summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--src/core/arm/skyeye_common/vfp/vfp.cpp4
-rw-r--r--src/core/arm/skyeye_common/vfp/vfp_helper.h654
-rw-r--r--src/core/arm/skyeye_common/vfp/vfpdouble.cpp187
-rw-r--r--src/core/arm/skyeye_common/vfp/vfpsingle.cpp54
4 files changed, 322 insertions, 577 deletions
diff --git a/src/core/arm/skyeye_common/vfp/vfp.cpp b/src/core/arm/skyeye_common/vfp/vfp.cpp
index 888709124..1cf146c53 100644
--- a/src/core/arm/skyeye_common/vfp/vfp.cpp
+++ b/src/core/arm/skyeye_common/vfp/vfp.cpp
@@ -773,8 +773,8 @@ void vfp_raise_exceptions(ARMul_State* state, u32 exceptions, u32 inst, u32 fpsc
773 * Comparison instructions always return at least one of 773 * Comparison instructions always return at least one of
774 * these flags set. 774 * these flags set.
775 */ 775 */
776 if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V)) 776 if (exceptions & (FPSCR_NFLAG|FPSCR_ZFLAG|FPSCR_CFLAG|FPSCR_VFLAG))
777 fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V); 777 fpscr &= ~(FPSCR_NFLAG|FPSCR_ZFLAG|FPSCR_CFLAG|FPSCR_VFLAG);
778 778
779 fpscr |= exceptions; 779 fpscr |= exceptions;
780 780
diff --git a/src/core/arm/skyeye_common/vfp/vfp_helper.h b/src/core/arm/skyeye_common/vfp/vfp_helper.h
index 581f0358f..b68090b80 100644
--- a/src/core/arm/skyeye_common/vfp/vfp_helper.h
+++ b/src/core/arm/skyeye_common/vfp/vfp_helper.h
@@ -45,444 +45,400 @@
45 45
46#define do_div(n, base) {n/=base;} 46#define do_div(n, base) {n/=base;}
47 47
48/* From vfpinstr.h */ 48enum : u32 {
49 49 FOP_MASK = 0x00b00040,
50#define INST_CPRTDO(inst) (((inst) & 0x0f000000) == 0x0e000000) 50 FOP_FMAC = 0x00000000,
51#define INST_CPRT(inst) ((inst) & (1 << 4)) 51 FOP_FNMAC = 0x00000040,
52#define INST_CPRT_L(inst) ((inst) & (1 << 20)) 52 FOP_FMSC = 0x00100000,
53#define INST_CPRT_Rd(inst) (((inst) & (15 << 12)) >> 12) 53 FOP_FNMSC = 0x00100040,
54#define INST_CPRT_OP(inst) (((inst) >> 21) & 7) 54 FOP_FMUL = 0x00200000,
55#define INST_CPNUM(inst) ((inst) & 0xf00) 55 FOP_FNMUL = 0x00200040,
56#define CPNUM(cp) ((cp) << 8) 56 FOP_FADD = 0x00300000,
57 57 FOP_FSUB = 0x00300040,
58#define FOP_MASK (0x00b00040) 58 FOP_FDIV = 0x00800000,
59#define FOP_FMAC (0x00000000) 59 FOP_EXT = 0x00b00040
60#define FOP_FNMAC (0x00000040) 60};
61#define FOP_FMSC (0x00100000) 61
62#define FOP_FNMSC (0x00100040) 62#define FOP_TO_IDX(inst) ((inst & 0x00b00000) >> 20 | (inst & (1 << 6)) >> 4)
63#define FOP_FMUL (0x00200000) 63
64#define FOP_FNMUL (0x00200040) 64enum : u32 {
65#define FOP_FADD (0x00300000) 65 FEXT_MASK = 0x000f0080,
66#define FOP_FSUB (0x00300040) 66 FEXT_FCPY = 0x00000000,
67#define FOP_FDIV (0x00800000) 67 FEXT_FABS = 0x00000080,
68#define FOP_EXT (0x00b00040) 68 FEXT_FNEG = 0x00010000,
69 69 FEXT_FSQRT = 0x00010080,
70#define FOP_TO_IDX(inst) ((inst & 0x00b00000) >> 20 | (inst & (1 << 6)) >> 4) 70 FEXT_FCMP = 0x00040000,
71 71 FEXT_FCMPE = 0x00040080,
72#define FEXT_MASK (0x000f0080) 72 FEXT_FCMPZ = 0x00050000,
73#define FEXT_FCPY (0x00000000) 73 FEXT_FCMPEZ = 0x00050080,
74#define FEXT_FABS (0x00000080) 74 FEXT_FCVT = 0x00070080,
75#define FEXT_FNEG (0x00010000) 75 FEXT_FUITO = 0x00080000,
76#define FEXT_FSQRT (0x00010080) 76 FEXT_FSITO = 0x00080080,
77#define FEXT_FCMP (0x00040000) 77 FEXT_FTOUI = 0x000c0000,
78#define FEXT_FCMPE (0x00040080) 78 FEXT_FTOUIZ = 0x000c0080,
79#define FEXT_FCMPZ (0x00050000) 79 FEXT_FTOSI = 0x000d0000,
80#define FEXT_FCMPEZ (0x00050080) 80 FEXT_FTOSIZ = 0x000d0080
81#define FEXT_FCVT (0x00070080) 81};
82#define FEXT_FUITO (0x00080000) 82
83#define FEXT_FSITO (0x00080080) 83#define FEXT_TO_IDX(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7)
84#define FEXT_FTOUI (0x000c0000) 84
85#define FEXT_FTOUIZ (0x000c0080) 85#define vfp_get_sd(inst) ((inst & 0x0000f000) >> 11 | (inst & (1 << 22)) >> 22)
86#define FEXT_FTOSI (0x000d0000) 86#define vfp_get_dd(inst) ((inst & 0x0000f000) >> 12 | (inst & (1 << 22)) >> 18)
87#define FEXT_FTOSIZ (0x000d0080) 87#define vfp_get_sm(inst) ((inst & 0x0000000f) << 1 | (inst & (1 << 5)) >> 5)
88 88#define vfp_get_dm(inst) ((inst & 0x0000000f) | (inst & (1 << 5)) >> 1)
89#define FEXT_TO_IDX(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7) 89#define vfp_get_sn(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7)
90 90#define vfp_get_dn(inst) ((inst & 0x000f0000) >> 16 | (inst & (1 << 7)) >> 3)
91#define vfp_get_sd(inst) ((inst & 0x0000f000) >> 11 | (inst & (1 << 22)) >> 22) 91
92#define vfp_get_dd(inst) ((inst & 0x0000f000) >> 12 | (inst & (1 << 22)) >> 18) 92#define vfp_single(inst) (((inst) & 0x0000f00) == 0xa00)
