summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorGravatar ReinUsesLisp2020-03-13 22:22:27 -0300
committerGravatar ReinUsesLisp2020-03-13 22:22:27 -0300
commit731a9a322e5b0623a5700cccc52307163c51c564 (patch)
treea0aac09c432fa56409468e0118640acade61eeb1 /src
parentastc: Use 'enum class' instead of 'enum' for EIntegerEncoding (diff)
downloadyuzu-731a9a322e5b0623a5700cccc52307163c51c564.tar.gz
yuzu-731a9a322e5b0623a5700cccc52307163c51c564.tar.xz
yuzu-731a9a322e5b0623a5700cccc52307163c51c564.zip
astc: Use common types instead of stdint.h integer types
Diffstat (limited to 'src')
-rw-r--r--src/video_core/textures/astc.cpp566
1 files changed, 282 insertions, 284 deletions
diff --git a/src/video_core/textures/astc.cpp b/src/video_core/textures/astc.cpp
index af5a6c4ce..dcfab4dad 100644
--- a/src/video_core/textures/astc.cpp
+++ b/src/video_core/textures/astc.cpp
@@ -21,6 +21,8 @@
21#include <cstring> 21#include <cstring>
22#include <vector> 22#include <vector>
23 23
24#include "common/common_types.h"
25
24#include "video_core/textures/astc.h" 26#include "video_core/textures/astc.h"
25 27
26class InputBitStream { 28class InputBitStream {
@@ -123,20 +125,20 @@ public:
123 Bits(const Bits&) = delete; 125 Bits(const Bits&) = delete;
124 Bits& operator=(const Bits&) = delete; 126 Bits& operator=(const Bits&) = delete;
125 127
126 uint8_t operator[](uint32_t bitPos) const { 128 u8 operator[](u32 bitPos) const {
127 return static_cast<uint8_t>((m_Bits >> bitPos) & 1); 129 return static_cast<u8>((m_Bits >> bitPos) & 1);
128 } 130 }
129 131
130 IntType operator()(uint32_t start, uint32_t end) const { 132 IntType operator()(u32 start, u32 end) const {
131 if (start == end) { 133 if (start == end) {
132 return (*this)[start]; 134 return (*this)[start];
133 } else if (start > end) { 135 } else if (start > end) {
134 uint32_t t = start; 136 u32 t = start;
135 start = end; 137 start = end;
136 end = t; 138 end = t;
137 } 139 }
138 140
139 uint64_t mask = (1 << (end - start + 1)) - 1; 141 u64 mask = (1 << (end - start + 1)) - 1;
140 return (m_Bits >> start) & static_cast<IntType>(mask); 142 return (m_Bits >> start) & static_cast<IntType>(mask);
141 } 143 }
142 144
@@ -149,11 +151,11 @@ enum class IntegerEncoding { JustBits, Quint, Trit };
149class IntegerEncodedValue { 151class IntegerEncodedValue {
150private: 152private:
151 const IntegerEncoding m_Encoding; 153 const IntegerEncoding m_Encoding;
152 const uint32_t m_NumBits; 154 const u32 m_NumBits;
153 uint32_t m_BitValue; 155 u32 m_BitValue;
154 union { 156 union {
155 uint32_t m_QuintValue; 157 u32 m_QuintValue;
156 uint32_t m_TritValue; 158 u32 m_TritValue;
157 }; 159 };
158 160
159public: 161public:
@@ -164,34 +166,34 @@ public:
164 return *this; 166 return *this;
165 } 167 }
166 168
167 IntegerEncodedValue(IntegerEncoding encoding, uint32_t numBits) 169 IntegerEncodedValue(IntegerEncoding encoding, u32 numBits)
168 : m_Encoding(encoding), m_NumBits(numBits) {} 170 : m_Encoding(encoding), m_NumBits(numBits) {}
169 171
170 IntegerEncoding GetEncoding() const { 172 IntegerEncoding GetEncoding() const {
171 return m_Encoding; 173 return m_Encoding;
172 } 174 }
173 uint32_t BaseBitLength() const { 175 u32 BaseBitLength() const {
174 return m_NumBits; 176 return m_NumBits;
175 } 177 }
176 178
177 uint32_t GetBitValue() const { 179 u32 GetBitValue() const {
178 return m_BitValue; 180 return m_BitValue;
179 } 181 }
180 void SetBitValue(uint32_t val) { 182 void SetBitValue(u32 val) {
181 m_BitValue = val; 183 m_BitValue = val;
182 } 184 }
183 185
184 uint32_t GetTritValue() const { 186 u32 GetTritValue() const {
185 return m_TritValue; 187 return m_TritValue;
186 } 188 }
187 void SetTritValue(uint32_t val) { 189 void SetTritValue(u32 val) {
188 m_TritValue = val; 190 m_TritValue = val;
189 } 191 }
190 192
191 uint32_t GetQuintValue() const { 193 u32 GetQuintValue() const {
192 return m_QuintValue; 194 return m_QuintValue;
193 } 195 }
194 void SetQuintValue(uint32_t val) { 196 void SetQuintValue(u32 val) {
195 m_QuintValue = val; 197 m_QuintValue = val;
196 } 198 }
197 199
@@ -200,8 +202,8 @@ public:
200 } 202 }
201 203
202 // Returns the number of bits required to encode nVals values. 204 // Returns the number of bits required to encode nVals values.
203 uint32_t GetBitLength(uint32_t nVals) const { 205 u32 GetBitLength(u32 nVals) const {
204 uint32_t totalBits = m_NumBits * nVals; 206 u32 totalBits = m_NumBits * nVals;
205 if (m_Encoding == IntegerEncoding::Trit) { 207 if (m_Encoding == IntegerEncoding::Trit) {
206 totalBits += (nVals * 8 + 4) / 5; 208 totalBits += (nVals * 8 + 4) / 5;
207 } else if (m_Encoding == IntegerEncoding::Quint) { 209 } else if (m_Encoding == IntegerEncoding::Quint) {
@@ -211,8 +213,8 @@ public:
211 } 213 }
212 214
213 // Count the number of bits set in a number. 215 // Count the number of bits set in a number.
214 static inline uint32_t Popcnt(uint32_t n) { 216 static inline u32 Popcnt(u32 n) {
215 uint32_t c; 217 u32 c;
216 for (c = 0; n; c++) { 218 for (c = 0; n; c++) {
217 n &= n - 1; 219 n &= n - 1;
218 } 220 }
@@ -221,9 +223,9 @@ public:
221 223
222 // Returns a new instance of this struct that corresponds to the 224 // Returns a new instance of this struct that corresponds to the
223 // can take no more than maxval values 225 // can take no more than maxval values
224 static IntegerEncodedValue CreateEncoding(uint32_t maxVal) { 226 static IntegerEncodedValue CreateEncoding(u32 maxVal) {
225 while (maxVal > 0) { 227 while (maxVal > 0) {
226 uint32_t check = maxVal + 1; 228 u32 check = maxVal + 1;
227 229
228 // Is maxVal a power of two? 230 // Is maxVal a power of two?
229 if (!(check & (check - 1))) { 231 if (!(check & (check - 1))) {
@@ -251,12 +253,12 @@ public:
251 // bitstream. We must know beforehand what the maximum possible 253 // bitstream. We must know beforehand what the maximum possible
252 // value is, and how many values we're decoding. 254 // value is, and how many values we're decoding.
