summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorGravatar Yuri Kunde Schlesner2015-07-17 23:19:16 -0300
committerGravatar Yuri Kunde Schlesner2015-08-16 01:03:45 -0300
commitcdeeecf0807d0005356f30db0f7164c5891a9245 (patch)
treee32e6d673cdac358df0abd3d3ece13f37c1c28d5 /src
parentMemory: Move PAGE_MASK and PAGE_BITS to memory.h (diff)
downloadyuzu-cdeeecf0807d0005356f30db0f7164c5891a9245.tar.gz
yuzu-cdeeecf0807d0005356f30db0f7164c5891a9245.tar.xz
yuzu-cdeeecf0807d0005356f30db0f7164c5891a9245.zip
Kernel: Properly implement ControlMemory FREE and COMMIT
Diffstat (limited to 'src')
-rw-r--r--src/core/hle/kernel/process.cpp120
-rw-r--r--src/core/hle/kernel/process.h31
-rw-r--r--src/core/hle/kernel/vm_manager.cpp91
-rw-r--r--src/core/hle/kernel/vm_manager.h24
-rw-r--r--src/core/hle/svc.cpp108
-rw-r--r--src/core/mem_map.cpp2
6 files changed, 338 insertions, 38 deletions
diff --git a/src/core/hle/kernel/process.cpp b/src/core/hle/kernel/process.cpp
index ad953cdbf..1db763999 100644
--- a/src/core/hle/kernel/process.cpp
+++ b/src/core/hle/kernel/process.cpp
@@ -36,8 +36,7 @@ SharedPtr<Process> Process::Create(SharedPtr<CodeSet> code_set) {
36 process->codeset = std::move(code_set); 36 process->codeset = std::move(code_set);
37 process->flags.raw = 0; 37 process->flags.raw = 0;
38 process->flags.memory_region = MemoryRegion::APPLICATION; 38 process->flags.memory_region = MemoryRegion::APPLICATION;
39 process->address_space = Common::make_unique<VMManager>(); 39 Memory::InitLegacyAddressSpace(process->vm_manager);
40 Memory::InitLegacyAddressSpace(*process->address_space);
41 40
42 return process; 41 return process;
43} 42}
@@ -104,19 +103,130 @@ void Process::ParseKernelCaps(const u32* kernel_caps, size_t len) {
104 103
105void Process::Run(s32 main_thread_priority, u32 stack_size) { 104void Process::Run(s32 main_thread_priority, u32 stack_size) {
106 auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions, MemoryState memory_state) { 105 auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions, MemoryState memory_state) {
107 auto vma = address_space->MapMemoryBlock(segment.addr, codeset->memory, 106 auto vma = vm_manager.MapMemoryBlock(segment.addr, codeset->memory,
108 segment.offset, segment.size, memory_state).Unwrap(); 107 segment.offset, segment.size, memory_state).Unwrap();
109 address_space->Reprotect(vma, permissions); 108 vm_manager.Reprotect(vma, permissions);
110 }; 109 };
111 110
111 // Map CodeSet segments
112 MapSegment(codeset->code, VMAPermission::ReadExecute, MemoryState::Code); 112 MapSegment(codeset->code, VMAPermission::ReadExecute, MemoryState::Code);
113 MapSegment(codeset->rodata, VMAPermission::Read, MemoryState::Code); 113 MapSegment(codeset->rodata, VMAPermission::Read, MemoryState::Code);
114 MapSegment(codeset->data, VMAPermission::ReadWrite, MemoryState::Private); 114 MapSegment(codeset->data, VMAPermission::ReadWrite, MemoryState::Private);
115 115
116 address_space->LogLayout(Log::Level::Debug); 116 // Allocate and map stack
117 vm_manager.MapMemoryBlock(Memory::HEAP_VADDR_END - stack_size,
118 std::make_shared<std::vector<u8>>(stack_size, 0), 0, stack_size, MemoryState::Locked
119 ).Unwrap();
120
121 vm_manager.LogLayout(Log::Level::Debug);
117 Kernel::SetupMainThread(codeset->entrypoint, main_thread_priority); 122 Kernel::SetupMainThread(codeset->entrypoint, main_thread_priority);
118} 123}
119 124
125ResultVal<VAddr> Process::HeapAllocate(VAddr target, u32 size, VMAPermission perms) {
126 if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END || target + size < target) {
127 return ERR_INVALID_ADDRESS;
128 }
129
130 if (heap_memory == nullptr) {
131 // Initialize heap
132 heap_memory = std::make_shared<std::vector<u8>>();
133 heap_start = heap_end = target;
134 }
135
136 // If necessary, expand backing vector to cover new heap extents.
