summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/core/hle/kernel/k_memory_manager.cpp469
-rw-r--r--src/core/hle/kernel/k_memory_manager.h167
-rw-r--r--src/core/hle/kernel/k_page_table.cpp46
-rw-r--r--src/core/hle/kernel/k_page_table.h2
-rw-r--r--src/core/hle/kernel/kernel.cpp33
-rw-r--r--src/core/hle/kernel/kernel.h4
6 files changed, 548 insertions, 173 deletions
diff --git a/src/core/hle/kernel/k_memory_manager.cpp b/src/core/hle/kernel/k_memory_manager.cpp
index 1b44541b1..a2f18f643 100644
--- a/src/core/hle/kernel/k_memory_manager.cpp
+++ b/src/core/hle/kernel/k_memory_manager.cpp
@@ -10,189 +10,412 @@
10#include "common/scope_exit.h" 10#include "common/scope_exit.h"
11#include "core/core.h" 11#include "core/core.h"
12#include "core/device_memory.h" 12#include "core/device_memory.h"
13#include "core/hle/kernel/initial_process.h"
13#include "core/hle/kernel/k_memory_manager.h" 14#include "core/hle/kernel/k_memory_manager.h"
14#include "core/hle/kernel/k_page_linked_list.h" 15#include "core/hle/kernel/k_page_linked_list.h"
16#include "core/hle/kernel/kernel.h"
15#include "core/hle/kernel/svc_results.h" 17#include "core/hle/kernel/svc_results.h"
18#include "core/memory.h"
16 19
17namespace Kernel { 20namespace Kernel {
18 21
19KMemoryManager::KMemoryManager(Core::System& system_) : system{system_} {} 22namespace {
23
24constexpr KMemoryManager::Pool GetPoolFromMemoryRegionType(u32 type) {
25 if ((type | KMemoryRegionType_DramApplicationPool) == type) {
26 return KMemoryManager::Pool::Application;
27 } else if ((type | KMemoryRegionType_DramAppletPool) == type) {
28 return KMemoryManager::Pool::Applet;
29 } else if ((type | KMemoryRegionType_DramSystemPool) == type) {
30 return KMemoryManager::Pool::System;
31 } else if ((type | KMemoryRegionType_DramSystemNonSecurePool) == type) {
32 return KMemoryManager::Pool::SystemNonSecure;
33 } else {
34 UNREACHABLE_MSG("InvalidMemoryRegionType for conversion to Pool");
35 return {};
36 }
37}
20 38
21std::size_t KMemoryManager::Impl::Initialize(Pool new_pool, u64 start_address, u64 end_address) { 39} // namespace
22 const auto size{end_address - start_address}; 40
41KMemoryManager::KMemoryManager(Core::System& system_)
42 : system{system_}, pool_locks{
43 KLightLock{system_.Kernel()},
44 KLightLock{system_.Kernel()},
45 KLightLock{system_.Kernel()},
46 KLightLock{system_.Kernel()},
47 } {}
48
49void KMemoryManager::Initialize(VAddr management_region, size_t management_region_size) {
50
51 // Clear the management region to zero.
52 const VAddr management_region_end = management_region + management_region_size;
53
54 // Reset our manager count.
55 num_managers = 0;
56
57 // Traverse the virtual memory layout tree, initializing each manager as appropriate.
58 while (num_managers != MaxManagerCount) {
59 // Locate the region that should initialize the current manager.
60 PAddr region_address = 0;
61 size_t region_size = 0;
62 Pool region_pool = Pool::Count;
63 for (const auto& it : system.Kernel().MemoryLayout().GetPhysicalMemoryRegionTree()) {
64 // We only care about regions that we need to create managers for.
65 if (!it.IsDerivedFrom(KMemoryRegionType_DramUserPool)) {
66 continue;
67 }
23 68
24 // Calculate metadata sizes 69 // We want to initialize the managers in order.
25 const auto ref_count_size{(size / PageSize) * sizeof(u16)}; 70 if (it.GetAttributes() != num_managers) {
26 const auto optimize_map_size{(Common::AlignUp((size / PageSize), 64) / 64) * sizeof(u64)}; 71 continue;
27 const auto manager_size{Common::AlignUp(optimize_map_size + ref_count_size, PageSize)}; 72 }
28 const auto page_heap_size{KPageHeap::CalculateManagementOverheadSize(size)};
29 const auto total_metadata_size{manager_size + page_heap_size};
30 ASSERT(manager_size <= total_metadata_size);
31 ASSERT(Common::IsAligned(total_metadata_size, PageSize));
32 73
33 // Setup region 74 const PAddr cur_start = it.GetAddress();
34 pool = new_pool; 75 const PAddr cur_end = it.GetEndAddress();
76
77 // Validate the region.
78 ASSERT(cur_end != 0);
79 ASSERT(cur_start != 0);
80 ASSERT(it.GetSize() > 0);
81
82 // Update the region's extents.
83 if (region_address == 0) {
84 region_address = cur_start;
85 region_size = it.GetSize();
86 region_pool = GetPoolFromMemoryRegionType(it.GetType());
87 } else {
88 ASSERT(cur_start == region_address + region_size);
89
90 // Update the size.
91 region_size = cur_end - region_address;
92 ASSERT(GetPoolFromMemoryRegionType(it.GetType()) == region_pool);
93 }
94 }
95
96 // If we didn't find a region, we're done.
97 if (region_size == 0) {
98 break;
99 }
35 100
36 // Initialize the manager's KPageHeap 101 // Initialize a new manager for the region.
37 heap.Initialize(start_address, size, page_heap_size); 102 Impl* manager = std::addressof(managers[num_managers++]);
103 ASSERT(num_managers <= managers.size());
104
105 const size_t cur_size = manager->Initialize(region_address, region_size, management_region,
106 management_region_end, region_pool);
107 management_region += cur_size;
108 ASSERT(management_region <= management_region_end);
109
110 // Insert the manager into the pool list.
111 const auto region_pool_index = static_cast<u32>(region_pool);
112 if (pool_managers_tail[region_pool_index] == nullptr) {
113 pool_managers_head[region_pool_index] = manager;
114 } else {
115 pool_managers_tail[region_pool_index]->SetNext(manager);
116 manager->SetPrev(pool_managers_tail[region_pool_index]);
117 }
118 pool_managers_tail[region_pool_index] = manager;
119 }
38 120
39 // Free the memory to the heap 121 // Free each region to its corresponding heap.