253 static void DecodeIntegerSequence(std::vector<IntegerEncodedValue>& result, 255 static void DecodeIntegerSequence(std::vector<IntegerEncodedValue>& result,
254 InputBitStream& bits, uint32_t maxRange, uint32_t nValues) { 256 InputBitStream& bits, u32 maxRange, u32 nValues) {
255 // Determine encoding parameters 257 // Determine encoding parameters
256 IntegerEncodedValue val = IntegerEncodedValue::CreateEncoding(maxRange); 258 IntegerEncodedValue val = IntegerEncodedValue::CreateEncoding(maxRange);
257 259
258 // Start decoding 260 // Start decoding
259 uint32_t nValsDecoded = 0; 261 u32 nValsDecoded = 0;
260 while (nValsDecoded < nValues) { 262 while (nValsDecoded < nValues) {
261 switch (val.GetEncoding()) { 263 switch (val.GetEncoding()) {
262 case IntegerEncoding::Quint: 264 case IntegerEncoding::Quint:
@@ -280,11 +282,11 @@ public:
280 282
281private: 283private:
282 static void DecodeTritBlock(InputBitStream& bits, std::vector<IntegerEncodedValue>& result, 284 static void DecodeTritBlock(InputBitStream& bits, std::vector<IntegerEncodedValue>& result,
283 uint32_t nBitsPerValue) { 285 u32 nBitsPerValue) {
284 // Implement the algorithm in section C.2.12 286 // Implement the algorithm in section C.2.12
285 uint32_t m[5]; 287 u32 m[5];
286 uint32_t t[5]; 288 u32 t[5];
287 uint32_t T; 289 u32 T;
288 290
289 // Read the trit encoded block according to 291 // Read the trit encoded block according to
290 // table C.2.14 292 // table C.2.14
@@ -299,9 +301,9 @@ private:
299 m[4] = bits.ReadBits(nBitsPerValue); 301 m[4] = bits.ReadBits(nBitsPerValue);
300 T |= bits.ReadBit() << 7; 302 T |= bits.ReadBit() << 7;
301 303
302 uint32_t C = 0; 304 u32 C = 0;
303 305
304 Bits<uint32_t> Tb(T); 306 Bits<u32> Tb(T);
305 if (Tb(2, 4) == 7) { 307 if (Tb(2, 4) == 7) {
306 C = (Tb(5, 7) << 2) | Tb(0, 1); 308 C = (Tb(5, 7) << 2) | Tb(0, 1);
307 t[4] = t[3] = 2; 309 t[4] = t[3] = 2;
@@ -316,7 +318,7 @@ private:
316 } 318 }
317 } 319 }
318 320
319 Bits<uint32_t> Cb(C); 321 Bits<u32> Cb(C);
320 if (Cb(0, 1) == 3) { 322 if (Cb(0, 1) == 3) {
321 t[2] = 2; 323 t[2] = 2;
322 t[1] = Cb[4]; 324 t[1] = Cb[4];
@@ -331,7 +333,7 @@ private:
331 t[0] = (Cb[1] << 1) | (Cb[0] & ~Cb[1]); 333 t[0] = (Cb[1] << 1) | (Cb[0] & ~Cb[1]);
332 } 334 }
333 335
334 for (uint32_t i = 0; i < 5; i++) { 336 for (u32 i = 0; i < 5; i++) {
335 IntegerEncodedValue val(IntegerEncoding::Trit, nBitsPerValue); 337 IntegerEncodedValue val(IntegerEncoding::Trit, nBitsPerValue);
336 val.SetBitValue(m[i]); 338 val.SetBitValue(m[i]);
337 val.SetTritValue(t[i]); 339 val.SetTritValue(t[i]);
@@ -340,11 +342,11 @@ private:
340 } 342 }
341 343
342 static void DecodeQuintBlock(InputBitStream& bits, std::vector<IntegerEncodedValue>& result, 344 static void DecodeQuintBlock(InputBitStream& bits, std::vector<IntegerEncodedValue>& result,
343 uint32_t nBitsPerValue) { 345 u32 nBitsPerValue) {
344 // Implement the algorithm in section C.2.12 346 // Implement the algorithm in section C.2.12
345 uint32_t m[3]; 347 u32 m[3];
346 uint32_t q[3]; 348 u32 q[3];
347 uint32_t Q; 349 u32 Q;
348 350
349 // Read the trit encoded block according to 351 // Read the trit encoded block according to
350 // table C.2.15 352 // table C.2.15
@@ -355,12 +357,12 @@ private:
355 m[2] = bits.ReadBits(nBitsPerValue); 357 m[2] = bits.ReadBits(nBitsPerValue);
356 Q |= bits.ReadBits(2) << 5; 358 Q |= bits.ReadBits(2) << 5;
357 359
358 Bits<uint32_t> Qb(Q); 360 Bits<u32> Qb(Q);
359 if (Qb(1, 2) == 3 && Qb(5, 6) == 0) { 361 if (Qb(1, 2) == 3 && Qb(5, 6) == 0) {
360 q[0] = q[1] = 4; 362 q[0] = q[1] = 4;
361 q[2] = (Qb[0] << 2) | ((Qb[4] & ~Qb[0]) << 1) | (Qb[3] & ~Qb[0]); 363 q[2] = (Qb[0] << 2) | ((Qb[4] & ~Qb[0]) << 1) | (Qb[3] & ~Qb[0]);
362 } else { 364 } else {
363 uint32_t C = 0; 365 u32 C = 0;
364 if (Qb(1, 2) == 3) { 366 if (Qb(1, 2) == 3) {
365 q[2] = 4; 367 q[2] = 4;
366 C = (Qb(3, 4) << 3) | ((~Qb(5, 6) & 3) << 1) | Qb[0]; 368 C = (Qb(3, 4) << 3) | ((~Qb(5, 6) & 3) << 1) | Qb[0];
@@ -369,7 +371,7 @@ private:
369 C = Qb(0, 4); 371 C = Qb(0, 4);
370 } 372 }
371 373
372 Bits<uint32_t> Cb(C); 374 Bits<u32> Cb(C);
373 if (Cb(0, 2) == 5) { 375 if (Cb(0, 2) == 5) {
374 q[1] = 4; 376 q[1] = 4;
375 q[0] = Cb(3, 4); 377 q[0] = Cb(3, 4);
@@ -379,7 +381,7 @@ private:
379 } 381 }
380 } 382 }
381 383
382 for (uint32_t i = 0; i < 3; i++) { 384 for (u32 i = 0; i < 3; i++) {
383 IntegerEncodedValue val(IntegerEncoding::Quint, nBitsPerValue); 385 IntegerEncodedValue val(IntegerEncoding::Quint, nBitsPerValue);
384 val.m_BitValue = m[i]; 386 val.m_BitValue = m[i];
385 val.m_QuintValue = q[i]; 387 val.m_QuintValue = q[i];
@@ -391,17 +393,17 @@ private:
391namespace ASTCC { 393namespace ASTCC {
392 394
393struct TexelWeightParams { 395struct TexelWeightParams {
394 uint32_t m_Width = 0; 396 u32 m_Width = 0;
395 uint32_t m_Height = 0; 397 u32 m_Height = 0;
396 bool m_bDualPlane = false; 398 bool m_bDualPlane = false;
397 uint32_t m_MaxWeight = 0; 399 u32 m_MaxWeight = 0;
398 bool m_bError = false; 400 bool m_bError = false;
399 bool m_bVoidExtentLDR = false; 401 bool m_bVoidExtentLDR = false;
400 bool m_bVoidExtentHDR = false; 402 bool m_bVoidExtentHDR = false;
401 403
402 uint32_t GetPackedBitSize() const { 404 u32 GetPackedBitSize() const {
403 // How many indices do we have? 405 // How many indices do we have?
404 uint32_t nIdxs = m_Height * m_Width; 406 u32 nIdxs = m_Height * m_Width;
405 if (m_bDualPlane) { 407 if (m_bDualPlane) {
406 nIdxs *= 2; 408 nIdxs *= 2;
407 } 409 }
@@ -409,8 +411,8 @@ struct TexelWeightParams {
409 return IntegerEncodedValue::CreateEncoding(m_MaxWeight).GetBitLength(nIdxs); 411 return IntegerEncodedValue::CreateEncoding(m_MaxWeight).GetBitLength(nIdxs);
410 } 412 }
411 413
412 uint32_t GetNumWeightValues() const { 414 u32 GetNumWeightValues() const {
413 uint32_t ret = m_Width * m_Height; 415 u32 ret = m_Width * m_Height;
414 if (m_bDualPlane) { 416 if (m_bDualPlane) {
415 ret *= 2; 417 ret *= 2;
416 } 418 }
@@ -422,7 +424,7 @@ static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) {
422 TexelWeightParams params; 424 TexelWeightParams params;
423 425
424 // Read the entire block mode all at once 426 // Read the entire block mode all at once
425 uint16_t modeBits = static_cast<uint16_t>(strm.ReadBits(11)); 427 u16 modeBits = static_cast<u16>(strm.ReadBits(11));
426 428
427 // Does this match the void extent block mode? 429 // Does this match the void extent block mode?
428 if ((modeBits & 0x01FF) == 0x1FC) { 430 if ((modeBits & 0x01FF) == 0x1FC) {
@@ -457,7 +459,7 @@ static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) {
457 // of the block mode. Layout is determined by a number 459 // of the block mode. Layout is determined by a number
458 // between 0 and 9 corresponding to table C.2.8 of the 460 // between 0 and 9 corresponding to table C.2.8 of the
459 // ASTC spec. 461 // ASTC spec.
460 uint32_t layout = 0; 462 u32 layout = 0;
461 463
462 if ((modeBits & 0x1) || (modeBits & 0x2)) { 464 if ((modeBits & 0x1) || (modeBits & 0x2)) {
463 // layout is in [0-4] 465 // layout is in [0-4]
@@ -509,7 +511,7 @@ static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) {
509 assert(layout < 10); 511 assert(layout < 10);
510 512
511 // Determine R 513 // Determine R
512 uint32_t R = !!(modeBits & 0x10); 514 u32 R = !!(modeBits & 0x10);
513 if (layout < 5) { 515 if (layout < 5) {
514 R |= (modeBits & 0x3) << 1; 516 R |= (modeBits & 0x3) << 1;
515 } else { 517 } else {
@@ -520,54 +522,54 @@ static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) {
520 // Determine width & height 522 // Determine width & height
521 switch (layout) { 523 switch (layout) {
522 case 0: { 524 case 0: {
523 uint32_t A = (modeBits >> 5) & 0x3; 525 u32 A = (modeBits >> 5) & 0x3;
524 uint32_t B = (modeBits >> 7) & 0x3; 526 u32 B = (modeBits >> 7) & 0x3;
525 params.m_Width = B + 4; 527 params.m_Width = B + 4;
526 params.m_Height = A + 2; 528 params.m_Height = A + 2;
527 break; 529 break;
528 } 530 }
529 531
530 case 1: { 532 case 1: {
531 uint32_t A = (modeBits >> 5) & 0x3; 533 u32 A = (modeBits >> 5) & 0x3;
532 uint32_t B = (modeBits >> 7) & 0x3; 534 u32 B = (modeBits >> 7) & 0x3;
533 params.m_Width = B + 8; 535 params.m_Width = B + 8;
534 params.m_Height = A + 2; 536 params.m_Height = A + 2;
535 break; 537 break;
536 } 538 }
537 539
538 case 2: { 540 case 2: {
539 uint32_t A = (modeBits >> 5) & 0x3; 541 u32 A = (modeBits >> 5) & 0x3;
540 uint32_t B = (modeBits >> 7) & 0x3; 542 u32 B = (modeBits >> 7) & 0x3;
541 params.m_Width = A + 2; 543 params.m_Width = A + 2;
542 params.m_Height = B + 8; 544 params.m_Height = B + 8;
543 break; 545 break;
544 } 546 }
545 547
546 case 3: { 548 case 3: {
547 uint32_t A = (modeBits >> 5) & 0x3; 549 u32 A = (modeBits >> 5) & 0x3;
548 uint32_t B = (modeBits >> 7) & 0x1; 550 u32 B = (modeBits >> 7) & 0x1;
549 params.m_Width = A + 2; 551 params.m_Width = A + 2;
550 params.m_Height = B + 6; 552 params.m_Height = B + 6;
551 break; 553 break;
552 } 554 }
553 555
554 case 4: { 556 case 4: {
555 uint32_t A = (modeBits >> 5) & 0x3; 557 u32 A = (modeBits >> 5) & 0x3;
556 uint32_t B = (modeBits >> 7) & 0x1; 558 u32 B = (modeBits >> 7) & 0x1;
557 params.m_Width = B + 2; 559 params.m_Width = B + 2;
558 params.m_Height = A + 2; 560 params.m_Height = A + 2;
559 break; 561 break;
560 } 562 }
561 563
562 case 5: { 564 case 5: {
563 uint32_t A = (modeBits >> 5) & 0x3; 565 u32 A = (modeBits >> 5) & 0x3;
564 params.m_Width = 12; 566 params.m_Width = 12;
565 params.m_Height = A + 2; 567 params.m_Height = A + 2;
566 break; 568 break;
567 } 569 }
568 570
569 case 6: { 571 case 6: {
570 uint32_t A = (modeBits >> 5) & 0x3; 572 u32 A = (modeBits >> 5) & 0x3;
571 params.m_Width = A + 2; 573 params.m_Width = A + 2;
572 params.m_Height = 12; 574 params.m_Height = 12;
573 break; 575 break;
@@ -586,8 +588,8 @@ static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) {
586 } 588 }
587 589
588 case 9: { 590 case 9: {
589 uint32_t A = (modeBits >> 5) & 0x3; 591 u32 A = (modeBits >> 5) & 0x3;
590 uint32_t B = (modeBits >> 9) & 0x3; 592 u32 B = (modeBits >> 9) & 0x3;
591 params.m_Width = A + 6; 593 params.m_Width = A + 6;
592 params.m_Height = B + 6; 594 params.m_Height = B + 6;
593 break; 595 break;
@@ -605,10 +607,10 @@ static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) {
605 bool H = (layout != 9) && (modeBits & 0x200); 607 bool H = (layout != 9) && (modeBits & 0x200);
606 608
607 if (H) { 609 if (H) {
608 const uint32_t maxWeights[6] = {9, 11, 15, 19, 23, 31}; 610 const u32 maxWeights[6] = {9, 11, 15, 19, 23, 31};
609 params.m_MaxWeight = maxWeights[R - 2]; 611 params.m_MaxWeight = maxWeights[R - 2];
610 } else { 612 } else {
611 const uint32_t maxWeights[6] = {1, 2, 3, 4, 5, 7}; 613 const u32 maxWeights[6] = {1, 2, 3, 4, 5, 7};
612 params.m_MaxWeight = maxWeights[R - 2]; 614 params.m_MaxWeight = maxWeights[R - 2];
613 } 615 }
614 616
@@ -617,32 +619,32 @@ static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) {
617 return params; 619 return params;
618} 620}
619 621
620static void FillVoidExtentLDR(InputBitStream& strm, uint32_t* const outBuf, uint32_t blockWidth, 622static void FillVoidExtentLDR(InputBitStream& strm, u32* const outBuf, u32 blockWidth,
621 uint32_t blockHeight) { 623 u32 blockHeight) {
622 // Don't actually care about the void extent, just read the bits... 624 // Don't actually care about the void extent, just read the bits...