93#define vfp_get_sm(inst) ((inst & 0x0000000f) << 1 | (inst & (1 << 5)) >> 5)
94#define vfp_get_dm(inst) ((inst & 0x0000000f) | (inst & (1 << 5)) >> 1)
95#define vfp_get_sn(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7)
96#define vfp_get_dn(inst) ((inst & 0x000f0000) >> 16 | (inst & (1 << 7)) >> 3)
97
98#define vfp_single(inst) (((inst) & 0x0000f00) == 0xa00)
99
100#define FPSCR_N (1 << 31)
101#define FPSCR_Z (1 << 30)
102#define FPSCR_C (1 << 29)
103#define FPSCR_V (1 << 28)
104 93
105static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift) 94static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
106{ 95{
107 if (shift) { 96 if (shift) {
108 if (shift < 32) 97 if (shift < 32)
109 val = val >> shift | ((val << (32 - shift)) != 0); 98 val = val >> shift | ((val << (32 - shift)) != 0);
110 else 99 else
111 val = val != 0; 100 val = val != 0;
112 } 101 }
113 return val; 102 return val;
114} 103}
115 104
116static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift) 105static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
117{ 106{
118 if (shift) { 107 if (shift) {
119 if (shift < 64) 108 if (shift < 64)
120 val = val >> shift | ((val << (64 - shift)) != 0); 109 val = val >> shift | ((val << (64 - shift)) != 0);
121 else 110 else
122 val = val != 0; 111 val = val != 0;
123 } 112 }
124 return val; 113 return val;
125} 114}
126 115
127static inline u32 vfp_hi64to32jamming(u64 val) 116static inline u32 vfp_hi64to32jamming(u64 val)
128{ 117{
129 u32 v; 118 u32 v;
130 u32 highval = val >> 32; 119 u32 highval = val >> 32;
131 u32 lowval = val & 0xffffffff; 120 u32 lowval = val & 0xffffffff;
132 121
133 if (lowval >= 1) 122 if (lowval >= 1)
134 v = highval | 1; 123 v = highval | 1;
135 else 124 else
136 v = highval; 125 v = highval;
137 126
138 return v; 127 return v;
139} 128}
140 129
141static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml) 130static inline void add128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml)
142{ 131{
143 *resl = nl + ml; 132 *resl = nl + ml;
144 *resh = nh + mh; 133 *resh = nh + mh;
145 if (*resl < nl) 134 if (*resl < nl)
146 *resh += 1; 135 *resh += 1;
147} 136}
148 137
149static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml) 138static inline void sub128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml)
150{ 139{
151 *resl = nl - ml; 140 *resl = nl - ml;
152 *resh = nh - mh; 141 *resh = nh - mh;
153 if (*resl > nl) 142 if (*resl > nl)
154 *resh -= 1; 143 *resh -= 1;
155} 144}
156 145
157static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m) 146static inline void mul64to128(u64* resh, u64* resl, u64 n, u64 m)
158{ 147{
159 u32 nh, nl, mh, ml; 148 u32 nh, nl, mh, ml;
160 u64 rh, rma, rmb, rl; 149 u64 rh, rma, rmb, rl;
161 150
162 nl = n; 151 nl = n;
163 ml = m; 152 ml = m;
164 rl = (u64)nl * ml; 153 rl = (u64)nl * ml;
165 154
166 nh = n >> 32; 155 nh = n >> 32;
167 rma = (u64)nh * ml; 156 rma = (u64)nh * ml;
168 157
169 mh = m >> 32; 158 mh = m >> 32;
170 rmb = (u64)nl * mh; 159 rmb = (u64)nl * mh;
171 rma += rmb; 160 rma += rmb;
172 161
173 rh = (u64)nh * mh; 162 rh = (u64)nh * mh;
174 rh += ((u64)(rma < rmb) << 32) + (rma >> 32); 163 rh += ((u64)(rma < rmb) << 32) + (rma >> 32);
175 164
176 rma <<= 32; 165 rma <<= 32;
177 rl += rma; 166 rl += rma;
178 rh += (rl < rma); 167 rh += (rl < rma);
179 168
180 *resl = rl; 169 *resl = rl;
181 *resh = rh; 170 *resh = rh;
182} 171}
183 172
184static inline void shift64left(u64 *resh, u64 *resl, u64 n) 173static inline void shift64left(u64* resh, u64* resl, u64 n)
185{ 174{
186 *resh = n >> 63; 175 *resh = n >> 63;
187 *resl = n << 1; 176 *resl = n << 1;
188} 177}
189 178
190static inline u64 vfp_hi64multiply64(u64 n, u64 m) 179static inline u64 vfp_hi64multiply64(u64 n, u64 m)
191{ 180{
192 u64 rh, rl; 181 u64 rh, rl;
193 mul64to128(&rh, &rl, n, m); 182 mul64to128(&rh, &rl, n, m);
194 return rh | (rl != 0); 183 return rh | (rl != 0);
195} 184}
196 185
197static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m) 186static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
198{ 187{
199 u64 mh, ml, remh, reml, termh, terml, z; 188 u64 mh, ml, remh, reml, termh, terml, z;
200 189
201 if (nh >= m) 190 if (nh >= m)
202 return ~0ULL; 191 return ~0ULL;
203 mh = m >> 32; 192 mh = m >> 32;
204 if (mh << 32 <= nh) { 193 if (mh << 32 <= nh) {
205 z = 0xffffffff00000000ULL; 194 z = 0xffffffff00000000ULL;
206 } else { 195 } else {
207 z = nh; 196 z = nh;
208 do_div(z, mh); 197 do_div(z, mh);
209 z <<= 32; 198 z <<= 32;
210 } 199 }