40 heap.Free(start_address, size / PageSize); 122 size_t reserved_sizes[MaxManagerCount] = {};
123 const PAddr ini_start = GetInitialProcessBinaryPhysicalAddress();
124 const PAddr ini_end = ini_start + InitialProcessBinarySizeMax;
125 const PAddr ini_last = ini_end - 1;
126 for (const auto& it : system.Kernel().MemoryLayout().GetPhysicalMemoryRegionTree()) {
127 if (it.IsDerivedFrom(KMemoryRegionType_DramUserPool)) {
128 // Get the manager for the region.
129 auto index = it.GetAttributes();
130 auto& manager = managers[index];
131
132 const PAddr cur_start = it.GetAddress();
133 const PAddr cur_last = it.GetLastAddress();
134 const PAddr cur_end = it.GetEndAddress();
135
136 if (cur_start <= ini_start && ini_last <= cur_last) {
137 // Free memory before the ini to the heap.
138 if (cur_start != ini_start) {
139 manager.Free(cur_start, (ini_start - cur_start) / PageSize);
140 }
41 141
42 // Update the heap's used size 142 // Open/reserve the ini memory.
43 heap.UpdateUsedSize(); 143 manager.OpenFirst(ini_start, InitialProcessBinarySizeMax / PageSize);
144 reserved_sizes[it.GetAttributes()] += InitialProcessBinarySizeMax;
44 145
45 return total_metadata_size; 146 // Free memory after the ini to the heap.
46} 147 if (ini_last != cur_last) {
148 ASSERT(cur_end != 0);
149 manager.Free(ini_end, cur_end - ini_end);
150 }
151 } else {
152 // Ensure there's no partial overlap with the ini image.
153 if (cur_start <= ini_last) {
154 ASSERT(cur_last < ini_start);
155 } else {
156 // Otherwise, check the region for general validity.
157 ASSERT(cur_end != 0);
158 }
47 159
48void KMemoryManager::InitializeManager(Pool pool, u64 start_address, u64 end_address) { 160 // Free the memory to the heap.
49 ASSERT(pool < Pool::Count); 161 manager.Free(cur_start, it.GetSize() / PageSize);
50 managers[static_cast<std::size_t>(pool)].Initialize(pool, start_address, end_address); 162 }
163 }
164 }
165
166 // Update the used size for all managers.
167 for (size_t i = 0; i < num_managers; ++i) {
168 managers[i].SetInitialUsedHeapSize(reserved_sizes[i]);
169 }
51} 170}
52 171
53VAddr KMemoryManager::AllocateAndOpenContinuous(std::size_t num_pages, std::size_t align_pages, 172PAddr KMemoryManager::AllocateAndOpenContinuous(size_t num_pages, size_t align_pages, u32 option) {
54 u32 option) { 173 // Early return if we're allocating no pages.
55 // Early return if we're allocating no pages
56 if (num_pages == 0) { 174 if (num_pages == 0) {
57 return {}; 175 return 0;
58 } 176 }
59 177
60 // Lock the pool that we're allocating from 178 // Lock the pool that we're allocating from.
61 const auto [pool, dir] = DecodeOption(option); 179 const auto [pool, dir] = DecodeOption(option);
62 const auto pool_index{static_cast<std::size_t>(pool)}; 180 KScopedLightLock lk(pool_locks[static_cast<std::size_t>(pool)]);
63 std::lock_guard lock{pool_locks[pool_index]}; 181
64 182 // Choose a heap based on our page size request.
65 // Choose a heap based on our page size request 183 const s32 heap_index = KPageHeap::GetAlignedBlockIndex(num_pages, align_pages);
66 const s32 heap_index{KPageHeap::GetAlignedBlockIndex(num_pages, align_pages)}; 184
67 185 // Loop, trying to iterate from each block.
68 // Loop, trying to iterate from each block 186 Impl* chosen_manager = nullptr;
69 // TODO (bunnei): Support multiple managers 187 PAddr allocated_block = 0;
70 Impl& chosen_manager{managers[pool_index]}; 188 for (chosen_manager = this->GetFirstManager(pool, dir); chosen_manager != nullptr;
71 VAddr allocated_block{chosen_manager.AllocateBlock(heap_index, false)}; 189 chosen_manager = this->GetNextManager(chosen_manager, dir)) {
190 allocated_block = chosen_manager->AllocateBlock(heap_index, true);
191 if (allocated_block != 0) {
192 break;
193 }
194 }
72 195
73 // If we failed to allocate, quit now 196 // If we failed to allocate, quit now.
74 if (!allocated_block) { 197 if (allocated_block == 0) {
75 return {}; 198 return 0;
76 } 199 }
77 200
78 // If we allocated more than we need, free some 201 // If we allocated more than we need, free some.
79 const auto allocated_pages{KPageHeap::GetBlockNumPages(heap_index)}; 202 const size_t allocated_pages = KPageHeap::GetBlockNumPages(heap_index);
80 if (allocated_pages > num_pages) { 203 if (allocated_pages > num_pages) {
81 chosen_manager.Free(allocated_block + num_pages * PageSize, allocated_pages - num_pages); 204 chosen_manager->Free(allocated_block + num_pages * PageSize, allocated_pages - num_pages);
82 } 205 }
83 206
207 // Open the first reference to the pages.
208 chosen_manager->OpenFirst(allocated_block, num_pages);
209
84 return allocated_block; 210 return allocated_block;
85} 211}
86 212
87ResultCode KMemoryManager::Allocate(KPageLinkedList& page_list, std::size_t num_pages, Pool pool, 213ResultCode KMemoryManager::AllocatePageGroupImpl(KPageLinkedList* out, size_t num_pages, Pool pool,
88 Direction dir, u32 heap_fill_value) { 214 Direction dir, bool random) {
89 ASSERT(page_list.GetNumPages() == 0); 215 // Choose a heap based on our page size request.
216 const s32 heap_index = KPageHeap::GetBlockIndex(num_pages);
217 R_UNLESS(0 <= heap_index, ResultOutOfMemory);
218
219 // Ensure that we don't leave anything un-freed.