137 if (target < heap_start) {
138 heap_memory->insert(begin(*heap_memory), heap_start - target, 0);
139 heap_start = target;
140 vm_manager.RefreshMemoryBlockMappings(heap_memory.get());
141 }
142 if (target + size > heap_end) {
143 heap_memory->insert(end(*heap_memory), (target + size) - heap_end, 0);
144 heap_end = target + size;
145 vm_manager.RefreshMemoryBlockMappings(heap_memory.get());
146 }
147 ASSERT(heap_end - heap_start == heap_memory->size());
148
149 CASCADE_RESULT(auto vma, vm_manager.MapMemoryBlock(target, heap_memory, target - heap_start, size, MemoryState::Private));
150 vm_manager.Reprotect(vma, perms);
151
152 return MakeResult<VAddr>(heap_end - size);
153}
154
155ResultCode Process::HeapFree(VAddr target, u32 size) {
156 if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END || target + size < target) {
157 return ERR_INVALID_ADDRESS;
158 }
159
160 ResultCode result = vm_manager.UnmapRange(target, size);
161 if (result.IsError()) return result;
162
163 return RESULT_SUCCESS;
164}
165
166ResultVal<VAddr> Process::LinearAllocate(VAddr target, u32 size, VMAPermission perms) {
167 if (linear_heap_memory == nullptr) {
168 // Initialize heap
169 linear_heap_memory = std::make_shared<std::vector<u8>>();
170 }
171
172 VAddr heap_end = Memory::LINEAR_HEAP_VADDR + (u32)linear_heap_memory->size();
173 // Games and homebrew only ever seem to pass 0 here (which lets the kernel decide the address),
174 // but explicit addresses are also accepted and respected.
175 if (target == 0) {
176 target = heap_end;
177 }
178
179 if (target < Memory::LINEAR_HEAP_VADDR || target + size > Memory::LINEAR_HEAP_VADDR_END ||
180 target > heap_end || target + size < target) {
181
182 return ERR_INVALID_ADDRESS;
183 }
184
185 // Expansion of the linear heap is only allowed if you do an allocation immediatelly at its
186 // end. It's possible to free gaps in the middle of the heap and then reallocate them later,
187 // but expansions are only allowed at the end.
188 if (target == heap_end) {
189 linear_heap_memory->insert(linear_heap_memory->end(), size, 0);
190 vm_manager.RefreshMemoryBlockMappings(linear_heap_memory.get());
191 }
192
193 size_t offset = target - Memory::LINEAR_HEAP_VADDR;
194 CASCADE_RESULT(auto vma, vm_manager.MapMemoryBlock(target, linear_heap_memory, offset, size, MemoryState::Continuous));
195 vm_manager.Reprotect(vma, perms);
196
197 return MakeResult<VAddr>(target);
198}
199
200ResultCode Process::LinearFree(VAddr target, u32 size) {
201 if (linear_heap_memory == nullptr || target < Memory::LINEAR_HEAP_VADDR ||
202 target + size > Memory::LINEAR_HEAP_VADDR_END || target + size < target) {
203
204 return ERR_INVALID_ADDRESS;
205 }
206
207 VAddr heap_end = Memory::LINEAR_HEAP_VADDR + (u32)linear_heap_memory->size();
208 if (target + size > heap_end) {
209 return ERR_INVALID_ADDRESS_STATE;
210 }
211
212 ResultCode result = vm_manager.UnmapRange(target, size);
213 if (result.IsError()) return result;
214
215 if (target + size == heap_end) {
216 // End of linear heap has been freed, so check what's the last allocated block in it and
217 // reduce the size.