211 mul64to128(&termh, &terml, m, z); 200 mul64to128(&termh, &terml, m, z);
212 sub128(&remh, &reml, nh, nl, termh, terml); 201 sub128(&remh, &reml, nh, nl, termh, terml);
213 ml = m << 32; 202 ml = m << 32;
214 while ((s64)remh < 0) { 203 while ((s64)remh < 0) {
215 z -= 0x100000000ULL; 204 z -= 0x100000000ULL;
216 add128(&remh, &reml, remh, reml, mh, ml); 205 add128(&remh, &reml, remh, reml, mh, ml);
217 } 206 }
218 remh = (remh << 32) | (reml >> 32); 207 remh = (remh << 32) | (reml >> 32);
219 if (mh << 32 <= remh) { 208 if (mh << 32 <= remh) {
220 z |= 0xffffffff; 209 z |= 0xffffffff;
221 } else { 210 } else {
222 do_div(remh, mh); 211 do_div(remh, mh);
223 z |= remh; 212 z |= remh;
224 } 213 }
225 return z; 214 return z;
226} 215}
227 216
228/* 217// Operations on unpacked elements
229 * Operations on unpacked elements 218#define vfp_sign_negate(sign) (sign ^ 0x8000)
230 */
231#define vfp_sign_negate(sign) (sign ^ 0x8000)
232 219
233/* 220// Single-precision
234 * Single-precision
235 */
236struct vfp_single { 221struct vfp_single {
237 s16 exponent; 222 s16 exponent;
238 u16 sign; 223 u16 sign;
239 u32 significand; 224 u32 significand;
240}; 225};
241 226
242/* 227// VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
243 * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa 228// VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
244 * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent 229// VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
245 * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand 230// which are not propagated to the float upon packing.
246 * which are not propagated to the float upon packing. 231#define VFP_SINGLE_MANTISSA_BITS (23)
247 */ 232#define VFP_SINGLE_EXPONENT_BITS (8)
248#define VFP_SINGLE_MANTISSA_BITS (23) 233#define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2)
249#define VFP_SINGLE_EXPONENT_BITS (8) 234#define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1)
250#define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2)
251#define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1)
252 235
253/* 236// The bit in an unpacked float which indicates that it is a quiet NaN
254 * The bit in an unpacked float which indicates that it is a quiet NaN
255 */
256#define VFP_SINGLE_SIGNIFICAND_QNAN (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS)) 237#define VFP_SINGLE_SIGNIFICAND_QNAN (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))
257 238
258/* 239// Operations on packed single-precision numbers
259 * Operations on packed single-precision numbers 240#define vfp_single_packed_sign(v) ((v) & 0x80000000)
260 */ 241#define vfp_single_packed_negate(v) ((v) ^ 0x80000000)
261#define vfp_single_packed_sign(v) ((v) & 0x80000000) 242#define vfp_single_packed_abs(v) ((v) & ~0x80000000)
262#define vfp_single_packed_negate(v) ((v) ^ 0x80000000) 243#define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
263#define vfp_single_packed_abs(v) ((v) & ~0x80000000) 244#define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
264#define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1)) 245
265#define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1)) 246// Unpack a single-precision float. Note that this returns the magnitude
266 247// of the single-precision float mantissa with the 1. if necessary,
267/* 248// aligned to bit 30.
268 * Unpack a single-precision float. Note that this returns the magnitude 249static inline void vfp_single_unpack(vfp_single* s, s32 val)
269 * of the single-precision float mantissa with the 1. if necessary,
270 * aligned to bit 30.
271 */
272static inline void vfp_single_unpack(struct vfp_single *s, s32 val)
273{ 250{
274 u32 significand; 251 u32 significand;
275 252
276 s->sign = vfp_single_packed_sign(val) >> 16, 253 s->sign = vfp_single_packed_sign(val) >> 16,
277 s->exponent = vfp_single_packed_exponent(val); 254 s->exponent = vfp_single_packed_exponent(val);
278 255
279 significand = (u32) val; 256 significand = (u32) val;
280 significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2; 257 significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
281 if (s->exponent && s->exponent != 255) 258 if (s->exponent && s->exponent != 255)
282 significand |= 0x40000000; 259 significand |= 0x40000000;
283 s->significand = significand; 260 s->significand = significand;
284} 261}
285 262
286/* 263// Re-pack a single-precision float. This assumes that the float is
287 * Re-pack a single-precision float. This assumes that the float is 264// already normalised such that the MSB is bit 30, _not_ bit 31.