220 auto group_guard = SCOPE_GUARD({
221 for (const auto& it : out->Nodes()) {
222 auto& manager = this->GetManager(system.Kernel().MemoryLayout(), it.GetAddress());
223 const size_t num_pages_to_free =
224 std::min(it.GetNumPages(), (manager.GetEndAddress() - it.GetAddress()) / PageSize);
225 manager.Free(it.GetAddress(), num_pages_to_free);
226 }
227 });
90 228
91 // Early return if we're allocating no pages 229 // Keep allocating until we've allocated all our pages.
92 if (num_pages == 0) { 230 for (s32 index = heap_index; index >= 0 && num_pages > 0; index--) {
93 return ResultSuccess; 231 const size_t pages_per_alloc = KPageHeap::GetBlockNumPages(index);
94 } 232 for (Impl* cur_manager = this->GetFirstManager(pool, dir); cur_manager != nullptr;
233 cur_manager = this->GetNextManager(cur_manager, dir)) {
234 while (num_pages >= pages_per_alloc) {
235 // Allocate a block.
236 PAddr allocated_block = cur_manager->AllocateBlock(index, random);
237 if (allocated_block == 0) {
238 break;
239 }
95 240
96 // Lock the pool that we're allocating from 241 // Safely add it to our group.
97 const auto pool_index{static_cast<std::size_t>(pool)}; 242 {
98 std::lock_guard lock{pool_locks[pool_index]}; 243 auto block_guard =
244 SCOPE_GUARD({ cur_manager->Free(allocated_block, pages_per_alloc); });
245 R_TRY(out->AddBlock(allocated_block, pages_per_alloc));
246 block_guard.Cancel();
247 }
99 248
100 // Choose a heap based on our page size request 249 num_pages -= pages_per_alloc;
101 const s32 heap_index{KPageHeap::GetBlockIndex(num_pages)}; 250 }
102 if (heap_index < 0) { 251 }
103 return ResultOutOfMemory;
104 } 252 }
105 253
106 // TODO (bunnei): Support multiple managers 254 // Only succeed if we allocated as many pages as we wanted.
107 Impl& chosen_manager{managers[pool_index]}; 255 R_UNLESS(num_pages == 0, ResultOutOfMemory);
108 256
109 // Ensure that we don't leave anything un-freed 257 // We succeeded!
110 auto group_guard = detail::ScopeExit([&] { 258 group_guard.Cancel();
111 for (const auto& it : page_list.Nodes()) { 259 return ResultSuccess;
112 const auto min_num_pages{std::min<size_t>( 260}
113 it.GetNumPages(), (chosen_manager.GetEndAddress() - it.GetAddress()) / PageSize)};
114 chosen_manager.Free(it.GetAddress(), min_num_pages);
115 }
116 });
117 261
118 // Keep allocating until we've allocated all our pages 262ResultCode KMemoryManager::AllocateAndOpen(KPageLinkedList* out, size_t num_pages, u32 option) {
119 for (s32 index{heap_index}; index >= 0 && num_pages > 0; index--) { 263 ASSERT(out != nullptr);
120 const auto pages_per_alloc{KPageHeap::GetBlockNumPages(index)}; 264 ASSERT(out->GetNumPages() == 0);
121 265
122 while (num_pages >= pages_per_alloc) { 266 // Early return if we're allocating no pages.
123 // Allocate a block 267 R_SUCCEED_IF(num_pages == 0);
124 VAddr allocated_block{chosen_manager.AllocateBlock(index, false)};
125 if (!allocated_block) {
126 break;
127 }
128 268
129 // Safely add it to our group 269 // Lock the pool that we're allocating from.
130 { 270 const auto [pool, dir] = DecodeOption(option);
131 auto block_guard = detail::ScopeExit( 271 KScopedLightLock lk(pool_locks[static_cast<size_t>(pool)]);
132 [&] { chosen_manager.Free(allocated_block, pages_per_alloc); }); 272
273 // Allocate the page group.
274 R_TRY(this->AllocatePageGroupImpl(out, num_pages, pool, dir, false));
275
276 // Open the first reference to the pages.
277 for (const auto& block : out->Nodes()) {
278 PAddr cur_address = block.GetAddress();
279 size_t remaining_pages = block.GetNumPages();
280 while (remaining_pages > 0) {
281 // Get the manager for the current address.
282 auto& manager = this->GetManager(system.Kernel().MemoryLayout(), cur_address);
283
284 // Process part or all of the block.
285 const size_t cur_pages =
286 std::min(remaining_pages, manager.GetPageOffsetToEnd(cur_address));
287 manager.OpenFirst(cur_address, cur_pages);
288
289 // Advance.
290 cur_address += cur_pages * PageSize;
291 remaining_pages -= cur_pages;
292 }
293 }
133 294
134 if (const ResultCode result{page_list.AddBlock(allocated_block, pages_per_alloc)}; 295 return ResultSuccess;
135 result.IsError()) { 296}
136 return result;
137 }
138 297
139 block_guard.Cancel(); 298ResultCode KMemoryManager::AllocateAndOpenForProcess(KPageLinkedList* out, size_t num_pages,
140 } 299 u32 option, u64 process_id, u8 fill_pattern) {
300 ASSERT(out != nullptr);
301 ASSERT(out->GetNumPages() == 0);
141 302
142 num_pages -= pages_per_alloc; 303 // Decode the option.
143 } 304 const auto [pool, dir] = DecodeOption(option);
144 }
145 305
146 // Clear allocated memory. 306 // Allocate the memory.
147 for (const auto& it : page_list.Nodes()) { 307 {
148 std::memset(system.DeviceMemory().GetPointer(it.GetAddress()), heap_fill_value, 308 // Lock the pool that we're allocating from.
149 it.GetSize()); 309 KScopedLightLock lk(pool_locks[static_cast<size_t>(pool)]);
310
311 // Allocate the page group.
312 R_TRY(this->AllocatePageGroupImpl(out, num_pages, pool, dir, false));
313
314 // Open the first reference to the pages.
315 for (const auto& block : out->Nodes()) {
316 PAddr cur_address = block.GetAddress();
317 size_t remaining_pages = block.GetNumPages();
318 while (remaining_pages > 0) {
319 // Get the manager for the current address.
320 auto& manager = this->GetManager(system.Kernel().MemoryLayout(), cur_address);
321
322 // Process part or all of the block.
323 const size_t cur_pages =
324 std::min(remaining_pages, manager.GetPageOffsetToEnd(cur_address));
325 manager.OpenFirst(cur_address, cur_pages);
326
327 // Advance.
