvanceAndCheck(core_timing, 1, 1);
125 AdvanceAndCheck(core_timing, 2, 200); 92 AdvanceAndCheck(core_timing, 2, 2);
126 AdvanceAndCheck(core_timing, 0, 200); 93 AdvanceAndCheck(core_timing, 0, 3);
127 AdvanceAndCheck(core_timing, 4, MAX_SLICE_LENGTH); 94 AdvanceAndCheck(core_timing, 4, 0);
128}
129
130namespace SharedSlotTest {
131static unsigned int counter = 0;
132
133template <unsigned int ID>
134void FifoCallback(u64 userdata, s64 cycles_late) {
135 static_assert(ID < CB_IDS.size(), "ID out of range");
136 callbacks_ran_flags.set(ID);
137 REQUIRE(CB_IDS[ID] == userdata);
138 REQUIRE(ID == counter);
139 REQUIRE(lateness == cycles_late);
140 ++counter;
141} 95}
142} // namespace SharedSlotTest
143 96
144TEST_CASE("CoreTiming[SharedSlot]", "[core]") { 97TEST_CASE("CoreTiming[FairSharing]", "[core]") {
145 using namespace SharedSlotTest;
146 98
147 ScopeInit guard; 99 ScopeInit guard;
148 auto& core_timing = guard.core_timing; 100 auto& core_timing = guard.core_timing;
149 101
150 Core::Timing::EventType* cb_a = core_timing.RegisterEvent("callbackA", FifoCallback<0>); 102 Core::Timing::EventType* empty_callback =
151 Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", FifoCallback<1>); 103 core_timing.RegisterEvent("empty_callback", EmptyCallback);
152 Core::Timing::EventType* cb_c = core_timing.RegisterEvent("callbackC", FifoCallback<2>);
153 Core::Timing::EventType* cb_d = core_timing.RegisterEvent("callbackD", FifoCallback<3>);
154 Core::Timing::EventType* cb_e = core_timing.RegisterEvent("callbackE", FifoCallback<4>);
155 104
156 core_timing.ScheduleEvent(1000, cb_a, CB_IDS[0]); 105 callbacks_done = 0;
157 core_timing.ScheduleEvent(1000, cb_b, CB_IDS[1]); 106 u64 MAX_CALLBACKS = 10;
158 core_timing.ScheduleEvent(1000, cb_c, CB_IDS[2]); 107 for (std::size_t i = 0; i < 10; i++) {
159 core_timing.ScheduleEvent(1000, cb_d, CB_IDS[3]); 108 core_timing.ScheduleEvent(i * 3333U, empty_callback, 0);
160 core_timing.ScheduleEvent(1000, cb_e, CB_IDS[4]); 109 }
161
162 // Enter slice 0
163 core_timing.Advance();
164 REQUIRE(1000 == core_timing.GetDowncount());
165 110
166 callbacks_ran_flags = 0; 111 const s64 advances = MAX_SLICE_LENGTH / 10;
167 counter = 0; 112 core_timing.ResetRun();
168 lateness = 0; 113 u64 current_time = core_timing.GetTicks();
169 core_timing.AddTicks(core_timing.GetDowncount()); 114 bool keep_running{};
170 core_timing.Advance(); 115 do {
171 REQUIRE(MAX_SLICE_LENGTH == core_timing.GetDowncount()); 116 keep_running = false;
172 REQUIRE(0x1FULL == callbacks_ran_flags.to_ullong()); 117 for (u32 active_core = 0; active_core < 4; ++active_core) {
118 core_timing.SwitchContext(active_core);
119 if (core_timing.CanCurrentContextRun()) {
120 core_timing.AddTicks(std::min<s64>(advances, core_timing.GetDowncount()));
121 core_timing.Advance();
122 }
123 keep_running |= core_timing.CanCurrentContextRun();
124 }
125 } while (keep_running);