218 auto vma = vm_manager.FindVMA(target);
219 ASSERT(vma != vm_manager.vma_map.end());
220 ASSERT(vma->second.type == VMAType::Free);
221 VAddr new_end = vma->second.base;
222 if (new_end >= Memory::LINEAR_HEAP_VADDR) {
223 linear_heap_memory->resize(new_end - Memory::LINEAR_HEAP_VADDR);
224 }
225 }
226
227 return RESULT_SUCCESS;
228}
229
120Kernel::Process::Process() {} 230Kernel::Process::Process() {}
121Kernel::Process::~Process() {} 231Kernel::Process::~Process() {}
122 232
diff --git a/src/core/hle/kernel/process.h b/src/core/hle/kernel/process.h
index 83d3aceae..567d5df18 100644
--- a/src/core/hle/kernel/process.h
+++ b/src/core/hle/kernel/process.h
@@ -15,6 +15,7 @@
15#include "common/common_types.h" 15#include "common/common_types.h"
16 16
17#include "core/hle/kernel/kernel.h" 17#include "core/hle/kernel/kernel.h"
18#include "core/hle/kernel/vm_manager.h"
18 19
19namespace Kernel { 20namespace Kernel {
20 21
@@ -48,7 +49,6 @@ union ProcessFlags {
48}; 49};
49 50
50class ResourceLimit; 51class ResourceLimit;
51class VMManager;
52 52
53struct CodeSet final : public Object { 53struct CodeSet final : public Object {
54 static SharedPtr<CodeSet> Create(std::string name, u64 program_id); 54 static SharedPtr<CodeSet> Create(std::string name, u64 program_id);
@@ -108,10 +108,6 @@ public:
108 /// The id of this process 108 /// The id of this process
109 u32 process_id = next_process_id++; 109 u32 process_id = next_process_id++;
110 110
111 /// Bitmask of the used TLS slots
112 std::bitset<300> used_tls_slots;
113 std::unique_ptr<VMManager> address_space;
114
115 /** 111 /**
116 * Parses a list of kernel capability descriptors (as found in the ExHeader) and applies them 112 * Parses a list of kernel capability descriptors (as found in the ExHeader) and applies them
117 * to this process. 113 * to this process.
@@ -123,6 +119,31 @@ public:
123 */ 119 */
124 void Run(s32 main_thread_priority, u32 stack_size); 120 void Run(s32 main_thread_priority, u32 stack_size);
125 121
122
123 ///////////////////////////////////////////////////////////////////////////////////////////////
124 // Memory Management
125
126 VMManager vm_manager;
127
128 // Memory used to back the allocations in the regular heap. A single vector is used to cover
129 // the entire virtual address space extents that bound the allocations, including any holes.
130 // This makes deallocation and reallocation of holes fast and keeps process memory contiguous
131 // in the emulator address space, allowing Memory::GetPointer to be reasonably safe.
132 std::shared_ptr<std::vector<u8>> heap_memory;
133 // The left/right bounds of the address space covered by heap_memory.