328 cur_address += cur_pages * PageSize;
329 remaining_pages -= cur_pages;
330 }
331 }
150 } 332 }
151 333
152 // Only succeed if we allocated as many pages as we wanted 334 // Set all the allocated memory.
153 if (num_pages) { 335 for (const auto& block : out->Nodes()) {
154 return ResultOutOfMemory; 336 std::memset(system.DeviceMemory().GetPointer(block.GetAddress()), fill_pattern,
337 block.GetSize());
155 } 338 }
156 339
157 // We succeeded!
158 group_guard.Cancel();
159
160 return ResultSuccess; 340 return ResultSuccess;
161} 341}
162 342
163ResultCode KMemoryManager::Free(KPageLinkedList& page_list, std::size_t num_pages, Pool pool, 343void KMemoryManager::Open(PAddr address, size_t num_pages) {
164 Direction dir, u32 heap_fill_value) { 344 // Repeatedly open references until we've done so for all pages.
165 // Early return if we're freeing no pages 345 while (num_pages) {
166 if (!num_pages) { 346 auto& manager = this->GetManager(system.Kernel().MemoryLayout(), address);
167 return ResultSuccess; 347 const size_t cur_pages = std::min(num_pages, manager.GetPageOffsetToEnd(address));
348
349 {
350 KScopedLightLock lk(pool_locks[static_cast<size_t>(manager.GetPool())]);
351 manager.Open(address, cur_pages);
352 }
353
354 num_pages -= cur_pages;
355 address += cur_pages * PageSize;
168 } 356 }
357}
169 358
170 // Lock the pool that we're freeing from 359void KMemoryManager::Close(PAddr address, size_t num_pages) {
171 const auto pool_index{static_cast<std::size_t>(pool)}; 360 // Repeatedly close references until we've done so for all pages.
172 std::lock_guard lock{pool_locks[pool_index]}; 361 while (num_pages) {
362 auto& manager = this->GetManager(system.Kernel().MemoryLayout(), address);
363 const size_t cur_pages = std::min(num_pages, manager.GetPageOffsetToEnd(address));
173 364
174 // TODO (bunnei): Support multiple managers 365 {
175 Impl& chosen_manager{managers[pool_index]}; 366 KScopedLightLock lk(pool_locks[static_cast<size_t>(manager.GetPool())]);
367 manager.Close(address, cur_pages);
368 }
176 369
177 // Free all of the pages 370 num_pages -= cur_pages;
178 for (const auto& it : page_list.Nodes()) { 371 address += cur_pages * PageSize;
179 const auto min_num_pages{std::min<size_t>(
180 it.GetNumPages(), (chosen_manager.GetEndAddress() - it.GetAddress()) / PageSize)};
181 chosen_manager.Free(it.GetAddress(), min_num_pages);
182 } 372 }
373}
183 374
184 return ResultSuccess; 375void KMemoryManager::Close(const KPageLinkedList& pg) {
376 for (const auto& node : pg.Nodes()) {
377 Close(node.GetAddress(), node.GetNumPages());
378 }
379}
380void KMemoryManager::Open(const KPageLinkedList& pg) {
381 for (const auto& node : pg.Nodes()) {
382 Open(node.GetAddress(), node.GetNumPages());
383 }
384}
385
386size_t KMemoryManager::Impl::Initialize(PAddr address, size_t size, VAddr management,
387 VAddr management_end, Pool p) {
388 // Calculate management sizes.
389 const size_t ref_count_size = (size / PageSize) * sizeof(u16);
390 const size_t optimize_map_size = CalculateOptimizedProcessOverheadSize(size);
391 const size_t manager_size = Common::AlignUp(optimize_map_size + ref_count_size, PageSize);
392 const size_t page_heap_size = KPageHeap::CalculateManagementOverheadSize(size);
393 const size_t total_management_size = manager_size + page_heap_size;
394 ASSERT(manager_size <= total_management_size);
395 ASSERT(management + total_management_size <= management_end);
396 ASSERT(Common::IsAligned(total_management_size, PageSize));
397
398 // Setup region.
399 pool = p;
400 management_region = management;
401 page_reference_counts.resize(
402 Kernel::Board::Nintendo::Nx::KSystemControl::Init::GetIntendedMemorySize() / PageSize);
403 ASSERT(Common::IsAligned(management_region, PageSize));
404
405 // Initialize the manager's KPageHeap.
406 heap.Initialize(address, size, management + manager_size, page_heap_size);
407
408 return total_management_size;
185} 409}
186 410
187std::size_t KMemoryManager::Impl::CalculateManagementOverheadSize(std::size_t region_size) { 411size_t KMemoryManager::Impl::CalculateManagementOverheadSize(size_t region_size) {
188 const std::size_t ref_count_size = (region_size / PageSize) * sizeof(u16); 412 const size_t ref_count_size = (region_size / PageSize) * sizeof(u16);
189 const std::size_t optimize_map_size = 413 const size_t optimize_map_size =
190 (Common::AlignUp((region_size / PageSize), Common::BitSize<u64>()) / 414 (Common::AlignUp((region_size / PageSize), Common::BitSize<u64>()) /
191 Common::BitSize<u64>()) * 415 Common::BitSize<u64>()) *
192 sizeof(u64); 416 sizeof(u64);
193 const std::size_t manager_meta_size = 417 const size_t manager_meta_size = Common::AlignUp(optimize_map_size + ref_count_size, PageSize);
194 Common::AlignUp(optimize_map_size + ref_count_size, PageSize); 418 const size_t page_heap_size = KPageHeap::CalculateManagementOverheadSize(region_size);
195 const std::size_t page_heap_size = KPageHeap::CalculateManagementOverheadSize(region_size);
196 return manager_meta_size + page_heap_size; 419 return manager_meta_size + page_heap_size;
197} 420}
198 421
diff --git a/src/core/hle/kernel/k_memory_manager.h b/src/core/hle/kernel/k_memory_manager.h
index 17c7690f1..18775b262 100644
--- a/src/core/hle/kernel/k_memory_manager.h
+++ b/src/core/hle/kernel/k_memory_manager.h
@@ -5,11 +5,12 @@
5#pragma once 5#pragma once