623 for (int i = 0; i < 4; ++i) { 625 for (int i = 0; i < 4; ++i) {
624 strm.ReadBits(13); 626 strm.ReadBits(13);
625 } 627 }
626 628
627 // Decode the RGBA components and renormalize them to the range [0, 255] 629 // Decode the RGBA components and renormalize them to the range [0, 255]
628 uint16_t r = static_cast<uint16_t>(strm.ReadBits(16)); 630 u16 r = static_cast<u16>(strm.ReadBits(16));
629 uint16_t g = static_cast<uint16_t>(strm.ReadBits(16)); 631 u16 g = static_cast<u16>(strm.ReadBits(16));
630 uint16_t b = static_cast<uint16_t>(strm.ReadBits(16)); 632 u16 b = static_cast<u16>(strm.ReadBits(16));
631 uint16_t a = static_cast<uint16_t>(strm.ReadBits(16)); 633 u16 a = static_cast<u16>(strm.ReadBits(16));
632 634
633 uint32_t rgba = (r >> 8) | (g & 0xFF00) | (static_cast<uint32_t>(b) & 0xFF00) << 8 | 635 u32 rgba = (r >> 8) | (g & 0xFF00) | (static_cast<u32>(b) & 0xFF00) << 8 |
634 (static_cast<uint32_t>(a) & 0xFF00) << 16; 636 (static_cast<u32>(a) & 0xFF00) << 16;
635 637
636 for (uint32_t j = 0; j < blockHeight; j++) { 638 for (u32 j = 0; j < blockHeight; j++) {
637 for (uint32_t i = 0; i < blockWidth; i++) { 639 for (u32 i = 0; i < blockWidth; i++) {
638 outBuf[j * blockWidth + i] = rgba; 640 outBuf[j * blockWidth + i] = rgba;
639 } 641 }
640 } 642 }
641} 643}
642 644
643static void FillError(uint32_t* outBuf, uint32_t blockWidth, uint32_t blockHeight) { 645static void FillError(u32* outBuf, u32 blockWidth, u32 blockHeight) {
644 for (uint32_t j = 0; j < blockHeight; j++) { 646 for (u32 j = 0; j < blockHeight; j++) {
645 for (uint32_t i = 0; i < blockWidth; i++) { 647 for (u32 i = 0; i < blockWidth; i++) {
646 outBuf[j * blockWidth + i] = 0xFFFF00FF; 648 outBuf[j * blockWidth + i] = 0xFFFF00FF;
647 } 649 }
648 } 650 }
@@ -651,18 +653,18 @@ static void FillError(uint32_t* outBuf, uint32_t blockWidth, uint32_t blockHeigh
651// Replicates low numBits such that [(toBit - 1):(toBit - 1 - fromBit)] 653// Replicates low numBits such that [(toBit - 1):(toBit - 1 - fromBit)]
652// is the same as [(numBits - 1):0] and repeats all the way down. 654// is the same as [(numBits - 1):0] and repeats all the way down.
653template <typename IntType> 655template <typename IntType>
654static IntType Replicate(const IntType& val, uint32_t numBits, uint32_t toBit) { 656static IntType Replicate(const IntType& val, u32 numBits, u32 toBit) {
655 if (numBits == 0) 657 if (numBits == 0)
656 return 0; 658 return 0;
657 if (toBit == 0) 659 if (toBit == 0)
658 return 0; 660 return 0;
659 IntType v = val & static_cast<IntType>((1 << numBits) - 1); 661 IntType v = val & static_cast<IntType>((1 << numBits) - 1);
660 IntType res = v; 662 IntType res = v;
661 uint32_t reslen = numBits; 663 u32 reslen = numBits;
662 while (reslen < toBit) { 664 while (reslen < toBit) {
663 uint32_t comp = 0; 665 u32 comp = 0;
664 if (numBits > toBit - reslen) { 666 if (numBits > toBit - reslen) {
665 uint32_t newshift = toBit - reslen; 667 u32 newshift = toBit - reslen;
666 comp = numBits - newshift; 668 comp = numBits - newshift;
667 numBits = newshift; 669 numBits = newshift;
668 } 670 }
@@ -675,14 +677,14 @@ static IntType Replicate(const IntType& val, uint32_t numBits, uint32_t toBit) {
675 677
676class Pixel { 678class Pixel {
677protected: 679protected:
678 using ChannelType = int16_t; 680 using ChannelType = s16;
679 uint8_t m_BitDepth[4] = {8, 8, 8, 8}; 681 u8 m_BitDepth[4] = {8, 8, 8, 8};
680 int16_t color[4] = {}; 682 s16 color[4] = {};
681 683
682public: 684public:
683 Pixel() = default; 685 Pixel() = default;
684 Pixel(uint32_t a, uint32_t r, uint32_t g, uint32_t b, unsigned bitDepth = 8) 686 Pixel(u32 a, u32 r, u32 g, u32 b, unsigned bitDepth = 8)
685 : m_BitDepth{uint8_t(bitDepth), uint8_t(bitDepth), uint8_t(bitDepth), uint8_t(bitDepth)}, 687 : m_BitDepth{u8(bitDepth), u8(bitDepth), u8(bitDepth), u8(bitDepth)},
686 color{static_cast<ChannelType>(a), static_cast<ChannelType>(r), 688 color{static_cast<ChannelType>(a), static_cast<ChannelType>(r),
687 static_cast<ChannelType>(g), static_cast<ChannelType>(b)} {} 689 static_cast<ChannelType>(g), static_cast<ChannelType>(b)} {}
688 690
@@ -691,22 +693,22 @@ public:
691 // significant bits when going from larger to smaller bit depth 693 // significant bits when going from larger to smaller bit depth
692 // or by repeating the most significant bits when going from 694 // or by repeating the most significant bits when going from
693 // smaller to larger bit depths. 695 // smaller to larger bit depths.
694 void ChangeBitDepth(const uint8_t (&depth)[4]) { 696 void ChangeBitDepth(const u8 (&depth)[4]) {
695 for (uint32_t i = 0; i < 4; i++) { 697 for (u32 i = 0; i < 4; i++) {
696 Component(i) = ChangeBitDepth(Component(i), m_BitDepth[i], depth[i]); 698 Component(i) = ChangeBitDepth(Component(i), m_BitDepth[i], depth[i]);
697 m_BitDepth[i] = depth[i]; 699 m_BitDepth[i] = depth[i];
698 } 700 }
699 } 701 }
700 702
701 template <typename IntType> 703 template <typename IntType>
702 static float ConvertChannelToFloat(IntType channel, uint8_t bitDepth) { 704 static float ConvertChannelToFloat(IntType channel, u8 bitDepth) {
703 float denominator = static_cast<float>((1 << bitDepth) - 1); 705 float denominator = static_cast<float>((1 << bitDepth) - 1);
704 return static_cast<float>(channel) / denominator; 706 return static_cast<float>(channel) / denominator;
705 } 707 }
706 708
707 // Changes the bit depth of a single component. See the comment 709 // Changes the bit depth of a single component. See the comment
708 // above for how we do this. 710 // above for how we do this.