134 VAddr heap_start = 0, heap_end = 0;
135
136 std::shared_ptr<std::vector<u8>> linear_heap_memory;
137
138 /// Bitmask of the used TLS slots
139 std::bitset<300> used_tls_slots;
140
141 ResultVal<VAddr> HeapAllocate(VAddr target, u32 size, VMAPermission perms);
142 ResultCode HeapFree(VAddr target, u32 size);
143
144 ResultVal<VAddr> LinearAllocate(VAddr target, u32 size, VMAPermission perms);
145 ResultCode LinearFree(VAddr target, u32 size);
146
126private: 147private:
127 Process(); 148 Process();
128 ~Process() override; 149 ~Process() override;
diff --git a/src/core/hle/kernel/vm_manager.cpp b/src/core/hle/kernel/vm_manager.cpp
index 65395476b..2610acf76 100644
--- a/src/core/hle/kernel/vm_manager.cpp
+++ b/src/core/hle/kernel/vm_manager.cpp
@@ -60,7 +60,11 @@ void VMManager::Reset() {
60} 60}
61 61
62VMManager::VMAHandle VMManager::FindVMA(VAddr target) const { 62VMManager::VMAHandle VMManager::FindVMA(VAddr target) const {
63 return std::prev(vma_map.upper_bound(target)); 63 if (target >= MAX_ADDRESS) {
64 return vma_map.end();
65 } else {
66 return std::prev(vma_map.upper_bound(target));
67 }
64} 68}
65 69
66ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target, 70ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target,
@@ -115,10 +119,8 @@ ResultVal<VMManager::VMAHandle> VMManager::MapMMIO(VAddr target, PAddr paddr, u3
115 return MakeResult<VMAHandle>(MergeAdjacent(vma_handle)); 119 return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
116} 120}
117 121
118void VMManager::Unmap(VMAHandle vma_handle) { 122VMManager::VMAIter VMManager::Unmap(VMAIter vma_handle) {
119 VMAIter iter = StripIterConstness(vma_handle); 123 VirtualMemoryArea& vma = vma_handle->second;
120
121 VirtualMemoryArea& vma = iter->second;
122 vma.type = VMAType::Free; 124 vma.type = VMAType::Free;
123 vma.permissions = VMAPermission::None; 125 vma.permissions = VMAPermission::None;
124 vma.meminfo_state = MemoryState::Free; 126 vma.meminfo_state = MemoryState::Free;
@@ -130,17 +132,57 @@ void VMManager::Unmap(VMAHandle vma_handle) {
130 132
131 UpdatePageTableForVMA(vma); 133 UpdatePageTableForVMA(vma);
132 134
133 MergeAdjacent(iter); 135 return MergeAdjacent(vma_handle);
136}
137
138ResultCode VMManager::UnmapRange(VAddr target, u32 size) {
139 CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size));
140 VAddr target_end = target + size;
141
142 VMAIter end = vma_map.end();
143 // The comparison against the end of the range must be done using addresses since VMAs can be
144 // merged during this process, causing invalidation of the iterators.
145 while (vma != end && vma->second.base < target_end) {
146 vma = std::next(Unmap(vma));
147 }
148
149 ASSERT(FindVMA(target)->second.size >= size);
150 return RESULT_SUCCESS;
134} 151}
135 152
136void VMManager::Reprotect(VMAHandle vma_handle, VMAPermission new_perms) { 153VMManager::VMAHandle VMManager::Reprotect(VMAHandle vma_handle, VMAPermission new_perms) {
137 VMAIter iter = StripIterConstness(vma_handle); 154 VMAIter iter = StripIterConstness(vma_handle);
138 155
139 VirtualMemoryArea& vma = iter->second; 156 VirtualMemoryArea& vma = iter->second;
140 vma.permissions = new_perms; 157 vma.permissions = new_perms;
141 UpdatePageTableForVMA(vma); 158 UpdatePageTableForVMA(vma);
142 159
143 MergeAdjacent(iter); 160 return MergeAdjacent(iter);
161}
162
163ResultCode VMManager::ReprotectRange(VAddr target, u32 size, VMAPermission new_perms) {
164 CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size));
165 VAddr target_end = target + size;
166
167 VMAIter end = vma_map.end();
168 // The comparison against the end of the range must be done using addresses since VMAs can be
169 // merged during this process, causing invalidation of the iterators.