6 6
7#include <array> 7#include <array>
8#include <mutex>
9#include <tuple> 8#include <tuple>
10 9
11#include "common/common_funcs.h" 10#include "common/common_funcs.h"
12#include "common/common_types.h" 11#include "common/common_types.h"
12#include "core/hle/kernel/k_light_lock.h"
13#include "core/hle/kernel/k_memory_layout.h"
13#include "core/hle/kernel/k_page_heap.h" 14#include "core/hle/kernel/k_page_heap.h"
14#include "core/hle/result.h" 15#include "core/hle/result.h"
15 16
@@ -52,22 +53,33 @@ public:
52 53
53 explicit KMemoryManager(Core::System& system_); 54 explicit KMemoryManager(Core::System& system_);
54 55
55 constexpr std::size_t GetSize(Pool pool) const { 56 void Initialize(VAddr management_region, size_t management_region_size);
56 return managers[static_cast<std::size_t>(pool)].GetSize(); 57
58 constexpr size_t GetSize(Pool pool) const {
59 constexpr Direction GetSizeDirection = Direction::FromFront;
60 size_t total = 0;
61 for (auto* manager = this->GetFirstManager(pool, GetSizeDirection); manager != nullptr;
62 manager = this->GetNextManager(manager, GetSizeDirection)) {
63 total += manager->GetSize();
64 }
65 return total;
57 } 66 }
58 67
59 void InitializeManager(Pool pool, u64 start_address, u64 end_address); 68 PAddr AllocateAndOpenContinuous(size_t num_pages, size_t align_pages, u32 option);
69 ResultCode AllocateAndOpen(KPageLinkedList* out, size_t num_pages, u32 option);
70 ResultCode AllocateAndOpenForProcess(KPageLinkedList* out, size_t num_pages, u32 option,
71 u64 process_id, u8 fill_pattern);
72
73 static constexpr size_t MaxManagerCount = 10;
60 74
61 VAddr AllocateAndOpenContinuous(size_t num_pages, size_t align_pages, u32 option); 75 void Close(PAddr address, size_t num_pages);
62 ResultCode Allocate(KPageLinkedList& page_list, std::size_t num_pages, Pool pool, Direction dir, 76 void Close(const KPageLinkedList& pg);
63 u32 heap_fill_value = 0);
64 ResultCode Free(KPageLinkedList& page_list, std::size_t num_pages, Pool pool, Direction dir,
65 u32 heap_fill_value = 0);
66 77
67 static constexpr std::size_t MaxManagerCount = 10; 78 void Open(PAddr address, size_t num_pages);
79 void Open(const KPageLinkedList& pg);
68 80
69public: 81public:
70 static std::size_t CalculateManagementOverheadSize(std::size_t region_size) { 82 static size_t CalculateManagementOverheadSize(size_t region_size) {
71 return Impl::CalculateManagementOverheadSize(region_size); 83 return Impl::CalculateManagementOverheadSize(region_size);
72 } 84 }
73 85
@@ -100,17 +112,26 @@ private:
100 Impl() = default; 112 Impl() = default;
101 ~Impl() = default; 113 ~Impl() = default;
102 114
103 std::size_t Initialize(Pool new_pool, u64 start_address, u64 end_address); 115 size_t Initialize(PAddr address, size_t size, VAddr management, VAddr management_end,
116 Pool p);
104 117
105 VAddr AllocateBlock(s32 index, bool random) { 118 VAddr AllocateBlock(s32 index, bool random) {
106 return heap.AllocateBlock(index, random); 119 return heap.AllocateBlock(index, random);
107 } 120 }
108 121
109 void Free(VAddr addr, std::size_t num_pages) { 122 void Free(VAddr addr, size_t num_pages) {
110 heap.Free(addr, num_pages); 123 heap.Free(addr, num_pages);
111 } 124 }
112 125
113 constexpr std::size_t GetSize() const { 126 void SetInitialUsedHeapSize(size_t reserved_size) {
127 heap.SetInitialUsedSize(reserved_size);
128 }
129
130 constexpr Pool GetPool() const {
131 return pool;
132 }
133
134 constexpr size_t GetSize() const {
114 return heap.GetSize(); 135 return heap.GetSize();
115 } 136 }
116 137
@@ -122,10 +143,88 @@ private:
122 return heap.GetEndAddress(); 143 return heap.GetEndAddress();
123 } 144 }
124 145
125 static std::size_t CalculateManagementOverheadSize(std::size_t region_size); 146 constexpr size_t GetPageOffset(PAddr address) const {
147 return heap.GetPageOffset(address);
148 }
149
150 constexpr size_t GetPageOffsetToEnd(PAddr address) const {
151 return heap.GetPageOffsetToEnd(address);
152 }
153
154 constexpr void SetNext(Impl* n) {
155 next = n;
156 }
157
158 constexpr void SetPrev(Impl* n) {
159 prev = n;
160 }
161
162 constexpr Impl* GetNext() const {
163 return next;
164 }
165
166 constexpr Impl* GetPrev() const {
167 return prev;
168 }
169
170 void OpenFirst(PAddr address, size_t num_pages) {
171 size_t index = this->GetPageOffset(address);
172 const size_t end = index + num_pages;
173 while (index < end) {
174 const RefCount ref_count = (++page_reference_counts[index]);
175 ASSERT(ref_count == 1);
126 176
127 static constexpr std::size_t CalculateOptimizedProcessOverheadSize( 177 index++;
128 std::size_t region_size) { 178 }
179 }
180
181 void Open(PAddr address, size_t num_pages) {
182 size_t index = this->GetPageOffset(address);
183 const size_t end = index + num_pages;
184 while (index < end) {
185 const RefCount ref_count = (++page_reference_counts[index]);
186 ASSERT(ref_count > 1);
187
188 index++;
189 }
190 }
191
192 void Close(PAddr address, size_t num_pages) {
193 size_t index = this->GetPageOffset(address);
194 const size_t end = index + num_pages;
195
196 size_t free_start = 0;
197 size_t free_count = 0;
198 while (index < end) {
199 ASSERT(page_reference_counts[index] > 0);
200 const RefCount ref_count = (--page_reference_counts[index]);
201
202 // Keep track of how many zero refcounts we see in a row, to minimize calls to free.