709 static ChannelType ChangeBitDepth(Pixel::ChannelType val, uint8_t oldDepth, uint8_t newDepth) { 711 static ChannelType ChangeBitDepth(Pixel::ChannelType val, u8 oldDepth, u8 newDepth) {
710 assert(newDepth <= 8); 712 assert(newDepth <= 8);
711 assert(oldDepth <= 8); 713 assert(oldDepth <= 8);
712 714
@@ -722,12 +724,11 @@ public:
722 if (newDepth == 0) { 724 if (newDepth == 0) {
723 return 0xFF; 725 return 0xFF;
724 } else { 726 } else {
725 uint8_t bitsWasted = static_cast<uint8_t>(oldDepth - newDepth); 727 u8 bitsWasted = static_cast<u8>(oldDepth - newDepth);
726 uint16_t v = static_cast<uint16_t>(val); 728 u16 v = static_cast<u16>(val);
727 v = static_cast<uint16_t>((v + (1 << (bitsWasted - 1))) >> bitsWasted); 729 v = static_cast<u16>((v + (1 << (bitsWasted - 1))) >> bitsWasted);
728 v = ::std::min<uint16_t>(::std::max<uint16_t>(0, v), 730 v = ::std::min<u16>(::std::max<u16>(0, v), static_cast<u16>((1 << newDepth) - 1));
729 static_cast<uint16_t>((1 << newDepth) - 1)); 731 return static_cast<u8>(v);
730 return static_cast<uint8_t>(v);
731 } 732 }
732 } 733 }
733 734
@@ -759,14 +760,14 @@ public:
759 ChannelType& B() { 760 ChannelType& B() {
760 return color[3]; 761 return color[3];
761 } 762 }
762 const ChannelType& Component(uint32_t idx) const { 763 const ChannelType& Component(u32 idx) const {
763 return color[idx]; 764 return color[idx];
764 } 765 }
765 ChannelType& Component(uint32_t idx) { 766 ChannelType& Component(u32 idx) {
766 return color[idx]; 767 return color[idx];
767 } 768 }
768 769
769 void GetBitDepth(uint8_t (&outDepth)[4]) const { 770 void GetBitDepth(u8 (&outDepth)[4]) const {
770 for (int i = 0; i < 4; i++) { 771 for (int i = 0; i < 4; i++) {
771 outDepth[i] = m_BitDepth[i]; 772 outDepth[i] = m_BitDepth[i];
772 } 773 }
@@ -776,12 +777,12 @@ public:
776 // and then pack each channel into an R8G8B8A8 32-bit integer. We assume 777 // and then pack each channel into an R8G8B8A8 32-bit integer. We assume
777 // that the architecture is little-endian, so the alpha channel will end 778 // that the architecture is little-endian, so the alpha channel will end
778 // up in the most-significant byte. 779 // up in the most-significant byte.
779 uint32_t Pack() const { 780 u32 Pack() const {
780 Pixel eightBit(*this); 781 Pixel eightBit(*this);
781 const uint8_t eightBitDepth[4] = {8, 8, 8, 8}; 782 const u8 eightBitDepth[4] = {8, 8, 8, 8};
782 eightBit.ChangeBitDepth(eightBitDepth); 783 eightBit.ChangeBitDepth(eightBitDepth);
783 784
784 uint32_t r = 0; 785 u32 r = 0;
785 r |= eightBit.A(); 786 r |= eightBit.A();
786 r <<= 8; 787 r <<= 8;
787 r |= eightBit.B(); 788 r |= eightBit.B();
@@ -794,7 +795,7 @@ public:
794 795
795 // Clamps the pixel to the range [0,255] 796 // Clamps the pixel to the range [0,255]
796 void ClampByte() { 797 void ClampByte() {
797 for (uint32_t i = 0; i < 4; i++) { 798 for (u32 i = 0; i < 4; i++) {
798 color[i] = (color[i] < 0) ? 0 : ((color[i] > 255) ? 255 : color[i]); 799 color[i] = (color[i] < 0) ? 0 : ((color[i] > 255) ? 255 : color[i]);
799 } 800 }
800 } 801 }
@@ -804,20 +805,20 @@ public:
804 } 805 }
805}; 806};
806 807
807static void DecodeColorValues(uint32_t* out, uint8_t* data, const uint32_t* modes, 808static void DecodeColorValues(u32* out, u8* data, const u32* modes, const u32 nPartitions,
808 const uint32_t nPartitions, const uint32_t nBitsForColorData) { 809 const u32 nBitsForColorData) {
809 // First figure out how many color values we have 810 // First figure out how many color values we have
810 uint32_t nValues = 0; 811 u32 nValues = 0;
811 for (uint32_t i = 0; i < nPartitions; i++) { 812 for (u32 i = 0; i < nPartitions; i++) {
812 nValues += ((modes[i] >> 2) + 1) << 1; 813 nValues += ((modes[i] >> 2) + 1) << 1;
813 } 814 }
814 815
815 // Then based on the number of values and the remaining number of bits, 816 // Then based on the number of values and the remaining number of bits,
816 // figure out the max value for each of them... 817 // figure out the max value for each of them...
817 uint32_t range = 256; 818 u32 range = 256;
818 while (--range > 0) { 819 while (--range > 0) {
819 IntegerEncodedValue val = IntegerEncodedValue::CreateEncoding(range); 820 IntegerEncodedValue val = IntegerEncodedValue::CreateEncoding(range);
820 uint32_t bitLength = val.GetBitLength(nValues); 821 u32 bitLength = val.GetBitLength(nValues);
821 if (bitLength <= nBitsForColorData) { 822 if (bitLength <= nBitsForColorData) {
822 // Find the smallest possible range that matches the given encoding 823 // Find the smallest possible range that matches the given encoding
823 while (--range > 0) { 824 while (--range > 0) {
@@ -840,7 +841,7 @@ static void DecodeColorValues(uint32_t* out, uint8_t* data, const uint32_t* mode
840 841
841 // Once we have the decoded values, we need to dequantize them to the 0-255 range 842 // Once we have the decoded values, we need to dequantize them to the 0-255 range
842 // This procedure is outlined in ASTC spec C.2.13 843 // This procedure is outlined in ASTC spec C.2.13
843 uint32_t outIdx = 0; 844 u32 outIdx = 0;
844 for (auto itr = decodedColorValues.begin(); itr != decodedColorValues.end(); ++itr) { 845 for (auto itr = decodedColorValues.begin(); itr != decodedColorValues.end(); ++itr) {
845 // Have we already decoded all that we need? 846 // Have we already decoded all that we need?
846 if (outIdx >= nValues) { 847 if (outIdx >= nValues) {
@@ -848,12 +849,12 @@ static void DecodeColorValues(uint32_t* out, uint8_t* data, const uint32_t* mode
848 } 849 }
849 850
850 const IntegerEncodedValue& val = *itr; 851 const IntegerEncodedValue& val = *itr;
851 uint32_t bitlen = val.BaseBitLength(); 852 u32 bitlen = val.BaseBitLength();
852 uint32_t bitval = val.GetBitValue(); 853 u32 bitval = val.GetBitValue();
853 854
854 assert(bitlen >= 1); 855 assert(bitlen >= 1);
855 856
856 uint32_t A = 0, B = 0, C = 0, D = 0; 857 u32 A = 0, B = 0, C = 0, D = 0;
857 // A is just the lsb replicated 9 times. 858 // A is just the lsb replicated 9 times.
858 A = Replicate(bitval & 1, 1, 9); 859 A = Replicate(bitval & 1, 1, 9);
859 860
@@ -876,35 +877,35 @@ static void DecodeColorValues(uint32_t* out, uint8_t* data, const uint32_t* mode
876 case 2: { 877 case 2: {
877 C = 93; 878 C = 93;
878 // B = b000b0bb0 879 // B = b000b0bb0
879 uint32_t b = (bitval >> 1) & 1; 880 u32 b = (bitval >> 1) & 1;
880 B = (b << 8) | (b << 4) | (b << 2) | (b << 1); 881 B = (b << 8) | (b << 4) | (b << 2) | (b << 1);
881 } break; 882 } break;
882 883
883 case 3: { 884 case 3: {
884 C = 44; 885 C = 44;
885 // B = cb000cbcb 886 // B = cb000cbcb
886 uint32_t cb = (bitval >> 1) & 3; 887 u32 cb = (bitval >> 1) & 3;
887 B = (cb << 7) | (cb << 2) | cb; 888 B = (cb << 7) | (cb << 2) | cb;
888 } break; 889 } break;
889 890
890 case 4: { 891 case 4: {
891 C = 22; 892 C = 22;
892 // B = dcb000dcb 893 // B = dcb000dcb
893 uint32_t dcb = (bitval >> 1) & 7; 894 u32 dcb = (bitval >> 1) & 7;
894 B = (dcb << 6) | dcb; 895 B = (dcb << 6) | dcb;
895 } break; 896 } break;
896 897
897 case 5: { 898 case 5: {
898 C = 11; 899 C = 11;
899 // B = edcb000ed 900 // B = edcb000ed
900 uint32_t edcb = (bitval >> 1) & 0xF; 901 u32 edcb = (bitval >> 1) & 0xF;
901 B = (edcb << 5) | (edcb >> 2); 902 B = (edcb << 5) | (edcb >> 2);
902 } break; 903 } break;
903 904
904 case 6: { 905 case 6: {
905 C = 5; 906 C = 5;
906 // B = fedcb000f 907 // B = fedcb000f
907 uint32_t fedcb = (bitval >> 1) & 0x1F; 908 u32 fedcb = (bitval >> 1) & 0x1F;
908 B = (fedcb << 4) | (fedcb >> 4); 909 B = (fedcb << 4) | (fedcb >> 4);
909 } break; 910 } break;
910 911
@@ -927,28 +928,28 @@ static void DecodeColorValues(uint32_t* out, uint8_t* data, const uint32_t* mode
927 case 2: { 928 case 2: {
928 C = 54; 929 C = 54;
929 // B = b0000bb00 930 // B = b0000bb00
930 uint32_t b = (bitval >> 1) & 1; 931 u32 b = (bitval >> 1) & 1;
931 B = (b << 8) | (b << 3) | (b << 2); 932 B = (b << 8) | (b << 3) | (b << 2);
932 } break; 933 } break;
933 934
934 case 3: { 935 case 3: {
935 C = 26; 936 C = 26;
936 // B = cb0000cbc 937 // B = cb0000cbc
937 uint32_t cb = (bitval >> 1) & 3; 938 u32 cb = (bitval >> 1) & 3;
938 B = (cb << 7) | (cb << 1) | (cb >> 1); 939 B = (cb << 7) | (cb << 1) | (cb >> 1);
939 } break; 940 } break;
940 941
941 case 4: { 942 case 4: {
942 C = 13; 943 C = 13;
943 // B = dcb0000dc 944 // B = dcb0000dc
944 uint32_t dcb = (bitval >> 1) & 7; 945 u32 dcb = (bitval >> 1) & 7;
945 B = (dcb << 6) | (dcb >> 1); 946 B = (dcb << 6) | (dcb >> 1);
946 } break; 947 } break;
947 948
948 case 5: { 949 case 5: {
949 C = 6; 950 C = 6;
950 // B = edcb0000e 951 // B = edcb0000e
951 uint32_t edcb = (bitval >> 1) & 0xF; 952 u32 edcb = (bitval >> 1) & 0xF;
952 B = (edcb << 5) | (edcb >> 3); 953 B = (edcb << 5) | (edcb >> 3);
953 } break; 954 } break;
954 955
@@ -961,7 +962,7 @@ static void DecodeColorValues(uint32_t* out, uint8_t* data, const uint32_t* mode
961 } // switch(val.GetEncoding()) 962 } // switch(val.GetEncoding())
962 963
963 if (val.GetEncoding() != IntegerEncoding::JustBits) { 964 if (val.GetEncoding() != IntegerEncoding::JustBits) {
964 uint32_t T = D * C + B; 965 u32 T = D * C + B;
965 T ^= A; 966 T ^= A;
966 T = (A & 0x80) | (T >> 2); 967 T = (A & 0x80) | (T >> 2);
967 out[outIdx++] = T; 968 out[outIdx++] = T;
@@ -969,19 +970,19 @@ static void DecodeColorValues(uint32_t* out, uint8_t* data, const uint32_t* mode
969 } 970 }
970 971
971 // Make sure that each of our values is in the proper range... 972 // Make sure that each of our values is in the proper range...