288 * already normalised such that the MSB is bit 30, _not_ bit 31. 265static inline s32 vfp_single_pack(vfp_single* s)
289 */
290static inline s32 vfp_single_pack(struct vfp_single *s)
291{ 266{
292 u32 val; 267 u32 val = (s->sign << 16) +
293 val = (s->sign << 16) + 268 (s->exponent << VFP_SINGLE_MANTISSA_BITS) +
294 (s->exponent << VFP_SINGLE_MANTISSA_BITS) + 269 (s->significand >> VFP_SINGLE_LOW_BITS);
295 (s->significand >> VFP_SINGLE_LOW_BITS); 270 return (s32)val;
296 return (s32)val;
297} 271}
298 272
299#define VFP_NUMBER (1<<0) 273enum : u32 {
300#define VFP_ZERO (1<<1) 274 VFP_NUMBER = (1 << 0),
301#define VFP_DENORMAL (1<<2) 275 VFP_ZERO = (1 << 1),
302#define VFP_INFINITY (1<<3) 276 VFP_DENORMAL = (1 << 2),
303#define VFP_NAN (1<<4) 277 VFP_INFINITY = (1 << 3),
304#define VFP_NAN_SIGNAL (1<<5) 278 VFP_NAN = (1 << 4),
279 VFP_NAN_SIGNAL = (1 << 5),
305 280
306#define VFP_QNAN (VFP_NAN) 281 VFP_QNAN = (VFP_NAN),
307#define VFP_SNAN (VFP_NAN|VFP_NAN_SIGNAL) 282 VFP_SNAN = (VFP_NAN|VFP_NAN_SIGNAL)
283};
308 284
309static inline int vfp_single_type(struct vfp_single *s) 285static inline int vfp_single_type(vfp_single* s)
310{ 286{
311 int type = VFP_NUMBER; 287 int type = VFP_NUMBER;
312 if (s->exponent == 255) { 288 if (s->exponent == 255) {
313 if (s->significand == 0) 289 if (s->significand == 0)
314 type = VFP_INFINITY; 290 type = VFP_INFINITY;
315 else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN) 291 else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
316 type = VFP_QNAN; 292 type = VFP_QNAN;
317 else 293 else
318 type = VFP_SNAN; 294 type = VFP_SNAN;
319 } else if (s->exponent == 0) { 295 } else if (s->exponent == 0) {
320 if (s->significand == 0) 296 if (s->significand == 0)
321 type |= VFP_ZERO; 297 type |= VFP_ZERO;
322 else 298 else
323 type |= VFP_DENORMAL; 299 type |= VFP_DENORMAL;
324 } 300 }
325 return type; 301 return type;
326} 302}
327 303
328 304
329u32 vfp_single_normaliseround(ARMul_State* state, int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func); 305u32 vfp_single_normaliseround(ARMul_State* state, int sd, vfp_single* vs, u32 fpscr, u32 exceptions, const char* func);
330 306
331/* 307// Double-precision
332 * Double-precision
333 */
334struct vfp_double { 308struct vfp_double {
335 s16 exponent; 309 s16 exponent;
336 u16 sign; 310 u16 sign;
337 u64 significand; 311 u64 significand;
338}; 312};
339 313
340/* 314// VFP_REG_ZERO is a special register number for vfp_get_double
341 * VFP_REG_ZERO is a special register number for vfp_get_double 315// which returns (double)0.0. This is useful for the compare with
342 * which returns (double)0.0. This is useful for the compare with 316// zero instructions.
343 * zero instructions.
344 */
345#ifdef CONFIG_VFPv3 317#ifdef CONFIG_VFPv3
346#define VFP_REG_ZERO 32 318#define VFP_REG_ZERO 32
347#else 319#else
348#define VFP_REG_ZERO 16 320#define VFP_REG_ZERO 16
349#endif 321#endif
350 322
351#define VFP_DOUBLE_MANTISSA_BITS (52) 323#define VFP_DOUBLE_MANTISSA_BITS (52)
352#define VFP_DOUBLE_EXPONENT_BITS (11) 324#define VFP_DOUBLE_EXPONENT_BITS (11)
353#define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2) 325#define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2)
354#define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1) 326#define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1)
355 327
356/* 328// The bit in an unpacked double which indicates that it is a quiet NaN
357 * The bit in an unpacked double which indicates that it is a quiet NaN 329#define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
358 */ 330
359#define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS)) 331// Operations on packed single-precision numbers
360 332#define vfp_double_packed_sign(v) ((v) & (1ULL << 63))
361/* 333#define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63))
362 * Operations on packed single-precision numbers 334#define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63))
363 */ 335#define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
364#define vfp_double_packed_sign(v) ((v) & (1ULL << 63)) 336#define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
365#define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63)) 337
366#define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63)) 338// Unpack a double-precision float. Note that this returns the magnitude
367#define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1)) 339// of the double-precision float mantissa with the 1. if necessary,
368#define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1)) 340// aligned to bit 62.
369 341static inline void vfp_double_unpack(vfp_double* s, s64 val)
370/*
371 * Unpack a double-precision float. Note that this returns the magnitude
372 * of the double-precision float mantissa with the 1. if necessary,
373 * aligned to bit 62.