203 if (ref_count == 0) {
204 if (free_count > 0) {
205 free_count++;
206 } else {
207 free_start = index;
208 free_count = 1;
209 }
210 } else {
211 if (free_count > 0) {
212 this->Free(heap.GetAddress() + free_start * PageSize, free_count);
213 free_count = 0;
214 }
215 }
216
217 index++;
218 }
219
220 if (free_count > 0) {
221 this->Free(heap.GetAddress() + free_start * PageSize, free_count);
222 }
223 }
224
225 static size_t CalculateManagementOverheadSize(size_t region_size);
226
227 static constexpr size_t CalculateOptimizedProcessOverheadSize(size_t region_size) {
129 return (Common::AlignUp((region_size / PageSize), Common::BitSize<u64>()) / 228 return (Common::AlignUp((region_size / PageSize), Common::BitSize<u64>()) /
130 Common::BitSize<u64>()) * 229 Common::BitSize<u64>()) *
131 sizeof(u64); 230 sizeof(u64);
@@ -135,13 +234,45 @@ private:
135 using RefCount = u16; 234 using RefCount = u16;
136 235
137 KPageHeap heap; 236 KPageHeap heap;
237 std::vector<RefCount> page_reference_counts;
238 VAddr management_region{};
138 Pool pool{}; 239 Pool pool{};
240 Impl* next{};
241 Impl* prev{};
139 }; 242 };
140 243
141private: 244private:
245 Impl& GetManager(const KMemoryLayout& memory_layout, PAddr address) {
246 return managers[memory_layout.GetPhysicalLinearRegion(address).GetAttributes()];
247 }
248
249 const Impl& GetManager(const KMemoryLayout& memory_layout, PAddr address) const {
250 return managers[memory_layout.GetPhysicalLinearRegion(address).GetAttributes()];
251 }
252
253 constexpr Impl* GetFirstManager(Pool pool, Direction dir) const {
254 return dir == Direction::FromBack ? pool_managers_tail[static_cast<size_t>(pool)]
255 : pool_managers_head[static_cast<size_t>(pool)];
256 }
257
258 constexpr Impl* GetNextManager(Impl* cur, Direction dir) const {
259 if (dir == Direction::FromBack) {
260 return cur->GetPrev();
261 } else {
262 return cur->GetNext();
263 }
264 }
265
266 ResultCode AllocatePageGroupImpl(KPageLinkedList* out, size_t num_pages, Pool pool,
267 Direction dir, bool random);
268
269private:
142 Core::System& system; 270 Core::System& system;
143 std::array<std::mutex, static_cast<std::size_t>(Pool::Count)> pool_locks; 271 std::array<KLightLock, static_cast<size_t>(Pool::Count)> pool_locks;
272 std::array<Impl*, MaxManagerCount> pool_managers_head{};
273 std::array<Impl*, MaxManagerCount> pool_managers_tail{};
144 std::array<Impl, MaxManagerCount> managers; 274 std::array<Impl, MaxManagerCount> managers;
275 size_t num_managers{};
145}; 276};
146 277
147} // namespace Kernel 278} // namespace Kernel
diff --git a/src/core/hle/kernel/k_page_table.cpp b/src/core/hle/kernel/k_page_table.cpp
index a23226d70..dfea0b6e2 100644
--- a/src/core/hle/kernel/k_page_table.cpp
+++ b/src/core/hle/kernel/k_page_table.cpp
@@ -273,11 +273,12 @@ ResultCode KPageTable::MapProcessCode(VAddr addr, std::size_t num_pages, KMemory
273 R_TRY(this->CheckMemoryState(addr, size, KMemoryState::All, KMemoryState::Free, 273 R_TRY(this->CheckMemoryState(addr, size, KMemoryState::All, KMemoryState::Free,
274 KMemoryPermission::None, KMemoryPermission::None, 274 KMemoryPermission::None, KMemoryPermission::None,
275 KMemoryAttribute::None, KMemoryAttribute::None)); 275 KMemoryAttribute::None, KMemoryAttribute::None));
276 KPageLinkedList pg;
277 R_TRY(system.Kernel().MemoryManager().AllocateAndOpen(
278 &pg, num_pages,
279 KMemoryManager::EncodeOption(KMemoryManager::Pool::Application, allocation_option)));
276 280
277 KPageLinkedList page_linked_list; 281 R_TRY(Operate(addr, num_pages, pg, OperationType::MapGroup));
278 R_TRY(system.Kernel().MemoryManager().Allocate(page_linked_list, num_pages, memory_pool,
279 allocation_option));
280 R_TRY(Operate(addr, num_pages, page_linked_list, OperationType::MapGroup));
281 282
282 block_manager->Update(addr, num_pages, state, perm); 283 block_manager->Update(addr, num_pages, state, perm);
283 284
@@ -443,9 +444,10 @@ ResultCode KPageTable::MapPhysicalMemory(VAddr address, std::size_t size) {
443 R_UNLESS(memory_reservation.Succeeded(), ResultLimitReached); 444 R_UNLESS(memory_reservation.Succeeded(), ResultLimitReached);
444 445
445 // Allocate pages for the new memory. 446 // Allocate pages for the new memory.
446 KPageLinkedList page_linked_list; 447 KPageLinkedList pg;
447 R_TRY(system.Kernel().MemoryManager().Allocate( 448 R_TRY(system.Kernel().MemoryManager().AllocateAndOpenForProcess(
448 page_linked_list, (size - mapped_size) / PageSize, memory_pool, allocation_option)); 449 &pg, (size - mapped_size) / PageSize,
450 KMemoryManager::EncodeOption(memory_pool, allocation_option), 0, 0));
449 451
450 // Map the memory. 452 // Map the memory.
451 { 453 {
@@ -547,7 +549,7 @@ ResultCode KPageTable::MapPhysicalMemory(VAddr address, std::size_t size) {
547 }); 549 });
548 550
549 // Iterate over the memory. 551 // Iterate over the memory.
550 auto pg_it = page_linked_list.Nodes().begin(); 552 auto pg_it = pg.Nodes().begin();
551 PAddr pg_phys_addr = pg_it->GetAddress(); 553 PAddr pg_phys_addr = pg_it->GetAddress();
552 size_t pg_pages = pg_it->GetNumPages(); 554 size_t pg_pages = pg_it->GetNumPages();
553 555
@@ -571,7 +573,7 @@ ResultCode KPageTable::MapPhysicalMemory(VAddr address, std::size_t size) {
571 // Check if we're at the end of the physical block. 573 // Check if we're at the end of the physical block.
572 if (pg_pages == 0) { 574 if (pg_pages == 0) {
573 // Ensure there are more pages to map. 575 // Ensure there are more pages to map.
574 ASSERT(pg_it != page_linked_list.Nodes().end()); 576 ASSERT(pg_it != pg.Nodes().end());
575 577
576 // Advance our physical block. 578 // Advance our physical block.