170 while (vma != end && vma->second.base < target_end) {
171 vma = std::next(StripIterConstness(Reprotect(vma, new_perms)));
172 }
173
174 return RESULT_SUCCESS;
175}
176
177void VMManager::RefreshMemoryBlockMappings(const std::vector<u8>* block) {
178 // If this ever proves to have a noticeable performance impact, allow users of the function to
179 // specify a specific range of addresses to limit the scan to.
180 for (const auto& p : vma_map) {
181 const VirtualMemoryArea& vma = p.second;
182 if (block == vma.backing_block.get()) {
183 UpdatePageTableForVMA(vma);
184 }
185 }
144} 186}
145 187
146void VMManager::LogLayout(Log::Level log_level) const { 188void VMManager::LogLayout(Log::Level log_level) const {
@@ -161,8 +203,8 @@ VMManager::VMAIter VMManager::StripIterConstness(const VMAHandle & iter) {
161} 203}
162 204
163ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u32 size) { 205ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u32 size) {
164 ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: %8X", size); 206 ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x%8X", size);
165 ASSERT_MSG((base & Memory::PAGE_MASK) == 0, "non-page aligned base: %08X", base); 207 ASSERT_MSG((base & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x%08X", base);
166 208
167 VMAIter vma_handle = StripIterConstness(FindVMA(base)); 209 VMAIter vma_handle = StripIterConstness(FindVMA(base));
168 if (vma_handle == vma_map.end()) { 210 if (vma_handle == vma_map.end()) {
@@ -196,6 +238,35 @@ ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u32 size) {
196 return MakeResult<VMAIter>(vma_handle); 238 return MakeResult<VMAIter>(vma_handle);
197} 239}
198 240
241ResultVal<VMManager::VMAIter> VMManager::CarveVMARange(VAddr target, u32 size) {
242 ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x%8X", size);
243 ASSERT_MSG((target & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x%08X", target);
244
245 VAddr target_end = target + size;
246 ASSERT(target_end >= target);
247 ASSERT(target_end <= MAX_ADDRESS);
248 ASSERT(size > 0);
249
250 VMAIter begin_vma = StripIterConstness(FindVMA(target));
251 VMAIter i_end = vma_map.lower_bound(target_end);
252 for (auto i = begin_vma; i != i_end; ++i) {
253 if (i->second.type == VMAType::Free) {
254 return ERR_INVALID_ADDRESS_STATE;
255 }
256 }
257
258 if (target != begin_vma->second.base) {
259 begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base);
260 }
261
262 VMAIter end_vma = StripIterConstness(FindVMA(target_end));
263 if (end_vma != vma_map.end() && target_end != end_vma->second.base) {
264 end_vma = SplitVMA(end_vma, target_end - end_vma->second.base);
265 }
266
267 return MakeResult<VMAIter>(begin_vma);
268}
269
199VMManager::VMAIter VMManager::SplitVMA(VMAIter vma_handle, u32 offset_in_vma) { 270VMManager::VMAIter VMManager::SplitVMA(VMAIter vma_handle, u32 offset_in_vma) {
200 VirtualMemoryArea& old_vma = vma_handle->second; 271 VirtualMemoryArea& old_vma = vma_handle->second;
201 VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA 272 VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA
diff --git a/src/core/hle/kernel/vm_manager.h b/src/core/hle/kernel/vm_manager.h
index 15c10e413..4e95f1f0c 100644
--- a/src/core/hle/kernel/vm_manager.h
+++ b/src/core/hle/kernel/vm_manager.h
@@ -171,11 +171,20 @@ public:
171 */ 171 */
172 ResultVal<VMAHandle> MapMMIO(VAddr target, PAddr paddr, u32 size, MemoryState state); 172 ResultVal<VMAHandle> MapMMIO(VAddr target, PAddr paddr, u32 size, MemoryState state);
173 173
174 /// Unmaps the given VMA. 174 /// Unmaps a range of addresses, splitting VMAs as necessary.
175 void Unmap(VMAHandle vma); 175 ResultCode UnmapRange(VAddr target, u32 size);
176 176
177 /// Changes the permissions of the given VMA. 177 /// Changes the permissions of the given VMA.
