summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorGravatar MerryMage2017-08-03 12:22:51 +0100
committerGravatar MerryMage2017-08-28 10:54:41 +0100
commit933508e2a2f7923cebc15d679b78933df8fb9ee5 (patch)
treee49faeb30929c03c5490d8ae507ec907060c1068 /src
parentMerge pull request #2850 from j-selby/fix_invalid_paths (diff)
downloadyuzu-933508e2a2f7923cebc15d679b78933df8fb9ee5.tar.gz
yuzu-933508e2a2f7923cebc15d679b78933df8fb9ee5.tar.xz
yuzu-933508e2a2f7923cebc15d679b78933df8fb9ee5.zip
interpolate: Interpolate on a frame-by-frame basis
Diffstat (limited to 'src')
-rw-r--r--src/audio_core/hle/source.cpp49
-rw-r--r--src/audio_core/interpolate.cpp86
-rw-r--r--src/audio_core/interpolate.h27
3 files changed, 74 insertions, 88 deletions
diff --git a/src/audio_core/hle/source.cpp b/src/audio_core/hle/source.cpp
index 92484c526..de4e88cae 100644
--- a/src/audio_core/hle/source.cpp
+++ b/src/audio_core/hle/source.cpp
@@ -244,17 +244,27 @@ void Source::GenerateFrame() {
244 break; 244 break;
245 } 245 }
246 246
247 const size_t size_to_copy = 247 switch (state.interpolation_mode) {
248 std::min(state.current_buffer.size(), current_frame.size() - frame_position); 248 case InterpolationMode::None:
249 249 AudioInterp::None(state.interp_state, state.current_buffer, state.rate_multiplier,
250 std::copy(state.current_buffer.begin(), state.current_buffer.begin() + size_to_copy, 250 current_frame, frame_position);
251 current_frame.begin() + frame_position); 251 break;
252 state.current_buffer.erase(state.current_buffer.begin(), 252 case InterpolationMode::Linear:
253 state.current_buffer.begin() + size_to_copy); 253 AudioInterp::Linear(state.interp_state, state.current_buffer, state.rate_multiplier,
254 254 current_frame, frame_position);
255 frame_position += size_to_copy; 255 break;
256 state.next_sample_number += static_cast<u32>(size_to_copy); 256 case InterpolationMode::Polyphase:
257 // TODO(merry): Implement polyphase interpolation
258 LOG_DEBUG(Audio_DSP, "Polyphase interpolation unimplemented; falling back to linear");
259 AudioInterp::Linear(state.interp_state, state.current_buffer, state.rate_multiplier,
260 current_frame, frame_position);
261 break;
262 default:
263 UNIMPLEMENTED();
264 break;
265 }
257 } 266 }
267 state.next_sample_number += frame_position;
258 268
259 state.filters.ProcessFrame(current_frame); 269 state.filters.ProcessFrame(current_frame);
260} 270}
@@ -305,25 +315,6 @@ bool Source::DequeueBuffer() {
305 return true; 315 return true;
306 } 316 }
307 317
308 switch (state.interpolation_mode) {
309 case InterpolationMode::None:
310 state.current_buffer =
311 AudioInterp::None(state.interp_state, state.current_buffer, state.rate_multiplier);
312 break;
313 case InterpolationMode::Linear:
314 state.current_buffer =
315 AudioInterp::Linear(state.interp_state, state.current_buffer, state.rate_multiplier);
316 break;
317 case InterpolationMode::Polyphase:
318 // TODO(merry): Implement polyphase interpolation
319 state.current_buffer =
320 AudioInterp::Linear(state.interp_state, state.current_buffer, state.rate_multiplier);
321 break;
322 default:
323 UNIMPLEMENTED();
324 break;
325 }
326
327 // the first playthrough starts at play_position, loops start at the beginning of the buffer 318 // the first playthrough starts at play_position, loops start at the beginning of the buffer
328 state.current_sample_number = (!buf.has_played) ? buf.play_position : 0; 319 state.current_sample_number = (!buf.has_played) ? buf.play_position : 0;
329 state.next_sample_number = state.current_sample_number; 320 state.next_sample_number = state.current_sample_number;
diff --git a/src/audio_core/interpolate.cpp b/src/audio_core/interpolate.cpp
index 8a5d4181a..16e68bc5c 100644
--- a/src/audio_core/interpolate.cpp
+++ b/src/audio_core/interpolate.cpp
@@ -13,74 +13,64 @@ namespace AudioInterp {
13constexpr u64 scale_factor = 1 << 24; 13constexpr u64 scale_factor = 1 << 24;
14constexpr u64 scale_mask = scale_factor - 1; 14constexpr u64 scale_mask = scale_factor - 1;
15 15
16/// Here we step over the input in steps of rate_multiplier, until we consume all of the input. 16/// Here we step over the input in steps of rate, until we consume all of the input.