577 ++pg_it; 579 ++pg_it;
@@ -841,10 +843,14 @@ ResultCode KPageTable::UnmapPhysicalMemory(VAddr address, std::size_t size) {
841 process->GetResourceLimit()->Release(LimitableResource::PhysicalMemory, mapped_size); 843 process->GetResourceLimit()->Release(LimitableResource::PhysicalMemory, mapped_size);
842 844
843 // Update memory blocks. 845 // Update memory blocks.
844 system.Kernel().MemoryManager().Free(pg, size / PageSize, memory_pool, allocation_option);
845 block_manager->Update(address, size / PageSize, KMemoryState::Free, KMemoryPermission::None, 846 block_manager->Update(address, size / PageSize, KMemoryState::Free, KMemoryPermission::None,
846 KMemoryAttribute::None); 847 KMemoryAttribute::None);
847 848
849 // TODO(bunnei): This is a workaround until the next set of changes, where we add reference
850 // counting for mapped pages. Until then, we must manually close the reference to the page
851 // group.
852 system.Kernel().MemoryManager().Close(pg);
853
848 // We succeeded. 854 // We succeeded.
849 remap_guard.Cancel(); 855 remap_guard.Cancel();
850 856
@@ -1270,9 +1276,16 @@ ResultCode KPageTable::SetHeapSize(VAddr* out, std::size_t size) {
1270 R_UNLESS(memory_reservation.Succeeded(), ResultLimitReached); 1276 R_UNLESS(memory_reservation.Succeeded(), ResultLimitReached);
1271 1277
1272 // Allocate pages for the heap extension. 1278 // Allocate pages for the heap extension.
1273 KPageLinkedList page_linked_list; 1279 KPageLinkedList pg;
1274 R_TRY(system.Kernel().MemoryManager().Allocate(page_linked_list, allocation_size / PageSize, 1280 R_TRY(system.Kernel().MemoryManager().AllocateAndOpen(
1275 memory_pool, allocation_option)); 1281 &pg, allocation_size / PageSize,
1282 KMemoryManager::EncodeOption(memory_pool, allocation_option)));
1283
1284 // Clear all the newly allocated pages.
1285 for (const auto& it : pg.Nodes()) {
1286 std::memset(system.DeviceMemory().GetPointer(it.GetAddress()), heap_fill_value,
1287 it.GetSize());
1288 }
1276 1289
1277 // Map the pages. 1290 // Map the pages.
1278 { 1291 {
@@ -1291,7 +1304,7 @@ ResultCode KPageTable::SetHeapSize(VAddr* out, std::size_t size) {
1291 1304
1292 // Map the pages. 1305 // Map the pages.
1293 const auto num_pages = allocation_size / PageSize; 1306 const auto num_pages = allocation_size / PageSize;
1294 R_TRY(Operate(current_heap_end, num_pages, page_linked_list, OperationType::MapGroup)); 1307 R_TRY(Operate(current_heap_end, num_pages, pg, OperationType::MapGroup));
1295 1308
1296 // Clear all the newly allocated pages. 1309 // Clear all the newly allocated pages.
1297 for (std::size_t cur_page = 0; cur_page < num_pages; ++cur_page) { 1310 for (std::size_t cur_page = 0; cur_page < num_pages; ++cur_page) {
@@ -1339,8 +1352,9 @@ ResultVal<VAddr> KPageTable::AllocateAndMapMemory(std::size_t needed_num_pages,
1339 R_TRY(Operate(addr, needed_num_pages, perm, OperationType::Map, map_addr)); 1352 R_TRY(Operate(addr, needed_num_pages, perm, OperationType::Map, map_addr));
1340 } else { 1353 } else {
1341 KPageLinkedList page_group; 1354 KPageLinkedList page_group;
1342 R_TRY(system.Kernel().MemoryManager().Allocate(page_group, needed_num_pages, memory_pool, 1355 R_TRY(system.Kernel().MemoryManager().AllocateAndOpenForProcess(
1343 allocation_option)); 1356 &page_group, needed_num_pages,
1357 KMemoryManager::EncodeOption(memory_pool, allocation_option), 0, 0));
1344 R_TRY(Operate(addr, needed_num_pages, page_group, OperationType::MapGroup)); 1358 R_TRY(Operate(addr, needed_num_pages, page_group, OperationType::MapGroup));
1345 } 1359 }
1346 1360
diff --git a/src/core/hle/kernel/k_page_table.h b/src/core/hle/kernel/k_page_table.h
index 9a4510849..194177332 100644
--- a/src/core/hle/kernel/k_page_table.h
+++ b/src/core/hle/kernel/k_page_table.h
@@ -310,6 +310,8 @@ private:
310 bool is_kernel{}; 310 bool is_kernel{};
311 bool is_aslr_enabled{}; 311 bool is_aslr_enabled{};
312 312
313 u32 heap_fill_value{};
314
313 KMemoryManager::Pool memory_pool{KMemoryManager::Pool::Application}; 315 KMemoryManager::Pool memory_pool{KMemoryManager::Pool::Application};
314 KMemoryManager::Direction allocation_option{KMemoryManager::Direction::FromFront}; 316 KMemoryManager::Direction allocation_option{KMemoryManager::Direction::FromFront};
315 317
diff --git a/src/core/hle/kernel/kernel.cpp b/src/core/hle/kernel/kernel.cpp
index 797f47021..eda67d933 100644
--- a/src/core/hle/kernel/kernel.cpp
+++ b/src/core/hle/kernel/kernel.cpp
@@ -70,13 +70,12 @@ struct KernelCore::Impl {
70 70
71 // Derive the initial memory layout from the emulated board 71 // Derive the initial memory layout from the emulated board
72 Init::InitializeSlabResourceCounts(kernel); 72 Init::InitializeSlabResourceCounts(kernel);
73 KMemoryLayout memory_layout; 73 DeriveInitialMemoryLayout();
74 DeriveInitialMemoryLayout(memory_layout);
75 Init::InitializeSlabHeaps(system, memory_layout); 74 Init::InitializeSlabHeaps(system, memory_layout);
76 75
77 // Initialize kernel memory and resources. 76 // Initialize kernel memory and resources.