374 */
375static inline void vfp_double_unpack(struct vfp_double *s, s64 val)
376{ 342{
377 u64 significand; 343 u64 significand;
378 344
379 s->sign = vfp_double_packed_sign(val) >> 48; 345 s->sign = vfp_double_packed_sign(val) >> 48;
380 s->exponent = vfp_double_packed_exponent(val); 346 s->exponent = vfp_double_packed_exponent(val);
381 347
382 significand = (u64) val; 348 significand = (u64) val;
383 significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2; 349 significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
384 if (s->exponent && s->exponent != 2047) 350 if (s->exponent && s->exponent != 2047)
385 significand |= (1ULL << 62); 351 significand |= (1ULL << 62);
386 s->significand = significand; 352 s->significand = significand;
387} 353}
388 354
389/* 355// Re-pack a double-precision float. This assumes that the float is
390 * Re-pack a double-precision float. This assumes that the float is 356// already normalised such that the MSB is bit 30, _not_ bit 31.
391 * already normalised such that the MSB is bit 30, _not_ bit 31. 357static inline s64 vfp_double_pack(vfp_double* s)
392 */
393static inline s64 vfp_double_pack(struct vfp_double *s)
394{ 358{
395 u64 val; 359 u64 val = ((u64)s->sign << 48) +
396 val = ((u64)s->sign << 48) + 360 ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) +
397 ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) + 361 (s->significand >> VFP_DOUBLE_LOW_BITS);
398 (s->significand >> VFP_DOUBLE_LOW_BITS); 362 return (s64)val;
399 return (s64)val;
400} 363}
401 364
402static inline int vfp_double_type(struct vfp_double *s) 365static inline int vfp_double_type(vfp_double* s)
403{ 366{
404 int type = VFP_NUMBER; 367 int type = VFP_NUMBER;
405 if (s->exponent == 2047) { 368 if (s->exponent == 2047) {
406 if (s->significand == 0) 369 if (s->significand == 0)
407 type = VFP_INFINITY; 370 type = VFP_INFINITY;
408 else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN) 371 else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN)
409 type = VFP_QNAN; 372 type = VFP_QNAN;
410 else 373 else
411 type = VFP_SNAN; 374 type = VFP_SNAN;
412 } else if (s->exponent == 0) { 375 } else if (s->exponent == 0) {
413 if (s->significand == 0) 376 if (s->significand == 0)
414 type |= VFP_ZERO; 377 type |= VFP_ZERO;
415 else 378 else
416 type |= VFP_DENORMAL; 379 type |= VFP_DENORMAL;
417 } 380 }
418 return type; 381 return type;
419} 382}
420 383
421u32 vfp_double_normaliseround(ARMul_State* state, int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func);
422
423u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand); 384u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand);
424 385
425/* 386// A special flag to tell the normalisation code not to normalise.
426 * A special flag to tell the normalisation code not to normalise. 387#define VFP_NAN_FLAG 0x100
427 */ 388
428#define VFP_NAN_FLAG 0x100 389// A bit pattern used to indicate the initial (unset) value of the
429 390// exception mask, in case nothing handles an instruction. This
430/* 391// doesn't include the NAN flag, which get masked out before
431 * A bit pattern used to indicate the initial (unset) value of the 392// we check for an error.
432 * exception mask, in case nothing handles an instruction. This 393#define VFP_EXCEPTION_ERROR ((u32)-1 & ~VFP_NAN_FLAG)
433 * doesn't include the NAN flag, which get masked out before 394
434 * we check for an error. 395// A flag to tell vfp instruction type.
435 */ 396// OP_SCALAR - This operation always operates in scalar mode
436#define VFP_EXCEPTION_ERROR ((u32)-1 & ~VFP_NAN_FLAG) 397// OP_SD - The instruction exceptionally writes to a single precision result.
437 398// OP_DD - The instruction exceptionally writes to a double precision result.
438/* 399// OP_SM - The instruction exceptionally reads from a single precision operand.
439 * A flag to tell vfp instruction type. 400enum : u32 {
440 * OP_SCALAR - this operation always operates in scalar mode 401 OP_SCALAR = (1 << 0),
441 * OP_SD - the instruction exceptionally writes to a single precision result. 402 OP_SD = (1 << 1),
442 * OP_DD - the instruction exceptionally writes to a double precision result. 403 OP_DD = (1 << 1),
443 * OP_SM - the instruction exceptionally reads from a single precision operand. 404 OP_SM = (1 << 2)
444 */ 405};
445#define OP_SCALAR (1 << 0)
446#define OP_SD (1 << 1)
447#define OP_DD (1 << 1)
448#define OP_SM (1 << 2)
449 406
450struct op { 407struct op {
451 u32 (* const fn)(ARMul_State* state, int dd, int dn, int dm, u32 fpscr); 408 u32 (* const fn)(ARMul_State* state, int dd, int dn, int dm, u32 fpscr);