126 u64 current_time_2 = core_timing.GetTicks();
127
128 REQUIRE(MAX_CALLBACKS == callbacks_done);
129 REQUIRE(current_time_2 == current_time + MAX_SLICE_LENGTH * 4);
173} 130}
174 131
175TEST_CASE("Core::Timing[PredictableLateness]", "[core]") { 132TEST_CASE("Core::Timing[PredictableLateness]", "[core]") {
@@ -180,13 +137,13 @@ TEST_CASE("Core::Timing[PredictableLateness]", "[core]") {
180 Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>); 137 Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>);
181 138
182 // Enter slice 0 139 // Enter slice 0
183 core_timing.Advance(); 140 core_timing.ResetRun();
184 141
185 core_timing.ScheduleEvent(100, cb_a, CB_IDS[0]); 142 core_timing.ScheduleEvent(100, cb_a, CB_IDS[0]);
186 core_timing.ScheduleEvent(200, cb_b, CB_IDS[1]); 143 core_timing.ScheduleEvent(200, cb_b, CB_IDS[1]);
187 144
188 AdvanceAndCheck(core_timing, 0, 90, 10, -10); // (100 - 10) 145 AdvanceAndCheck(core_timing, 0, 0, 10, -10); // (100 - 10)
189 AdvanceAndCheck(core_timing, 1, MAX_SLICE_LENGTH, 50, -50); 146 AdvanceAndCheck(core_timing, 1, 1, 50, -50);
190} 147}
191 148
192namespace ChainSchedulingTest { 149namespace ChainSchedulingTest {
@@ -220,7 +177,7 @@ TEST_CASE("CoreTiming[ChainScheduling]", "[core]") {
220 }); 177 });
221 178
222 // Enter slice 0 179 // Enter slice 0
223 core_timing.Advance(); 180 core_timing.ResetRun();
224 181
225 core_timing.ScheduleEvent(800, cb_a, CB_IDS[0]); 182 core_timing.ScheduleEvent(800, cb_a, CB_IDS[0]);
226 core_timing.ScheduleEvent(1000, cb_b, CB_IDS[1]); 183 core_timing.ScheduleEvent(1000, cb_b, CB_IDS[1]);
@@ -229,19 +186,19 @@ TEST_CASE("CoreTiming[ChainScheduling]", "[core]") {
229 REQUIRE(800 == core_timing.GetDowncount()); 186 REQUIRE(800 == core_timing.GetDowncount());
230 187
231 reschedules = 3; 188 reschedules = 3;
232 AdvanceAndCheck(core_timing, 0, 200); // cb_a 189 AdvanceAndCheck(core_timing, 0, 0); // cb_a
233 AdvanceAndCheck(core_timing, 1, 1000); // cb_b, cb_rs 190 AdvanceAndCheck(core_timing, 1, 1); // cb_b, cb_rs
234 REQUIRE(2 == reschedules); 191 REQUIRE(2 == reschedules);
235 192
236 core_timing.AddTicks(core_timing.GetDowncount()); 193 core_timing.AddTicks(core_timing.GetDowncount());
237 core_timing.Advance(); // cb_rs 194 core_timing.Advance(); // cb_rs
195 core_timing.SwitchContext(3);
238 REQUIRE(1 == reschedules); 196 REQUIRE(1 == reschedules);
239 REQUIRE(200 == core_timing.GetDowncount()); 197 REQUIRE(200 == core_timing.GetDowncount());
240 198
241 AdvanceAndCheck(core_timing, 2, 800); // cb_c 199 AdvanceAndCheck(core_timing, 2, 3); // cb_c
242 200
243 core_timing.AddTicks(core_timing.GetDowncount()); 201 core_timing.AddTicks(core_timing.GetDowncount());
244 core_timing.Advance(); // cb_rs 202 core_timing.Advance(); // cb_rs
245 REQUIRE(0 == reschedules); 203 REQUIRE(0 == reschedules);
246 REQUIRE(MAX_SLICE_LENGTH == core_timing.GetDowncount());
247} 204}