78 InitializeSystemResourceLimit(kernel, system.CoreTiming(), memory_layout); 77 InitializeSystemResourceLimit(kernel, system.CoreTiming());
79 InitializeMemoryLayout(memory_layout); 78 InitializeMemoryLayout();
80 InitializePageSlab(); 79 InitializePageSlab();
81 InitializeSchedulers(); 80 InitializeSchedulers();
82 InitializeSuspendThreads(); 81 InitializeSuspendThreads();
@@ -219,8 +218,7 @@ struct KernelCore::Impl {
219 218
220 // Creates the default system resource limit 219 // Creates the default system resource limit
221 void InitializeSystemResourceLimit(KernelCore& kernel, 220 void InitializeSystemResourceLimit(KernelCore& kernel,
222 const Core::Timing::CoreTiming& core_timing, 221 const Core::Timing::CoreTiming& core_timing) {
223 const KMemoryLayout& memory_layout) {
224 system_resource_limit = KResourceLimit::Create(system.Kernel()); 222 system_resource_limit = KResourceLimit::Create(system.Kernel());
225 system_resource_limit->Initialize(&core_timing); 223 system_resource_limit->Initialize(&core_timing);
226 224
@@ -353,7 +351,7 @@ struct KernelCore::Impl {
353 return schedulers[thread_id]->GetCurrentThread(); 351 return schedulers[thread_id]->GetCurrentThread();
354 } 352 }
355 353
356 void DeriveInitialMemoryLayout(KMemoryLayout& memory_layout) { 354 void DeriveInitialMemoryLayout() {
357 // Insert the root region for the virtual memory tree, from which all other regions will 355 // Insert the root region for the virtual memory tree, from which all other regions will
358 // derive. 356 // derive.
359 memory_layout.GetVirtualMemoryRegionTree().InsertDirectly( 357 memory_layout.GetVirtualMemoryRegionTree().InsertDirectly(
@@ -616,20 +614,16 @@ struct KernelCore::Impl {
616 linear_region_start); 614 linear_region_start);
617 } 615 }
618 616
619 void InitializeMemoryLayout(const KMemoryLayout& memory_layout) { 617 void InitializeMemoryLayout() {
620 const auto system_pool = memory_layout.GetKernelSystemPoolRegionPhysicalExtents(); 618 const auto system_pool = memory_layout.GetKernelSystemPoolRegionPhysicalExtents();
621 const auto applet_pool = memory_layout.GetKernelAppletPoolRegionPhysicalExtents(); 619 const auto applet_pool = memory_layout.GetKernelAppletPoolRegionPhysicalExtents();
622 const auto application_pool = memory_layout.GetKernelApplicationPoolRegionPhysicalExtents(); 620 const auto application_pool = memory_layout.GetKernelApplicationPoolRegionPhysicalExtents();
623 621
624 // Initialize memory managers 622 // Initialize the memory manager.
625 memory_manager = std::make_unique<KMemoryManager>(system); 623 memory_manager = std::make_unique<KMemoryManager>(system);
626 memory_manager->InitializeManager(KMemoryManager::Pool::Application, 624 const auto& management_region = memory_layout.GetPoolManagementRegion();
627 application_pool.GetAddress(), 625 ASSERT(management_region.GetEndAddress() != 0);
628 application_pool.GetEndAddress()); 626 memory_manager->Initialize(management_region.GetAddress(), management_region.GetSize());
629 memory_manager->InitializeManager(KMemoryManager::Pool::Applet, applet_pool.GetAddress(),
630 applet_pool.GetEndAddress());
631 memory_manager->InitializeManager(KMemoryManager::Pool::System, system_pool.GetAddress(),
632 system_pool.GetEndAddress());
633 627
634 // Setup memory regions for emulated processes 628 // Setup memory regions for emulated processes
635 // TODO(bunnei): These should not be hardcoded regions initialized within the kernel 629 // TODO(bunnei): These should not be hardcoded regions initialized within the kernel
@@ -770,6 +764,9 @@ struct KernelCore::Impl {
770 Kernel::KSharedMemory* irs_shared_mem{}; 764 Kernel::KSharedMemory* irs_shared_mem{};
771 Kernel::KSharedMemory* time_shared_mem{}; 765 Kernel::KSharedMemory* time_shared_mem{};
772 766
767 // Memory layout
768 KMemoryLayout memory_layout;
769
773 // Threads used for services 770 // Threads used for services
774 std::unordered_set<std::shared_ptr<Kernel::ServiceThread>> service_threads; 771 std::unordered_set<std::shared_ptr<Kernel::ServiceThread>> service_threads;
775 Common::ThreadWorker service_threads_manager; 772 Common::ThreadWorker service_threads_manager;
@@ -1135,6 +1132,10 @@ const KWorkerTaskManager& KernelCore::WorkerTaskManager() const {
1135 return impl->worker_task_manager; 1132 return impl->worker_task_manager;
1136} 1133}
1137 1134
1135const KMemoryLayout& KernelCore::MemoryLayout() const {
1136 return impl->memory_layout;
1137}
1138
1138bool KernelCore::IsPhantomModeForSingleCore() const { 1139bool KernelCore::IsPhantomModeForSingleCore() const {
1139 return impl->IsPhantomModeForSingleCore(); 1140 return impl->IsPhantomModeForSingleCore();
1140} 1141}
diff --git a/src/core/hle/kernel/kernel.h b/src/core/hle/kernel/kernel.h
index 0e04fc3bb..c1254b18d 100644
--- a/src/core/hle/kernel/kernel.h
+++ b/src/core/hle/kernel/kernel.h
@@ -41,6 +41,7 @@ class KClientSession;
41class KEvent; 41class KEvent;
42class KHandleTable; 42class KHandleTable;
43class KLinkedListNode; 43class KLinkedListNode;
44class KMemoryLayout;
44class KMemoryManager; 45class KMemoryManager;
45class KPort; 46class KPort;
46class KProcess; 47class KProcess;
@@ -350,6 +351,9 @@ public:
350 /// Gets the current worker task manager, used for dispatching KThread/KProcess tasks. 351 /// Gets the current worker task manager, used for dispatching KThread/KProcess tasks.
351 const KWorkerTaskManager& WorkerTaskManager() const; 352 const KWorkerTaskManager& WorkerTaskManager() const;
352 353
354 /// Gets the memory layout.
355 const KMemoryLayout& MemoryLayout() const;
356
353private: 357private:
354 friend class KProcess; 358 friend class KProcess;
355 friend class KThread; 359 friend class KThread;