972 for (uint32_t i = 0; i < nValues; i++) { 973 for (u32 i = 0; i < nValues; i++) {
973 assert(out[i] <= 255); 974 assert(out[i] <= 255);
974 } 975 }
975} 976}
976 977
977static uint32_t UnquantizeTexelWeight(const IntegerEncodedValue& val) { 978static u32 UnquantizeTexelWeight(const IntegerEncodedValue& val) {
978 uint32_t bitval = val.GetBitValue(); 979 u32 bitval = val.GetBitValue();
979 uint32_t bitlen = val.BaseBitLength(); 980 u32 bitlen = val.BaseBitLength();
980 981
981 uint32_t A = Replicate(bitval & 1, 1, 7); 982 u32 A = Replicate(bitval & 1, 1, 7);
982 uint32_t B = 0, C = 0, D = 0; 983 u32 B = 0, C = 0, D = 0;
983 984
984 uint32_t result = 0; 985 u32 result = 0;
985 switch (val.GetEncoding()) { 986 switch (val.GetEncoding()) {
986 case IntegerEncoding::JustBits: 987 case IntegerEncoding::JustBits:
987 result = Replicate(bitval, bitlen, 6); 988 result = Replicate(bitval, bitlen, 6);
@@ -993,7 +994,7 @@ static uint32_t UnquantizeTexelWeight(const IntegerEncodedValue& val) {
993 994
994 switch (bitlen) { 995 switch (bitlen) {
995 case 0: { 996 case 0: {
996 uint32_t results[3] = {0, 32, 63}; 997 u32 results[3] = {0, 32, 63};
997 result = results[D]; 998 result = results[D];
998 } break; 999 } break;
999 1000
@@ -1003,13 +1004,13 @@ static uint32_t UnquantizeTexelWeight(const IntegerEncodedValue& val) {
1003 1004
1004 case 2: { 1005 case 2: {
1005 C = 23; 1006 C = 23;
1006 uint32_t b = (bitval >> 1) & 1; 1007 u32 b = (bitval >> 1) & 1;
1007 B = (b << 6) | (b << 2) | b; 1008 B = (b << 6) | (b << 2) | b;
1008 } break; 1009 } break;
1009 1010
1010 case 3: { 1011 case 3: {
1011 C = 11; 1012 C = 11;
1012 uint32_t cb = (bitval >> 1) & 3; 1013 u32 cb = (bitval >> 1) & 3;
1013 B = (cb << 5) | cb; 1014 B = (cb << 5) | cb;
1014 } break; 1015 } break;
1015 1016
@@ -1025,7 +1026,7 @@ static uint32_t UnquantizeTexelWeight(const IntegerEncodedValue& val) {
1025 1026
1026 switch (bitlen) { 1027 switch (bitlen) {
1027 case 0: { 1028 case 0: {
1028 uint32_t results[5] = {0, 16, 32, 47, 63}; 1029 u32 results[5] = {0, 16, 32, 47, 63};
1029 result = results[D]; 1030 result = results[D];
1030 } break; 1031 } break;
1031 1032
@@ -1035,7 +1036,7 @@ static uint32_t UnquantizeTexelWeight(const IntegerEncodedValue& val) {
1035 1036
1036 case 2: { 1037 case 2: {
1037 C = 13; 1038 C = 13;
1038 uint32_t b = (bitval >> 1) & 1; 1039 u32 b = (bitval >> 1) & 1;
1039 B = (b << 6) | (b << 1); 1040 B = (b << 6) | (b << 1);
1040 } break; 1041 } break;
1041 1042
@@ -1063,12 +1064,11 @@ static uint32_t UnquantizeTexelWeight(const IntegerEncodedValue& val) {
1063 return result; 1064 return result;
1064} 1065}
1065 1066
1066static void UnquantizeTexelWeights(uint32_t out[2][144], 1067static void UnquantizeTexelWeights(u32 out[2][144], const std::vector<IntegerEncodedValue>& weights,
1067 const std::vector<IntegerEncodedValue>& weights, 1068 const TexelWeightParams& params, const u32 blockWidth,
1068 const TexelWeightParams& params, const uint32_t blockWidth, 1069 const u32 blockHeight) {
1069 const uint32_t blockHeight) { 1070 u32 weightIdx = 0;
1070 uint32_t weightIdx = 0; 1071 u32 unquantized[2][144];
1071 uint32_t unquantized[2][144];
1072 1072
1073 for (auto itr = weights.begin(); itr != weights.end(); ++itr) { 1073 for (auto itr = weights.begin(); itr != weights.end(); ++itr) {
1074 unquantized[0][weightIdx] = UnquantizeTexelWeight(*itr); 1074 unquantized[0][weightIdx] = UnquantizeTexelWeight(*itr);
@@ -1086,34 +1086,34 @@ static void UnquantizeTexelWeights(uint32_t out[2][144],
1086 } 1086 }
1087 1087
1088 // Do infill if necessary (Section C.2.18) ... 1088 // Do infill if necessary (Section C.2.18) ...
1089 uint32_t Ds = (1024 + (blockWidth / 2)) / (blockWidth - 1); 1089 u32 Ds = (1024 + (blockWidth / 2)) / (blockWidth - 1);
1090 uint32_t Dt = (1024 + (blockHeight / 2)) / (blockHeight - 1); 1090 u32 Dt = (1024 + (blockHeight / 2)) / (blockHeight - 1);
1091 1091
1092 const uint32_t kPlaneScale = params.m_bDualPlane ? 2U : 1U; 1092 const u32 kPlaneScale = params.m_bDualPlane ? 2U : 1U;
1093 for (uint32_t plane = 0; plane < kPlaneScale; plane++) 1093 for (u32 plane = 0; plane < kPlaneScale; plane++)
1094 for (uint32_t t = 0; t < blockHeight; t++) 1094 for (u32 t = 0; t < blockHeight; t++)
1095 for (uint32_t s = 0; s < blockWidth; s++) { 1095 for (u32 s = 0; s < blockWidth; s++) {
1096 uint32_t cs = Ds * s; 1096 u32 cs = Ds * s;
1097 uint32_t ct = Dt * t; 1097 u32 ct = Dt * t;
1098 1098
1099 uint32_t gs = (cs * (params.m_Width - 1) + 32) >> 6; 1099 u32 gs = (cs * (params.m_Width - 1) + 32) >> 6;
1100 uint32_t gt = (ct * (params.m_Height - 1) + 32) >> 6; 1100 u32 gt = (ct * (params.m_Height - 1) + 32) >> 6;
1101 1101
1102 uint32_t js = gs >> 4; 1102 u32 js = gs >> 4;
1103 uint32_t fs = gs & 0xF; 1103 u32 fs = gs & 0xF;
1104 1104
1105 uint32_t jt = gt >> 4; 1105 u32 jt = gt >> 4;
1106 uint32_t ft = gt & 0x0F; 1106 u32 ft = gt & 0x0F;
1107 1107
1108 uint32_t w11 = (fs * ft + 8) >> 4; 1108 u32 w11 = (fs * ft + 8) >> 4;
1109 uint32_t w10 = ft - w11; 1109 u32 w10 = ft - w11;
1110 uint32_t w01 = fs - w11; 1110 u32 w01 = fs - w11;
1111 uint32_t w00 = 16 - fs - ft + w11; 1111 u32 w00 = 16 - fs - ft + w11;
1112 1112
1113 uint32_t v0 = js + jt * params.m_Width; 1113 u32 v0 = js + jt * params.m_Width;
1114 1114
1115#define FIND_TEXEL(tidx, bidx) \ 1115#define FIND_TEXEL(tidx, bidx) \
1116 uint32_t p##bidx = 0; \ 1116 u32 p##bidx = 0; \
1117 do { \ 1117 do { \
1118 if ((tidx) < (params.m_Width * params.m_Height)) { \ 1118 if ((tidx) < (params.m_Width * params.m_Height)) { \
1119 p##bidx = unquantized[plane][(tidx)]; \ 1119 p##bidx = unquantized[plane][(tidx)]; \
@@ -1133,7 +1133,7 @@ static void UnquantizeTexelWeights(uint32_t out[2][144],
1133} 1133}
1134 1134
1135// Transfers a bit as described in C.2.14 1135// Transfers a bit as described in C.2.14
1136static inline void BitTransferSigned(int32_t& a, int32_t& b) { 1136static inline void BitTransferSigned(s32& a, s32& b) {
1137 b >>= 1; 1137 b >>= 1;
1138 b |= a & 0x80; 1138 b |= a & 0x80;
1139 a >>= 1; 1139 a >>= 1;
@@ -1144,14 +1144,14 @@ static inline void BitTransferSigned(int32_t& a, int32_t& b) {
1144 1144
1145// Adds more precision to the blue channel as described 1145// Adds more precision to the blue channel as described
1146// in C.2.14 1146// in C.2.14
1147static inline Pixel BlueContract(int32_t a, int32_t r, int32_t g, int32_t b) { 1147static inline Pixel BlueContract(s32 a, s32 r, s32 g, s32 b) {
1148 return Pixel(static_cast<int16_t>(a), static_cast<int16_t>((r + b) >> 1), 1148 return Pixel(static_cast<s16>(a), static_cast<s16>((r + b) >> 1),
1149 static_cast<int16_t>((g + b) >> 1), static_cast<int16_t>(b)); 1149 static_cast<s16>((g + b) >> 1), static_cast<s16>(b));
1150} 1150}
1151 1151
1152// Partition selection functions as specified in 1152// Partition selection functions as specified in
1153// C.2.21 1153// C.2.21
1154static inline uint32_t hash52(uint32_t p) { 1154static inline u32 hash52(u32 p) {