452 u32 flags; 409 u32 flags;
453}; 410};
454 411
455static inline u32 fls(ARMword x) 412static inline u32 fls(ARMword x)
456{ 413{
457 int r = 32; 414 int r = 32;
458 415
459 if (!x) 416 if (!x)
460 return 0; 417 return 0;
461 if (!(x & 0xffff0000u)) { 418 if (!(x & 0xffff0000u)) {
462 x <<= 16; 419 x <<= 16;
463 r -= 16; 420 r -= 16;
464 } 421 }
465 if (!(x & 0xff000000u)) { 422 if (!(x & 0xff000000u)) {
466 x <<= 8; 423 x <<= 8;
467 r -= 8; 424 r -= 8;
468 } 425 }
469 if (!(x & 0xf0000000u)) { 426 if (!(x & 0xf0000000u)) {
470 x <<= 4; 427 x <<= 4;
471 r -= 4; 428 r -= 4;
472 } 429 }
473 if (!(x & 0xc0000000u)) { 430 if (!(x & 0xc0000000u)) {
474 x <<= 2; 431 x <<= 2;
475 r -= 2; 432 r -= 2;
476 } 433 }
477 if (!(x & 0x80000000u)) { 434 if (!(x & 0x80000000u)) {
478 x <<= 1; 435 x <<= 1;
479 r -= 1; 436 r -= 1;
480 } 437 }
481 return r; 438 return r;
482 439
483} 440}
484 441
485u32 vfp_double_normaliseroundintern(ARMul_State* state, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func); 442u32 vfp_double_multiply(vfp_double* vdd, vfp_double* vdn, vfp_double* vdm, u32 fpscr);
486u32 vfp_double_multiply(struct vfp_double *vdd, struct vfp_double *vdn, struct vfp_double *vdm, u32 fpscr); 443u32 vfp_double_add(vfp_double* vdd, vfp_double* vdn, vfp_double *vdm, u32 fpscr);
487u32 vfp_double_add(struct vfp_double *vdd, struct vfp_double *vdn, struct vfp_double *vdm, u32 fpscr); 444u32 vfp_double_normaliseround(ARMul_State* state, int dd, vfp_double* vd, u32 fpscr, u32 exceptions, const char* func);
488u32 vfp_double_fcvtsinterncutting(ARMul_State* state, int sd, struct vfp_double* dm, u32 fpscr);
diff --git a/src/core/arm/skyeye_common/vfp/vfpdouble.cpp b/src/core/arm/skyeye_common/vfp/vfpdouble.cpp
index d35ca510a..2c15db12b 100644
--- a/src/core/arm/skyeye_common/vfp/vfpdouble.cpp
+++ b/src/core/arm/skyeye_common/vfp/vfpdouble.cpp
@@ -83,134 +83,6 @@ static void vfp_double_normalise_denormal(struct vfp_double *vd)
83 vfp_double_dump("normalise_denormal: out", vd); 83 vfp_double_dump("normalise_denormal: out", vd);
84} 84}
85 85
86u32 vfp_double_normaliseroundintern(ARMul_State* state, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func)
87{
88 u64 significand, incr;
89 int exponent, shift, underflow;
90 u32 rmode;
91
92 vfp_double_dump("pack: in", vd);
93
94 /*
95 * Infinities and NaNs are a special case.
96 */
97 if (vd->exponent == 2047 && (vd->significand == 0 || exceptions))
98 goto pack;
99
100 /*
101 * Special-case zero.
102 */
103 if (vd->significand == 0) {
104 vd->exponent = 0;
105 goto pack;
106 }
107
108 exponent = vd->exponent;
109 significand = vd->significand;
110
111 shift = 32 - fls((ARMword)(significand >> 32));
112 if (shift == 32)
113 shift = 64 - fls((ARMword)significand);
114 if (shift) {
115 exponent -= shift;
116 significand <<= shift;
117 }
118
119#if 1
120 vd->exponent = exponent;
121 vd->significand = significand;
122 vfp_double_dump("pack: normalised", vd);
123#endif
124
125 /*
126 * Tiny number?
127 */
128 underflow = exponent < 0;
129 if (underflow) {
130 significand = vfp_shiftright64jamming(significand, -exponent);
131 exponent = 0;
132#if 1
133 vd->exponent = exponent;
134 vd->significand = significand;
135 vfp_double_dump("pack: tiny number", vd);
136#endif
137 if (!(significand & ((1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1)))
138 underflow = 0;
139 }
140
141 /*
142 * Select rounding increment.
143 */
144 incr = 0;
145 rmode = fpscr & FPSCR_RMODE_MASK;
146
147 if (rmode == FPSCR_ROUND_NEAREST) {
148 incr = 1ULL << VFP_DOUBLE_LOW_BITS;
149 if ((significand & (1ULL << (VFP_DOUBLE_LOW_BITS + 1))) == 0)
150 incr -= 1;
151 }
152 else if (rmode == FPSCR_ROUND_TOZERO) {
153 incr = 0;
154 }
155 else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vd->sign != 0))
156 incr = (1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1;
157
158 LOG_TRACE(Core_ARM11, "VFP: rounding increment = 0x%08llx\n", incr);
159
160 /*
161 * Is our rounding going to overflow?
162 */
163 if ((significand + incr) < significand) {
164 exponent += 1;
165 significand = (significand >> 1) | (significand & 1);
166 incr >>= 1;
167#if 1
168 vd->exponent = exponent;
169 vd->significand = significand;
170 vfp_double_dump("pack: overflow", vd);
171#endif
172 }
173
174 /*
175 * If any of the low bits (which will be shifted out of the
176 * number) are non-zero, the result is inexact.
177 */
178 if (significand & ((1 << (VFP_DOUBLE_LOW_BITS + 1)) - 1))
179 exceptions |= FPSCR_IXC;
180
181 /*
182 * Do our rounding.
183 */
184 significand += incr;
185
186 /*
187 * Infinity?