178 void Reprotect(VMAHandle vma, VMAPermission new_perms); 178 VMAHandle Reprotect(VMAHandle vma, VMAPermission new_perms);
179
180 /// Changes the permissions of a range of addresses, splitting VMAs as necessary.
181 ResultCode ReprotectRange(VAddr target, u32 size, VMAPermission new_perms);
182
183 /**
184 * Scans all VMAs and updates the page table range of any that use the given vector as backing
185 * memory. This should be called after any operation that causes reallocation of the vector.
186 */
187 void RefreshMemoryBlockMappings(const std::vector<u8>* block);
179 188
180 /// Dumps the address space layout to the log, for debugging 189 /// Dumps the address space layout to the log, for debugging
181 void LogLayout(Log::Level log_level) const; 190 void LogLayout(Log::Level log_level) const;
@@ -186,6 +195,9 @@ private:
186 /// Converts a VMAHandle to a mutable VMAIter. 195 /// Converts a VMAHandle to a mutable VMAIter.
187 VMAIter StripIterConstness(const VMAHandle& iter); 196 VMAIter StripIterConstness(const VMAHandle& iter);
188 197
198 /// Unmaps the given VMA.
199 VMAIter Unmap(VMAIter vma);
200
189 /** 201 /**
190 * Carves a VMA of a specific size at the specified address by splitting Free VMAs while doing 202 * Carves a VMA of a specific size at the specified address by splitting Free VMAs while doing
191 * the appropriate error checking. 203 * the appropriate error checking.
@@ -193,6 +205,12 @@ private:
193 ResultVal<VMAIter> CarveVMA(VAddr base, u32 size); 205 ResultVal<VMAIter> CarveVMA(VAddr base, u32 size);
194 206
195 /** 207 /**
208 * Splits the edges of the given range of non-Free VMAs so that there is a VMA split at each
209 * end of the range.
210 */
211 ResultVal<VMAIter> CarveVMARange(VAddr base, u32 size);
212
213 /**
196 * Splits a VMA in two, at the specified offset. 214 * Splits a VMA in two, at the specified offset.
197 * @returns the right side of the split, with the original iterator becoming the left side. 215 * @returns the right side of the split, with the original iterator becoming the left side.
198 */ 216 */
diff --git a/src/core/hle/svc.cpp b/src/core/hle/svc.cpp
index bb64fdfb7..91260fe71 100644
--- a/src/core/hle/svc.cpp
+++ b/src/core/hle/svc.cpp
@@ -41,32 +41,114 @@ const ResultCode ERR_NOT_FOUND(ErrorDescription::NotFound, ErrorModule::Kernel,
41const ResultCode ERR_PORT_NAME_TOO_LONG(ErrorDescription(30), ErrorModule::OS, 41const ResultCode ERR_PORT_NAME_TOO_LONG(ErrorDescription(30), ErrorModule::OS,
42 ErrorSummary::InvalidArgument, ErrorLevel::Usage); // 0xE0E0181E 42 ErrorSummary::InvalidArgument, ErrorLevel::Usage); // 0xE0E0181E
43 43
44const ResultCode ERR_MISALIGNED_ADDRESS{ // 0xE0E01BF1
45 ErrorDescription::MisalignedAddress, ErrorModule::OS,
46 ErrorSummary::InvalidArgument, ErrorLevel::Usage};
47const ResultCode ERR_MISALIGNED_SIZE{ // 0xE0E01BF2
48 ErrorDescription::MisalignedSize, ErrorModule::OS,
49 ErrorSummary::InvalidArgument, ErrorLevel::Usage};
50const ResultCode ERR_INVALID_COMBINATION{ // 0xE0E01BEE