1155 p ^= p >> 15; 1155 p ^= p >> 15;
1156 p -= p << 17; 1156 p -= p << 17;
1157 p += p << 7; 1157 p += p << 7;
@@ -1165,8 +1165,7 @@ static inline uint32_t hash52(uint32_t p) {
1165 return p; 1165 return p;
1166} 1166}
1167 1167
1168static uint32_t SelectPartition(int32_t seed, int32_t x, int32_t y, int32_t z, 1168static u32 SelectPartition(s32 seed, s32 x, s32 y, s32 z, s32 partitionCount, s32 smallBlock) {
1169 int32_t partitionCount, int32_t smallBlock) {
1170 if (1 == partitionCount) 1169 if (1 == partitionCount)
1171 return 0; 1170 return 0;
1172 1171
@@ -1178,34 +1177,34 @@ static uint32_t SelectPartition(int32_t seed, int32_t x, int32_t y, int32_t z,
1178 1177
1179 seed += (partitionCount - 1) * 1024; 1178 seed += (partitionCount - 1) * 1024;
1180 1179
1181 uint32_t rnum = hash52(static_cast<uint32_t>(seed)); 1180 u32 rnum = hash52(static_cast<u32>(seed));
1182 uint8_t seed1 = static_cast<uint8_t>(rnum & 0xF); 1181 u8 seed1 = static_cast<u8>(rnum & 0xF);
1183 uint8_t seed2 = static_cast<uint8_t>((rnum >> 4) & 0xF); 1182 u8 seed2 = static_cast<u8>((rnum >> 4) & 0xF);
1184 uint8_t seed3 = static_cast<uint8_t>((rnum >> 8) & 0xF); 1183 u8 seed3 = static_cast<u8>((rnum >> 8) & 0xF);
1185 uint8_t seed4 = static_cast<uint8_t>((rnum >> 12) & 0xF); 1184 u8 seed4 = static_cast<u8>((rnum >> 12) & 0xF);
1186 uint8_t seed5 = static_cast<uint8_t>((rnum >> 16) & 0xF); 1185 u8 seed5 = static_cast<u8>((rnum >> 16) & 0xF);
1187 uint8_t seed6 = static_cast<uint8_t>((rnum >> 20) & 0xF); 1186 u8 seed6 = static_cast<u8>((rnum >> 20) & 0xF);
1188 uint8_t seed7 = static_cast<uint8_t>((rnum >> 24) & 0xF); 1187 u8 seed7 = static_cast<u8>((rnum >> 24) & 0xF);
1189 uint8_t seed8 = static_cast<uint8_t>((rnum >> 28) & 0xF); 1188 u8 seed8 = static_cast<u8>((rnum >> 28) & 0xF);
1190 uint8_t seed9 = static_cast<uint8_t>((rnum >> 18) & 0xF); 1189 u8 seed9 = static_cast<u8>((rnum >> 18) & 0xF);
1191 uint8_t seed10 = static_cast<uint8_t>((rnum >> 22) & 0xF); 1190 u8 seed10 = static_cast<u8>((rnum >> 22) & 0xF);
1192 uint8_t seed11 = static_cast<uint8_t>((rnum >> 26) & 0xF); 1191 u8 seed11 = static_cast<u8>((rnum >> 26) & 0xF);
1193 uint8_t seed12 = static_cast<uint8_t>(((rnum >> 30) | (rnum << 2)) & 0xF); 1192 u8 seed12 = static_cast<u8>(((rnum >> 30) | (rnum << 2)) & 0xF);
1194 1193
1195 seed1 = static_cast<uint8_t>(seed1 * seed1); 1194 seed1 = static_cast<u8>(seed1 * seed1);
1196 seed2 = static_cast<uint8_t>(seed2 * seed2); 1195 seed2 = static_cast<u8>(seed2 * seed2);
1197 seed3 = static_cast<uint8_t>(seed3 * seed3); 1196 seed3 = static_cast<u8>(seed3 * seed3);
1198 seed4 = static_cast<uint8_t>(seed4 * seed4); 1197 seed4 = static_cast<u8>(seed4 * seed4);
1199 seed5 = static_cast<uint8_t>(seed5 * seed5); 1198 seed5 = static_cast<u8>(seed5 * seed5);
1200 seed6 = static_cast<uint8_t>(seed6 * seed6); 1199 seed6 = static_cast<u8>(seed6 * seed6);
1201 seed7 = static_cast<uint8_t>(seed7 * seed7); 1200 seed7 = static_cast<u8>(seed7 * seed7);
1202 seed8 = static_cast<uint8_t>(seed8 * seed8); 1201 seed8 = static_cast<u8>(seed8 * seed8);
1203 seed9 = static_cast<uint8_t>(seed9 * seed9); 1202 seed9 = static_cast<u8>(seed9 * seed9);
1204 seed10 = static_cast<uint8_t>(seed10 * seed10); 1203 seed10 = static_cast<u8>(seed10 * seed10);
1205 seed11 = static_cast<uint8_t>(seed11 * seed11); 1204 seed11 = static_cast<u8>(seed11 * seed11);
1206 seed12 = static_cast<uint8_t>(seed12 * seed12); 1205 seed12 = static_cast<u8>(seed12 * seed12);
1207 1206
1208 int32_t sh1, sh2, sh3; 1207 s32 sh1, sh2, sh3;
1209 if (seed & 1) { 1208 if (seed & 1) {
1210 sh1 = (seed & 2) ? 4 : 5; 1209 sh1 = (seed & 2) ? 4 : 5;
1211 sh2 = (partitionCount == 3) ? 6 : 5; 1210 sh2 = (partitionCount == 3) ? 6 : 5;
@@ -1215,23 +1214,23 @@ static uint32_t SelectPartition(int32_t seed, int32_t x, int32_t y, int32_t z,
1215 } 1214 }
1216 sh3 = (seed & 0x10) ? sh1 : sh2; 1215 sh3 = (seed & 0x10) ? sh1 : sh2;
1217 1216
1218 seed1 = static_cast<uint8_t>(seed1 >> sh1); 1217 seed1 = static_cast<u8>(seed1 >> sh1);
1219 seed2 = static_cast<uint8_t>(seed2 >> sh2); 1218 seed2 = static_cast<u8>(seed2 >> sh2);
1220 seed3 = static_cast<uint8_t>(seed3 >> sh1); 1219 seed3 = static_cast<u8>(seed3 >> sh1);
1221 seed4 = static_cast<uint8_t>(seed4 >> sh2); 1220 seed4 = static_cast<u8>(seed4 >> sh2);
1222 seed5 = static_cast<uint8_t>(seed5 >> sh1); 1221 seed5 = static_cast<u8>(seed5 >> sh1);
1223 seed6 = static_cast<uint8_t>(seed6 >> sh2); 1222 seed6 = static_cast<u8>(seed6 >> sh2);
1224 seed7 = static_cast<uint8_t>(seed7 >> sh1); 1223 seed7 = static_cast<u8>(seed7 >> sh1);
1225 seed8 = static_cast<uint8_t>(seed8 >> sh2); 1224 seed8 = static_cast<u8>(seed8 >> sh2);
1226 seed9 = static_cast<uint8_t>(seed9 >> sh3); 1225 seed9 = static_cast<u8>(seed9 >> sh3);
1227 seed10 = static_cast<uint8_t>(seed10 >> sh3); 1226 seed10 = static_cast<u8>(seed10 >> sh3);
1228 seed11 = static_cast<uint8_t>(seed11 >> sh3); 1227 seed11 = static_cast<u8>(seed11 >> sh3);
1229 seed12 = static_cast<uint8_t>(seed12 >> sh3); 1228 seed12 = static_cast<u8>(seed12 >> sh3);
1230 1229
1231 int32_t a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14); 1230 s32 a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14);
1232 int32_t b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10); 1231 s32 b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10);
1233 int32_t c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6); 1232 s32 c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6);
1234 int32_t d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2); 1233 s32 d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2);
1235 1234
1236 a &= 0x3F; 1235 a &= 0x3F;
1237 b &= 0x3F; 1236 b &= 0x3F;
@@ -1252,24 +1251,23 @@ static uint32_t SelectPartition(int32_t seed, int32_t x, int32_t y, int32_t z,
1252 return 3; 1251 return 3;
1253} 1252}
1254 1253
1255static inline uint32_t Select2DPartition(int32_t seed, int32_t x, int32_t y, int32_t partitionCount, 1254static inline u32 Select2DPartition(s32 seed, s32 x, s32 y, s32 partitionCount, s32 smallBlock) {
1256 int32_t smallBlock) {
1257 return SelectPartition(seed, x, y, 0, partitionCount, smallBlock); 1255 return SelectPartition(seed, x, y, 0, partitionCount, smallBlock);
1258} 1256}
1259 1257
1260// Section C.2.14 1258// Section C.2.14
1261static void ComputeEndpoints(Pixel& ep1, Pixel& ep2, const uint32_t*& colorValues, 1259static void ComputeEndpoints(Pixel& ep1, Pixel& ep2, const u32*& colorValues,
1262 uint32_t colorEndpointMode) { 1260 u32 colorEndpointMode) {
1263#define READ_UINT_VALUES(N) \ 1261#define READ_UINT_VALUES(N) \
1264 uint32_t v[N]; \ 1262 u32 v[N]; \
1265 for (uint32_t i = 0; i < N; i++) { \ 1263 for (u32 i = 0; i < N; i++) { \
1266 v[i] = *(colorValues++); \ 1264 v[i] = *(colorValues++); \
1267 } 1265 }
1268 1266
1269#define READ_INT_VALUES(N) \ 1267#define READ_INT_VALUES(N) \
1270 int32_t v[N]; \ 1268 s32 v[N]; \