188 */
189 if (exponent >= 2046) {
190 exceptions |= FPSCR_OFC | FPSCR_IXC;
191 if (incr == 0) {
192 vd->exponent = 2045;
193 vd->significand = 0x7fffffffffffffffULL;
194 }
195 else {
196 vd->exponent = 2047; /* infinity */
197 vd->significand = 0;
198 }
199 }
200 else {
201 if (significand >> (VFP_DOUBLE_LOW_BITS + 1) == 0)
202 exponent = 0;
203 if (exponent || significand > 0x8000000000000000ULL)
204 underflow = 0;
205 if (underflow)
206 exceptions |= FPSCR_UFC;
207 vd->exponent = exponent;
208 vd->significand = significand >> 1;
209 }
210 pack:
211 return 0;
212}
213
214u32 vfp_double_normaliseround(ARMul_State* state, int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func) 86u32 vfp_double_normaliseround(ARMul_State* state, int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func)
215{ 87{
216 u64 significand, incr; 88 u64 significand, incr;
@@ -511,7 +383,7 @@ static u32 vfp_compare(ARMul_State* state, int dd, int signal_on_qnan, int dm, u
511 LOG_TRACE(Core_ARM11, "In %s, state=0x%x, fpscr=0x%x\n", __FUNCTION__, state, fpscr); 383 LOG_TRACE(Core_ARM11, "In %s, state=0x%x, fpscr=0x%x\n", __FUNCTION__, state, fpscr);
512 m = vfp_get_double(state, dm); 384 m = vfp_get_double(state, dm);
513 if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) { 385 if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) {
514 ret |= FPSCR_C | FPSCR_V; 386 ret |= FPSCR_CFLAG | FPSCR_VFLAG;
515 if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) 387 if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
516 /* 388 /*
517 * Signalling NaN, or signalling on quiet NaN 389 * Signalling NaN, or signalling on quiet NaN
@@ -521,7 +393,7 @@ static u32 vfp_compare(ARMul_State* state, int dd, int signal_on_qnan, int dm, u
521 393
522 d = vfp_get_double(state, dd); 394 d = vfp_get_double(state, dd);
523 if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) { 395 if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) {
524 ret |= FPSCR_C | FPSCR_V; 396 ret |= FPSCR_CFLAG | FPSCR_VFLAG;
525 if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) 397 if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
526 /* 398 /*
527 * Signalling NaN, or signalling on quiet NaN 399 * Signalling NaN, or signalling on quiet NaN
@@ -535,7 +407,7 @@ static u32 vfp_compare(ARMul_State* state, int dd, int signal_on_qnan, int dm, u
535 /* 407 /*
536 * equal 408 * equal
537 */ 409 */
538 ret |= FPSCR_Z | FPSCR_C; 410 ret |= FPSCR_ZFLAG | FPSCR_CFLAG;
539 //printf("In %s,1 ret=0x%x\n", __FUNCTION__, ret); 411 //printf("In %s,1 ret=0x%x\n", __FUNCTION__, ret);
540 } else if (vfp_double_packed_sign(d ^ m)) { 412 } else if (vfp_double_packed_sign(d ^ m)) {
541 /* 413 /*
@@ -545,22 +417,22 @@ static u32 vfp_compare(ARMul_State* state, int dd, int signal_on_qnan, int dm, u
545 /* 417 /*
546 * d is negative, so d < m 418 * d is negative, so d < m
547 */ 419 */
548 ret |= FPSCR_N; 420 ret |= FPSCR_NFLAG;
549 else 421 else
550 /* 422 /*
551 * d is positive, so d > m 423 * d is positive, so d > m
552 */ 424 */
553 ret |= FPSCR_C; 425 ret |= FPSCR_CFLAG;
554 } else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) { 426 } else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) {
555 /* 427 /*
556 * d < m 428 * d < m
557 */ 429 */
558 ret |= FPSCR_N; 430 ret |= FPSCR_NFLAG;
559 } else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) { 431 } else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) {
560 /* 432 /*
561 * d > m 433 * d > m
562 */ 434 */
563 ret |= FPSCR_C; 435 ret |= FPSCR_CFLAG;
564 } 436 }
565 } 437 }
566 LOG_TRACE(Core_ARM11, "In %s, state=0x%x, ret=0x%x\n", __FUNCTION__, state, ret); 438 LOG_TRACE(Core_ARM11, "In %s, state=0x%x, ret=0x%x\n", __FUNCTION__, state, ret);
@@ -592,49 +464,6 @@ static u32 vfp_double_fcmpez(ARMul_State* state, int dd, int unused, int dm, u32
592 return vfp_compare(state, dd, 1, VFP_REG_ZERO, fpscr); 464 return vfp_compare(state, dd, 1, VFP_REG_ZERO, fpscr);
593} 465}
594 466
595u32 vfp_double_fcvtsinterncutting(ARMul_State* state, int sd, struct vfp_double* dm, u32 fpscr) //ichfly for internal use only
596{
597 struct vfp_single vsd;
598 int tm;
599 u32 exceptions = 0;
600
601 LOG_TRACE(Core_ARM11, "In %s\n", __FUNCTION__);
602
603 tm = vfp_double_type(dm);
604
605 /*
606 * If we have a signalling NaN, signal invalid operation.