51 ErrorDescription::InvalidCombination, ErrorModule::OS,
52 ErrorSummary::InvalidArgument, ErrorLevel::Usage};
53
44enum ControlMemoryOperation { 54enum ControlMemoryOperation {
45 MEMORY_OPERATION_HEAP = 0x00000003, 55 MEMOP_FREE = 1,
46 MEMORY_OPERATION_GSP_HEAP = 0x00010003, 56 MEMOP_RESERVE = 2, // This operation seems to be unsupported in the kernel
57 MEMOP_COMMIT = 3,
58 MEMOP_MAP = 4,
59 MEMOP_UNMAP = 5,
60 MEMOP_PROTECT = 6,
61 MEMOP_OPERATION_MASK = 0xFF,
62
63 MEMOP_REGION_APP = 0x100,
64 MEMOP_REGION_SYSTEM = 0x200,
65 MEMOP_REGION_BASE = 0x300,
66 MEMOP_REGION_MASK = 0xF00,
67
68 MEMOP_LINEAR = 0x10000,
47}; 69};
48 70
49/// Map application or GSP heap memory 71/// Map application or GSP heap memory
50static ResultCode ControlMemory(u32* out_addr, u32 operation, u32 addr0, u32 addr1, u32 size, u32 permissions) { 72static ResultCode ControlMemory(u32* out_addr, u32 operation, u32 addr0, u32 addr1, u32 size, u32 permissions) {
51 LOG_TRACE(Kernel_SVC,"called operation=0x%08X, addr0=0x%08X, addr1=0x%08X, size=%08X, permissions=0x%08X", 73 using namespace Kernel;
74
75 LOG_DEBUG(Kernel_SVC,"called operation=0x%08X, addr0=0x%08X, addr1=0x%08X, size=0x%X, permissions=0x%08X",
52 operation, addr0, addr1, size, permissions); 76 operation, addr0, addr1, size, permissions);
53 77
54 switch (operation) { 78 if ((addr0 & Memory::PAGE_MASK) != 0 || (addr1 & Memory::PAGE_MASK) != 0) {
79 return ERR_MISALIGNED_ADDRESS;
80 }
81 if ((size & Memory::PAGE_MASK) != 0) {
82 return ERR_MISALIGNED_SIZE;
83 }
84
85 u32 region = operation & MEMOP_REGION_MASK;
86 operation &= ~MEMOP_REGION_MASK;
87
88 if (region != 0) {
89 LOG_WARNING(Kernel_SVC, "ControlMemory with specified region not supported, region=%X", region);
90 }
55 91
56 // Map normal heap memory 92 if ((permissions & (u32)MemoryPermission::ReadWrite) != permissions) {
57 case MEMORY_OPERATION_HEAP: 93 return ERR_INVALID_COMBINATION;
58 *out_addr = Memory::MapBlock_Heap(size, operation, permissions); 94 }
95 VMAPermission vma_permissions = (VMAPermission)permissions;
96
97 auto& process = *g_current_process;
98
99 switch (operation & MEMOP_OPERATION_MASK) {
100 case MEMOP_FREE:
101 {
102 if (addr0 >= Memory::HEAP_VADDR && addr0 < Memory::HEAP_VADDR_END) {
103 ResultCode result = process.HeapFree(addr0, size);
104 if (result.IsError()) return result;
105 } else if (addr0 >= Memory::LINEAR_HEAP_VADDR && addr0 < Memory::LINEAR_HEAP_VADDR_END) {
106 ResultCode result = process.LinearFree(addr0, size);
107 if (result.IsError()) return result;
108 } else {
109 return ERR_INVALID_ADDRESS;
110 }
111 *out_addr = addr0;
59 break; 112 break;
113 }
60 114
61 // Map GSP heap memory 115 case MEMOP_COMMIT:
62 case MEMORY_OPERATION_GSP_HEAP: 116 {
63 *out_addr = Memory::MapBlock_HeapLinear(size, operation, permissions); 117 if (operation & MEMOP_LINEAR) {
118 CASCADE_RESULT(*out_addr, process.LinearAllocate(addr0, size, vma_permissions));
119 } else {