17/// Three adjacent samples are passed to fn each step. 17/// Three adjacent samples are passed to fn each step.
18template <typename Function> 18template <typename Function>
19static StereoBuffer16 StepOverSamples(State& state, const StereoBuffer16& input, 19static void StepOverSamples(State& state, StereoBuffer16& input, float rate,
20 float rate_multiplier, Function fn) { 20 DSP::HLE::StereoFrame16& output, size_t& outputi, Function fn) {
21 ASSERT(rate_multiplier > 0); 21 ASSERT(rate > 0);
22 22
23 if (input.size() < 2) 23 if (input.empty())
24 return {}; 24 return;
25 25
26 StereoBuffer16 output; 26 input.insert(input.begin(), {state.xn2, state.xn1});
27 output.reserve(static_cast<size_t>(input.size() / rate_multiplier));
28 27
29 u64 step_size = static_cast<u64>(rate_multiplier * scale_factor); 28 const u64 step_size = static_cast<u64>(rate * scale_factor);
29 u64 fposition = state.fposition;
30 size_t inputi = 0;
30 31
31 u64 fposition = 0; 32 while (outputi < output.size()) {
32 const u64 max_fposition = input.size() * scale_factor; 33 inputi = static_cast<size_t>(fposition / scale_factor);
33 34
34 while (fposition < 1 * scale_factor) { 35 if (inputi + 2 >= input.size()) {
35 u64 fraction = fposition & scale_mask; 36 inputi = input.size() - 2;
36 37 break;
37 output.push_back(fn(fraction, state.xn2, state.xn1, input[0])); 38 }
38
39 fposition += step_size;
40 }
41
42 while (fposition < 2 * scale_factor) {
43 u64 fraction = fposition & scale_mask;
44
45 output.push_back(fn(fraction, state.xn1, input[0], input[1]));
46
47 fposition += step_size;
48 }
49 39
50 while (fposition < max_fposition) {
51 u64 fraction = fposition & scale_mask; 40 u64 fraction = fposition & scale_mask;
52 41 output[outputi++] = fn(fraction, input[inputi], input[inputi + 1], input[inputi + 2]);
53 size_t index = static_cast<size_t>(fposition / scale_factor);
54 output.push_back(fn(fraction, input[index - 2], input[index - 1], input[index]));
55 42
56 fposition += step_size; 43 fposition += step_size;
57 } 44 }
58 45
59 state.xn2 = input[input.size() - 2]; 46 state.xn2 = input[inputi];
60 state.xn1 = input[input.size() - 1]; 47 state.xn1 = input[inputi + 1];
48 state.fposition = fposition - inputi * scale_factor;
61 49
62 return output; 50 input.erase(input.begin(), input.begin() + inputi + 2);
63} 51}
64 52
65StereoBuffer16 None(State& state, const StereoBuffer16& input, float rate_multiplier) { 53void None(State& state, StereoBuffer16& input, float rate, DSP::HLE::StereoFrame16& output,
66 return StepOverSamples( 54 size_t& outputi) {
67 state, input, rate_multiplier, 55 StepOverSamples(
56 state, input, rate, output, outputi,
68 [](u64 fraction, const auto& x0, const auto& x1, const auto& x2) { return x0; }); 57 [](u64 fraction, const auto& x0, const auto& x1, const auto& x2) { return x0; });
69} 58}
70 59
71StereoBuffer16 Linear(State& state, const StereoBuffer16& input, float rate_multiplier) { 60void Linear(State& state, StereoBuffer16& input, float rate, DSP::HLE::StereoFrame16& output,
61 size_t& outputi) {
72 // Note on accuracy: Some values that this produces are +/- 1 from the actual firmware. 62 // Note on accuracy: Some values that this produces are +/- 1 from the actual firmware.
73 return StepOverSamples(state, input, rate_multiplier, 63 StepOverSamples(state, input, rate, output, outputi,
74 [](u64 fraction, const auto& x0, const auto& x1, const auto& x2) { 64 [](u64 fraction, const auto& x0, const auto& x1, const auto& x2) {
75 // This is a saturated subtraction. (Verified by black-box fuzzing.) 65 // This is a saturated subtraction. (Verified by black-box fuzzing.)