607 */
608 if (tm == VFP_SNAN)
609 exceptions = FPSCR_IOC;
610
611 if (tm & VFP_DENORMAL)
612 vfp_double_normalise_denormal(dm);
613
614 vsd.sign = dm->sign;
615 vsd.significand = vfp_hi64to32jamming(dm->significand);
616
617 /*
618 * If we have an infinity or a NaN, the exponent must be 255
619 */
620 if (tm & (VFP_INFINITY | VFP_NAN)) {
621 vsd.exponent = 255;
622 if (tm == VFP_QNAN)
623 vsd.significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
624 goto pack_nan;
625 }
626 else if (tm & VFP_ZERO)
627 vsd.exponent = 0;
628 else
629 vsd.exponent = dm->exponent - (1023 - 127);
630
631 return vfp_single_normaliseround(state, sd, &vsd, fpscr, exceptions, "fcvts");
632
633pack_nan:
634 vfp_put_float(state, vfp_single_pack(&vsd), sd);
635 return exceptions;
636}
637
638static u32 vfp_double_fcvts(ARMul_State* state, int sd, int unused, int dm, u32 fpscr) 467static u32 vfp_double_fcvts(ARMul_State* state, int sd, int unused, int dm, u32 fpscr)
639{ 468{
640 struct vfp_double vdm; 469 struct vfp_double vdm;
@@ -723,7 +552,7 @@ static u32 vfp_double_ftoui(ARMul_State* state, int sd, int unused, int dm, u32
723 exceptions |= FPSCR_IDC; 552 exceptions |= FPSCR_IDC;
724 553
725 if (tm & VFP_NAN) 554 if (tm & VFP_NAN)
726 vdm.sign = 0; 555 vdm.sign = 1;
727 556
728 if (vdm.exponent >= 1023 + 32) { 557 if (vdm.exponent >= 1023 + 32) {
729 d = vdm.sign ? 0 : 0xffffffff; 558 d = vdm.sign ? 0 : 0xffffffff;
diff --git a/src/core/arm/skyeye_common/vfp/vfpsingle.cpp b/src/core/arm/skyeye_common/vfp/vfpsingle.cpp
index b7872bdc4..678b63f51 100644
--- a/src/core/arm/skyeye_common/vfp/vfpsingle.cpp
+++ b/src/core/arm/skyeye_common/vfp/vfpsingle.cpp
@@ -419,7 +419,7 @@ static u32 vfp_compare(ARMul_State* state, int sd, int signal_on_qnan, s32 m, u3
419 419
420 d = vfp_get_float(state, sd); 420 d = vfp_get_float(state, sd);
421 if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) { 421 if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) {
422 ret |= FPSCR_C | FPSCR_V; 422 ret |= FPSCR_CFLAG | FPSCR_VFLAG;
423 if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1)))) 423 if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
424 /* 424 /*
425 * Signalling NaN, or signalling on quiet NaN 425 * Signalling NaN, or signalling on quiet NaN
@@ -428,7 +428,7 @@ static u32 vfp_compare(ARMul_State* state, int sd, int signal_on_qnan, s32 m, u3
428 } 428 }
429 429
430 if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) { 430 if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) {
431 ret |= FPSCR_C | FPSCR_V; 431 ret |= FPSCR_CFLAG | FPSCR_VFLAG;
432 if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1)))) 432 if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
433 /* 433 /*
434 * Signalling NaN, or signalling on quiet NaN 434 * Signalling NaN, or signalling on quiet NaN
@@ -441,7 +441,7 @@ static u32 vfp_compare(ARMul_State* state, int sd, int signal_on_qnan, s32 m, u3
441 /* 441 /*
442 * equal 442 * equal
443 */ 443 */
444 ret |= FPSCR_Z | FPSCR_C; 444 ret |= FPSCR_ZFLAG | FPSCR_CFLAG;
445 } else if (vfp_single_packed_sign(d ^ m)) { 445 } else if (vfp_single_packed_sign(d ^ m)) {
446 /* 446 /*
447 * different signs 447 * different signs
@@ -450,22 +450,22 @@ static u32 vfp_compare(ARMul_State* state, int sd, int signal_on_qnan, s32 m, u3
450 /* 450 /*
451 * d is negative, so d < m 451 * d is negative, so d < m
452 */ 452 */
453 ret |= FPSCR_N; 453 ret |= FPSCR_NFLAG;
454 else 454 else
455 /* 455 /*
456 * d is positive, so d > m 456 * d is positive, so d > m
457 */ 457 */
458 ret |= FPSCR_C; 458 ret |= FPSCR_CFLAG;
459 } else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) { 459 } else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) {
460 /* 460 /*
461 * d < m 461 * d < m
462 */ 462 */
463 ret |= FPSCR_N; 463 ret |= FPSCR_NFLAG;
464 } else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) { 464 } else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) {
465 /* 465 /*
466 * d > m 466 * d > m
467 */ 467 */
468 ret |= FPSCR_C; 468 ret |= FPSCR_CFLAG;
469 } 469 }
470 } 470 }
471 return ret; 471 return ret;
@@ -491,46 +491,6 @@ static u32 vfp_single_fcmpez(ARMul_State* state, int sd, int unused, s32 m, u32
491 return vfp_compare(state, sd, 1, 0, fpscr); 491 return vfp_compare(state, sd, 1, 0, fpscr);
492} 492}
493 493
494static s64 vfp_single_to_doubleintern(ARMul_State* state, s32 m, u32 fpscr) //ichfly for internal use only
495{
496 struct vfp_single vsm;
497 struct vfp_double vdd;
498 int tm;
499 u32 exceptions = 0;
500
501 vfp_single_unpack(&vsm, m);
502
503 tm = vfp_single_type(&vsm);
504
505 /*
506 * If we have a signalling NaN, signal invalid operation.
507 */
508 if (tm == VFP_SNAN)
509 exceptions = FPSCR_IOC;
510
511 if (tm & VFP_DENORMAL)
512 vfp_single_normalise_denormal(&vsm);
513
514 vdd.sign = vsm.sign;
515 vdd.significand = (u64)vsm.significand << 32;
516
517 /*
518 * If we have an infinity or NaN, the exponent must be 2047.
519 */
520 if (tm & (VFP_INFINITY | VFP_NAN)) {
521 vdd.exponent = 2047;
522 if (tm == VFP_QNAN)
523 vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
524 goto pack_nan;
525 } else if (tm & VFP_ZERO)
526 vdd.exponent = 0;
527 else
528 vdd.exponent = vsm.exponent + (1023 - 127);
529pack_nan:
530 vfp_double_normaliseroundintern(state, &vdd, fpscr, exceptions, "fcvtd");
531 return vfp_double_pack(&vdd);
532}
533
534static u32 vfp_single_fcvtd(ARMul_State* state, int dd, int unused, s32 m, u32 fpscr) 494static u32 vfp_single_fcvtd(ARMul_State* state, int dd, int unused, s32 m, u32 fpscr)
535{ 495{
536 struct vfp_single vsm; 496 struct vfp_single vsm;