1271 for (uint32_t i = 0; i < N; i++) { \ 1269 for (u32 i = 0; i < N; i++) { \
1272 v[i] = static_cast<int32_t>(*(colorValues++)); \ 1270 v[i] = static_cast<s32>(*(colorValues++)); \
1273 } 1271 }
1274 1272
1275 switch (colorEndpointMode) { 1273 switch (colorEndpointMode) {
@@ -1281,8 +1279,8 @@ static void ComputeEndpoints(Pixel& ep1, Pixel& ep2, const uint32_t*& colorValue
1281 1279
1282 case 1: { 1280 case 1: {
1283 READ_UINT_VALUES(2) 1281 READ_UINT_VALUES(2)
1284 uint32_t L0 = (v[0] >> 2) | (v[1] & 0xC0); 1282 u32 L0 = (v[0] >> 2) | (v[1] & 0xC0);
1285 uint32_t L1 = std::max(L0 + (v[1] & 0x3F), 0xFFU); 1283 u32 L1 = std::max(L0 + (v[1] & 0x3F), 0xFFU);
1286 ep1 = Pixel(0xFF, L0, L0, L0); 1284 ep1 = Pixel(0xFF, L0, L0, L0);
1287 ep2 = Pixel(0xFF, L1, L1, L1); 1285 ep2 = Pixel(0xFF, L1, L1, L1);
1288 } break; 1286 } break;
@@ -1379,8 +1377,8 @@ static void ComputeEndpoints(Pixel& ep1, Pixel& ep2, const uint32_t*& colorValue
1379#undef READ_INT_VALUES 1377#undef READ_INT_VALUES
1380} 1378}
1381 1379
1382static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth, 1380static void DecompressBlock(const u8 inBuf[16], const u32 blockWidth, const u32 blockHeight,
1383 const uint32_t blockHeight, uint32_t* outBuf) { 1381 u32* outBuf) {
1384 InputBitStream strm(inBuf); 1382 InputBitStream strm(inBuf);
1385 TexelWeightParams weightParams = DecodeBlockInfo(strm); 1383 TexelWeightParams weightParams = DecodeBlockInfo(strm);
1386 1384
@@ -1415,7 +1413,7 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth,
1415 } 1413 }
1416 1414
1417 // Read num partitions 1415 // Read num partitions
1418 uint32_t nPartitions = strm.ReadBits(2) + 1; 1416 u32 nPartitions = strm.ReadBits(2) + 1;
1419 assert(nPartitions <= 4); 1417 assert(nPartitions <= 4);
1420 1418
1421 if (nPartitions == 4 && weightParams.m_bDualPlane) { 1419 if (nPartitions == 4 && weightParams.m_bDualPlane) {
@@ -1428,17 +1426,17 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth,
1428 // each partition. 1426 // each partition.
1429 1427
1430 // Determine partitions, partition index, and color endpoint modes 1428 // Determine partitions, partition index, and color endpoint modes
1431 int32_t planeIdx = -1; 1429 s32 planeIdx = -1;
1432 uint32_t partitionIndex; 1430 u32 partitionIndex;
1433 uint32_t colorEndpointMode[4] = {0, 0, 0, 0}; 1431 u32 colorEndpointMode[4] = {0, 0, 0, 0};
1434 1432
1435 // Define color data. 1433 // Define color data.
1436 uint8_t colorEndpointData[16]; 1434 u8 colorEndpointData[16];
1437 memset(colorEndpointData, 0, sizeof(colorEndpointData)); 1435 memset(colorEndpointData, 0, sizeof(colorEndpointData));
1438 OutputBitStream colorEndpointStream(colorEndpointData, 16 * 8, 0); 1436 OutputBitStream colorEndpointStream(colorEndpointData, 16 * 8, 0);
1439 1437
1440 // Read extra config data... 1438 // Read extra config data...
1441 uint32_t baseCEM = 0; 1439 u32 baseCEM = 0;
1442 if (nPartitions == 1) { 1440 if (nPartitions == 1) {
1443 colorEndpointMode[0] = strm.ReadBits(4); 1441 colorEndpointMode[0] = strm.ReadBits(4);
1444 partitionIndex = 0; 1442 partitionIndex = 0;
@@ -1446,14 +1444,14 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth,
1446 partitionIndex = strm.ReadBits(10); 1444 partitionIndex = strm.ReadBits(10);
1447 baseCEM = strm.ReadBits(6); 1445 baseCEM = strm.ReadBits(6);
1448 } 1446 }
1449 uint32_t baseMode = (baseCEM & 3); 1447 u32 baseMode = (baseCEM & 3);
1450 1448
1451 // Remaining bits are color endpoint data... 1449 // Remaining bits are color endpoint data...
1452 uint32_t nWeightBits = weightParams.GetPackedBitSize(); 1450 u32 nWeightBits = weightParams.GetPackedBitSize();
1453 int32_t remainingBits = 128 - nWeightBits - strm.GetBitsRead(); 1451 s32 remainingBits = 128 - nWeightBits - strm.GetBitsRead();
1454 1452
1455 // Consider extra bits prior to texel data... 1453 // Consider extra bits prior to texel data...
1456 uint32_t extraCEMbits = 0; 1454 u32 extraCEMbits = 0;
1457 if (baseMode) { 1455 if (baseMode) {
1458 switch (nPartitions) { 1456 switch (nPartitions) {
1459 case 2: 1457 case 2:
@@ -1473,17 +1471,17 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth,
1473 remainingBits -= extraCEMbits; 1471 remainingBits -= extraCEMbits;
1474 1472
1475 // Do we have a dual plane situation? 1473 // Do we have a dual plane situation?
1476 uint32_t planeSelectorBits = 0; 1474 u32 planeSelectorBits = 0;
1477 if (weightParams.m_bDualPlane) { 1475 if (weightParams.m_bDualPlane) {
1478 planeSelectorBits = 2; 1476 planeSelectorBits = 2;
1479 } 1477 }
1480 remainingBits -= planeSelectorBits; 1478 remainingBits -= planeSelectorBits;
1481 1479
1482 // Read color data... 1480 // Read color data...
1483 uint32_t colorDataBits = remainingBits; 1481 u32 colorDataBits = remainingBits;
1484 while (remainingBits > 0) { 1482 while (remainingBits > 0) {
1485 uint32_t nb = std::min(remainingBits, 8); 1483 u32 nb = std::min(remainingBits, 8);
1486 uint32_t b = strm.ReadBits(nb); 1484 u32 b = strm.ReadBits(nb);
1487 colorEndpointStream.WriteBits(b, nb); 1485 colorEndpointStream.WriteBits(b, nb);
1488 remainingBits -= 8; 1486 remainingBits -= 8;
1489 } 1487 }
@@ -1493,24 +1491,24 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth,
1493 1491
1494 // Read the rest of the CEM 1492 // Read the rest of the CEM
1495 if (baseMode) { 1493 if (baseMode) {
1496 uint32_t extraCEM = strm.ReadBits(extraCEMbits); 1494 u32 extraCEM = strm.ReadBits(extraCEMbits);
1497 uint32_t CEM = (extraCEM << 6) | baseCEM; 1495 u32 CEM = (extraCEM << 6) | baseCEM;
1498 CEM >>= 2; 1496 CEM >>= 2;
1499 1497
1500 bool C[4] = {0}; 1498 bool C[4] = {0};
1501 for (uint32_t i = 0; i < nPartitions; i++) { 1499 for (u32 i = 0; i < nPartitions; i++) {
1502 C[i] = CEM & 1; 1500 C[i] = CEM & 1;
1503 CEM >>= 1; 1501 CEM >>= 1;
1504 } 1502 }
1505 1503
1506 uint8_t M[4] = {0}; 1504 u8 M[4] = {0};
1507 for (uint32_t i = 0; i < nPartitions; i++) { 1505 for (u32 i = 0; i < nPartitions; i++) {
1508 M[i] = CEM & 3; 1506 M[i] = CEM & 3;
1509 CEM >>= 2; 1507 CEM >>= 2;
1510 assert(M[i] <= 3); 1508 assert(M[i] <= 3);
1511 } 1509 }
1512 1510
1513 for (uint32_t i = 0; i < nPartitions; i++) { 1511 for (u32 i = 0; i < nPartitions; i++) {
1514 colorEndpointMode[i] = baseMode; 1512 colorEndpointMode[i] = baseMode;
1515 if (!(C[i])) 1513 if (!(C[i]))
1516 colorEndpointMode[i] -= 1; 1514 colorEndpointMode[i] -= 1;
@@ -1518,35 +1516,35 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth,
1518 colorEndpointMode[i] |= M[i]; 1516 colorEndpointMode[i] |= M[i];
1519 } 1517 }
1520 } else if (nPartitions > 1) { 1518 } else if (nPartitions > 1) {
1521 uint32_t CEM = baseCEM >> 2; 1519 u32 CEM = baseCEM >> 2;
1522 for (uint32_t i = 0; i < nPartitions; i++) { 1520 for (u32 i = 0; i < nPartitions; i++) {
1523 colorEndpointMode[i] = CEM; 1521 colorEndpointMode[i] = CEM;
1524 } 1522 }
1525 } 1523 }
1526 1524
1527 // Make sure everything up till here is sane. 1525 // Make sure everything up till here is sane.