120 CASCADE_RESULT(*out_addr, process.HeapAllocate(addr0, size, vma_permissions));
121 }
64 break; 122 break;
123 }
124
125 case MEMOP_MAP: // TODO: This is just a hack to avoid regressions until memory aliasing is implemented
126 {
127 CASCADE_RESULT(*out_addr, process.HeapAllocate(addr0, size, vma_permissions));
128 break;
129 }
130
131 case MEMOP_UNMAP: // TODO: This is just a hack to avoid regressions until memory aliasing is implemented
132 {
133 ResultCode result = process.HeapFree(addr0, size);
134 if (result.IsError()) return result;
135 break;
136 }
137
138 case MEMOP_PROTECT:
139 {
140 ResultCode result = process.vm_manager.ReprotectRange(addr0, size, vma_permissions);
141 if (result.IsError()) return result;
142 break;
143 }
65 144
66 // Unknown ControlMemory operation
67 default: 145 default:
68 LOG_ERROR(Kernel_SVC, "unknown operation=0x%08X", operation); 146 LOG_ERROR(Kernel_SVC, "unknown operation=0x%08X", operation);
147 return ERR_INVALID_COMBINATION;
69 } 148 }
149
150 process.vm_manager.LogLayout(Log::Level::Trace);
151
70 return RESULT_SUCCESS; 152 return RESULT_SUCCESS;
71} 153}
72 154
@@ -537,9 +619,9 @@ static ResultCode QueryProcessMemory(MemoryInfo* memory_info, PageInfo* page_inf
537 if (process == nullptr) 619 if (process == nullptr)
538 return ERR_INVALID_HANDLE; 620 return ERR_INVALID_HANDLE;
539 621
540 auto vma = process->address_space->FindVMA(addr); 622 auto vma = process->vm_manager.FindVMA(addr);
541 623
542 if (vma == process->address_space->vma_map.end()) 624 if (vma == Kernel::g_current_process->vm_manager.vma_map.end())
543 return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::OS, ErrorSummary::InvalidArgument, ErrorLevel::Usage); 625 return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::OS, ErrorSummary::InvalidArgument, ErrorLevel::Usage);
544 626
545 memory_info->base_address = vma->second.base; 627 memory_info->base_address = vma->second.base;
diff --git a/src/core/mem_map.cpp b/src/core/mem_map.cpp
index cbe993fbe..c95dea064 100644
--- a/src/core/mem_map.cpp
+++ b/src/core/mem_map.cpp
@@ -32,9 +32,7 @@ struct MemoryArea {
32 32
33// We don't declare the IO regions in here since its handled by other means. 33// We don't declare the IO regions in here since its handled by other means.
34static MemoryArea memory_areas[] = { 34static MemoryArea memory_areas[] = {
35 {HEAP_VADDR, HEAP_SIZE, "Heap"}, // Application heap (main memory)
36 {SHARED_MEMORY_VADDR, SHARED_MEMORY_SIZE, "Shared Memory"}, // Shared memory 35 {SHARED_MEMORY_VADDR, SHARED_MEMORY_SIZE, "Shared Memory"}, // Shared memory
37 {LINEAR_HEAP_VADDR, LINEAR_HEAP_SIZE, "Linear Heap"}, // Linear heap (main memory)
38 {VRAM_VADDR, VRAM_SIZE, "VRAM"}, // Video memory (VRAM) 36 {VRAM_VADDR, VRAM_SIZE, "VRAM"}, // Video memory (VRAM)
39 {DSP_RAM_VADDR, DSP_RAM_SIZE, "DSP RAM"}, // DSP memory 37 {DSP_RAM_VADDR, DSP_RAM_SIZE, "DSP RAM"}, // DSP memory
40 {TLS_AREA_VADDR, TLS_AREA_SIZE, "TLS Area"}, // TLS memory 38 {TLS_AREA_VADDR, TLS_AREA_SIZE, "TLS Area"}, // TLS memory