76 s64 delta0 = MathUtil::Clamp<s64>(x1[0] - x0[0], -32768, 32767); 66 s64 delta0 = MathUtil::Clamp<s64>(x1[0] - x0[0], -32768, 32767);
77 s64 delta1 = MathUtil::Clamp<s64>(x1[1] - x0[1], -32768, 32767); 67 s64 delta1 = MathUtil::Clamp<s64>(x1[1] - x0[1], -32768, 32767);
78 68
79 return std::array<s16, 2>{ 69 return std::array<s16, 2>{
80 static_cast<s16>(x0[0] + fraction * delta0 / scale_factor), 70 static_cast<s16>(x0[0] + fraction * delta0 / scale_factor),
81 static_cast<s16>(x0[1] + fraction * delta1 / scale_factor), 71 static_cast<s16>(x0[1] + fraction * delta1 / scale_factor),
82 }; 72 };
83 }); 73 });
84} 74}
85 75
86} // namespace AudioInterp 76} // namespace AudioInterp
diff --git a/src/audio_core/interpolate.h b/src/audio_core/interpolate.h
index 19a7b66cb..59f59bc14 100644
--- a/src/audio_core/interpolate.h
+++ b/src/audio_core/interpolate.h
@@ -6,6 +6,7 @@
6 6
7#include <array> 7#include <array>
8#include <vector> 8#include <vector>
9#include "audio_core/hle/common.h"
9#include "common/common_types.h" 10#include "common/common_types.h"
10 11
11namespace AudioInterp { 12namespace AudioInterp {
@@ -14,31 +15,35 @@ namespace AudioInterp {
14using StereoBuffer16 = std::vector<std::array<s16, 2>>; 15using StereoBuffer16 = std::vector<std::array<s16, 2>>;
15 16
16struct State { 17struct State {
17 // Two historical samples. 18 /// Two historical samples.
18 std::array<s16, 2> xn1 = {}; ///< x[n-1] 19 std::array<s16, 2> xn1 = {}; ///< x[n-1]
19 std::array<s16, 2> xn2 = {}; ///< x[n-2] 20 std::array<s16, 2> xn2 = {}; ///< x[n-2]
21 /// Current fractional position.
22 u64 fposition = 0;
20}; 23};
21 24
22/** 25/**
23 * No interpolation. This is equivalent to a zero-order hold. There is a two-sample predelay. 26 * No interpolation. This is equivalent to a zero-order hold. There is a two-sample predelay.
24 * @param state Interpolation state. 27 * @param state Interpolation state.
25 * @param input Input buffer. 28 * @param input Input buffer.
26 * @param rate_multiplier Stretch factor. Must be a positive non-zero value. 29 * @param rate Stretch factor. Must be a positive non-zero value.
27 * rate_multiplier > 1.0 performs decimation and rate_multipler < 1.0 30 * rate > 1.0 performs decimation and rate < 1.0 performs upsampling.
28 * performs upsampling. 31 * @param output The resampled audio buffer.
29 * @return The resampled audio buffer. 32 * @param outputi The index of output to start writing to.
30 */ 33 */
31StereoBuffer16 None(State& state, const StereoBuffer16& input, float rate_multiplier); 34void None(State& state, StereoBuffer16& input, float rate, DSP::HLE::StereoFrame16& output,
35 size_t& outputi);
32 36
33/** 37/**
34 * Linear interpolation. This is equivalent to a first-order hold. There is a two-sample predelay. 38 * Linear interpolation. This is equivalent to a first-order hold. There is a two-sample predelay.
35 * @param state Interpolation state. 39 * @param state Interpolation state.
36 * @param input Input buffer. 40 * @param input Input buffer.
37 * @param rate_multiplier Stretch factor. Must be a positive non-zero value. 41 * @param rate Stretch factor. Must be a positive non-zero value.
38 * rate_multiplier > 1.0 performs decimation and rate_multipler < 1.0 42 * rate > 1.0 performs decimation and rate < 1.0 performs upsampling.
39 * performs upsampling. 43 * @param output The resampled audio buffer.
40 * @return The resampled audio buffer. 44 * @param outputi The index of output to start writing to.
41 */ 45 */
42StereoBuffer16 Linear(State& state, const StereoBuffer16& input, float rate_multiplier); 46void Linear(State& state, StereoBuffer16& input, float rate, DSP::HLE::StereoFrame16& output,
47 size_t& outputi);
43 48
44} // namespace AudioInterp 49} // namespace AudioInterp