1528 for (uint32_t i = 0; i < nPartitions; i++) { 1526 for (u32 i = 0; i < nPartitions; i++) {
1529 assert(colorEndpointMode[i] < 16); 1527 assert(colorEndpointMode[i] < 16);
1530 } 1528 }
1531 assert(strm.GetBitsRead() + weightParams.GetPackedBitSize() == 128); 1529 assert(strm.GetBitsRead() + weightParams.GetPackedBitSize() == 128);
1532 1530
1533 // Decode both color data and texel weight data 1531 // Decode both color data and texel weight data
1534 uint32_t colorValues[32]; // Four values, two endpoints, four maximum paritions 1532 u32 colorValues[32]; // Four values, two endpoints, four maximum paritions
1535 DecodeColorValues(colorValues, colorEndpointData, colorEndpointMode, nPartitions, 1533 DecodeColorValues(colorValues, colorEndpointData, colorEndpointMode, nPartitions,
1536 colorDataBits); 1534 colorDataBits);
1537 1535
1538 Pixel endpoints[4][2]; 1536 Pixel endpoints[4][2];
1539 const uint32_t* colorValuesPtr = colorValues; 1537 const u32* colorValuesPtr = colorValues;
1540 for (uint32_t i = 0; i < nPartitions; i++) { 1538 for (u32 i = 0; i < nPartitions; i++) {
1541 ComputeEndpoints(endpoints[i][0], endpoints[i][1], colorValuesPtr, colorEndpointMode[i]); 1539 ComputeEndpoints(endpoints[i][0], endpoints[i][1], colorValuesPtr, colorEndpointMode[i]);
1542 } 1540 }
1543 1541
1544 // Read the texel weight data.. 1542 // Read the texel weight data..
1545 uint8_t texelWeightData[16]; 1543 u8 texelWeightData[16];
1546 memcpy(texelWeightData, inBuf, sizeof(texelWeightData)); 1544 memcpy(texelWeightData, inBuf, sizeof(texelWeightData));
1547 1545
1548 // Reverse everything 1546 // Reverse everything
1549 for (uint32_t i = 0; i < 8; i++) { 1547 for (u32 i = 0; i < 8; i++) {
1550// Taken from http://graphics.stanford.edu/~seander/bithacks.html#ReverseByteWith64Bits 1548// Taken from http://graphics.stanford.edu/~seander/bithacks.html#ReverseByteWith64Bits
1551#define REVERSE_BYTE(b) (((b)*0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32 1549#define REVERSE_BYTE(b) (((b)*0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32
1552 unsigned char a = static_cast<unsigned char>(REVERSE_BYTE(texelWeightData[i])); 1550 unsigned char a = static_cast<unsigned char>(REVERSE_BYTE(texelWeightData[i]));
@@ -1558,10 +1556,10 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth,
1558 } 1556 }
1559 1557
1560 // Make sure that higher non-texel bits are set to zero 1558 // Make sure that higher non-texel bits are set to zero
1561 const uint32_t clearByteStart = (weightParams.GetPackedBitSize() >> 3) + 1; 1559 const u32 clearByteStart = (weightParams.GetPackedBitSize() >> 3) + 1;
1562 texelWeightData[clearByteStart - 1] = 1560 texelWeightData[clearByteStart - 1] =
1563 texelWeightData[clearByteStart - 1] & 1561 texelWeightData[clearByteStart - 1] &
1564 static_cast<uint8_t>((1 << (weightParams.GetPackedBitSize() % 8)) - 1); 1562 static_cast<u8>((1 << (weightParams.GetPackedBitSize() % 8)) - 1);
1565 memset(texelWeightData + clearByteStart, 0, 16 - clearByteStart); 1563 memset(texelWeightData + clearByteStart, 0, 16 - clearByteStart);
1566 1564
1567 std::vector<IntegerEncodedValue> texelWeightValues; 1565 std::vector<IntegerEncodedValue> texelWeightValues;
@@ -1572,36 +1570,36 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth,
1572 weightParams.GetNumWeightValues()); 1570 weightParams.GetNumWeightValues());
1573 1571
1574 // Blocks can be at most 12x12, so we can have as many as 144 weights 1572 // Blocks can be at most 12x12, so we can have as many as 144 weights
1575 uint32_t weights[2][144]; 1573 u32 weights[2][144];
1576 UnquantizeTexelWeights(weights, texelWeightValues, weightParams, blockWidth, blockHeight); 1574 UnquantizeTexelWeights(weights, texelWeightValues, weightParams, blockWidth, blockHeight);
1577 1575
1578 // Now that we have endpoints and weights, we can interpolate and generate 1576 // Now that we have endpoints and weights, we can interpolate and generate
1579 // the proper decoding... 1577 // the proper decoding...
1580 for (uint32_t j = 0; j < blockHeight; j++) 1578 for (u32 j = 0; j < blockHeight; j++)
1581 for (uint32_t i = 0; i < blockWidth; i++) { 1579 for (u32 i = 0; i < blockWidth; i++) {
1582 uint32_t partition = Select2DPartition(partitionIndex, i, j, nPartitions, 1580 u32 partition = Select2DPartition(partitionIndex, i, j, nPartitions,
1583 (blockHeight * blockWidth) < 32); 1581 (blockHeight * blockWidth) < 32);
1584 assert(partition < nPartitions); 1582 assert(partition < nPartitions);
1585 1583
1586 Pixel p; 1584 Pixel p;
1587 for (uint32_t c = 0; c < 4; c++) { 1585 for (u32 c = 0; c < 4; c++) {
1588 uint32_t C0 = endpoints[partition][0].Component(c); 1586 u32 C0 = endpoints[partition][0].Component(c);
1589 C0 = Replicate(C0, 8, 16); 1587 C0 = Replicate(C0, 8, 16);
1590 uint32_t C1 = endpoints[partition][1].Component(c); 1588 u32 C1 = endpoints[partition][1].Component(c);
1591 C1 = Replicate(C1, 8, 16); 1589 C1 = Replicate(C1, 8, 16);
1592 1590
1593 uint32_t plane = 0; 1591 u32 plane = 0;
1594 if (weightParams.m_bDualPlane && (((planeIdx + 1) & 3) == c)) { 1592 if (weightParams.m_bDualPlane && (((planeIdx + 1) & 3) == c)) {
1595 plane = 1; 1593 plane = 1;
1596 } 1594 }
1597 1595
1598 uint32_t weight = weights[plane][j * blockWidth + i]; 1596 u32 weight = weights[plane][j * blockWidth + i];
1599 uint32_t C = (C0 * (64 - weight) + C1 * weight + 32) / 64; 1597 u32 C = (C0 * (64 - weight) + C1 * weight + 32) / 64;
1600 if (C == 65535) { 1598 if (C == 65535) {
1601 p.Component(c) = 255; 1599 p.Component(c) = 255;
1602 } else { 1600 } else {
1603 double Cf = static_cast<double>(C); 1601 double Cf = static_cast<double>(C);
1604 p.Component(c) = static_cast<uint16_t>(255.0 * (Cf / 65536.0) + 0.5); 1602 p.Component(c) = static_cast<u16>(255.0 * (Cf / 65536.0) + 0.5);
1605 } 1603 }
1606 } 1604 }
1607 1605
@@ -1613,26 +1611,26 @@ static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth,
1613 1611
1614namespace Tegra::Texture::ASTC { 1612namespace Tegra::Texture::ASTC {
1615 1613
1616std::vector<uint8_t> Decompress(const uint8_t* data, uint32_t width, uint32_t height, 1614std::vector<u8> Decompress(const u8* data, u32 width, u32 height, u32 depth, u32 block_width,
1617 uint32_t depth, uint32_t block_width, uint32_t block_height) { 1615 u32 block_height) {
1618 uint32_t blockIdx = 0; 1616 u32 blockIdx = 0;
1619 std::size_t depth_offset = 0; 1617 std::size_t depth_offset = 0;
1620 std::vector<uint8_t> outData(height * width * depth * 4); 1618 std::vector<u8> outData(height * width * depth * 4);
1621 for (uint32_t k = 0; k < depth; k++) { 1619 for (u32 k = 0; k < depth; k++) {
1622 for (uint32_t j = 0; j < height; j += block_height) { 1620 for (u32 j = 0; j < height; j += block_height) {
1623 for (uint32_t i = 0; i < width; i += block_width) { 1621 for (u32 i = 0; i < width; i += block_width) {
1624 1622
1625 const uint8_t* blockPtr = data + blockIdx * 16; 1623 const u8* blockPtr = data + blockIdx * 16;
1626 1624
1627 // Blocks can be at most 12x12 1625 // Blocks can be at most 12x12
1628 uint32_t uncompData[144]; 1626 u32 uncompData[144];
1629 ASTCC::DecompressBlock(blockPtr, block_width, block_height, uncompData); 1627 ASTCC::DecompressBlock(blockPtr, block_width, block_height, uncompData);
1630 1628
1631 uint32_t decompWidth = std::min(block_width, width - i); 1629 u32 decompWidth = std::min(block_width, width - i);
1632 uint32_t decompHeight = std::min(block_height, height - j); 1630 u32 decompHeight = std::min(block_height, height - j);
1633 1631
1634 uint8_t* outRow = depth_offset + outData.data() + (j * width + i) * 4; 1632 u8* outRow = depth_offset + outData.data() + (j * width + i) * 4;
1635 for (uint32_t jj = 0; jj < decompHeight; jj++) { 1633 for (u32 jj = 0; jj < decompHeight; jj++) {
1636 memcpy(outRow + jj * width * 4, uncompData + jj * block_width, decompWidth * 4); 1634 memcpy(outRow + jj * width * 4, uncompData + jj * block_width, decompWidth * 4);
1637 } 1635 }
1638 1636