summaryrefslogtreecommitdiff
path: root/src/video_core
diff options
context:
space:
mode:
authorGravatar bunnei2020-07-26 00:16:21 -0400
committerGravatar bunnei2020-07-26 00:49:43 -0400
commit05def613980a0e3b723d0d8d38eb68511272bb72 (patch)
treea120a71115533e9f3447ca8716f46d6f4c991f89 /src/video_core
parentMerge pull request #4417 from lioncash/poll (diff)
downloadyuzu-05def613980a0e3b723d0d8d38eb68511272bb72.tar.gz
yuzu-05def613980a0e3b723d0d8d38eb68511272bb72.tar.xz
yuzu-05def613980a0e3b723d0d8d38eb68511272bb72.zip
hle: nvdrv: Rewrite of GPU memory management.
Diffstat (limited to 'src/video_core')
-rw-r--r--src/video_core/memory_manager.cpp532
-rw-r--r--src/video_core/memory_manager.h172
2 files changed, 204 insertions, 500 deletions
diff --git a/src/video_core/memory_manager.cpp b/src/video_core/memory_manager.cpp
index ff5505d12..844164645 100644
--- a/src/video_core/memory_manager.cpp
+++ b/src/video_core/memory_manager.cpp
@@ -4,7 +4,6 @@
4 4
5#include "common/alignment.h" 5#include "common/alignment.h"
6#include "common/assert.h" 6#include "common/assert.h"
7#include "common/logging/log.h"
8#include "core/core.h" 7#include "core/core.h"
9#include "core/hle/kernel/memory/page_table.h" 8#include "core/hle/kernel/memory/page_table.h"
10#include "core/hle/kernel/process.h" 9#include "core/hle/kernel/process.h"
@@ -16,121 +15,137 @@
16namespace Tegra { 15namespace Tegra {
17 16
18MemoryManager::MemoryManager(Core::System& system, VideoCore::RasterizerInterface& rasterizer) 17MemoryManager::MemoryManager(Core::System& system, VideoCore::RasterizerInterface& rasterizer)
19 : rasterizer{rasterizer}, system{system} { 18 : system{system}, rasterizer{rasterizer}, page_table(page_table_size) {}
20 page_table.Resize(address_space_width, page_bits, false);
21
22 // Initialize the map with a single free region covering the entire managed space.
23 VirtualMemoryArea initial_vma;
24 initial_vma.size = address_space_end;
25 vma_map.emplace(initial_vma.base, initial_vma);
26
27 UpdatePageTableForVMA(initial_vma);
28}
29 19
30MemoryManager::~MemoryManager() = default; 20MemoryManager::~MemoryManager() = default;
31 21
32GPUVAddr MemoryManager::AllocateSpace(u64 size, u64 align) { 22GPUVAddr MemoryManager::UpdateRange(GPUVAddr gpu_addr, PageEntry page_entry, std::size_t size) {
33 const u64 aligned_size{Common::AlignUp(size, page_size)}; 23 u64 remaining_size{size};
34 const GPUVAddr gpu_addr{FindFreeRegion(address_space_base, aligned_size)}; 24 for (u64 offset{}; offset < size; offset += page_size) {
35 25 if (remaining_size < page_size) {
36 AllocateMemory(gpu_addr, 0, aligned_size); 26 SetPageEntry(gpu_addr + offset, page_entry + offset, remaining_size);
37 27 } else {
28 SetPageEntry(gpu_addr + offset, page_entry + offset);
29 }
30 remaining_size -= page_size;
31 }
38 return gpu_addr; 32 return gpu_addr;
39} 33}
40 34
41GPUVAddr MemoryManager::AllocateSpace(GPUVAddr gpu_addr, u64 size, u64 align) { 35GPUVAddr MemoryManager::Map(VAddr cpu_addr, GPUVAddr gpu_addr, std::size_t size) {
42 const u64 aligned_size{Common::AlignUp(size, page_size)}; 36 return UpdateRange(gpu_addr, cpu_addr, size);
43 37}
44 AllocateMemory(gpu_addr, 0, aligned_size);
45 38
46 return gpu_addr; 39GPUVAddr MemoryManager::MapAllocate(VAddr cpu_addr, std::size_t size, std::size_t align) {
40 return Map(cpu_addr, *FindFreeRange(size, align), size);
47} 41}
48 42
49GPUVAddr MemoryManager::MapBufferEx(VAddr cpu_addr, u64 size) { 43void MemoryManager::Unmap(GPUVAddr gpu_addr, std::size_t size) {
50 const u64 aligned_size{Common::AlignUp(size, page_size)}; 44 if (!size) {
51 const GPUVAddr gpu_addr{FindFreeRegion(address_space_base, aligned_size)}; 45 return;
46 }
52 47
53 MapBackingMemory(gpu_addr, system.Memory().GetPointer(cpu_addr), aligned_size, cpu_addr); 48 // Flush and invalidate through the GPU interface, to be asynchronous if possible.
54 ASSERT( 49 system.GPU().FlushAndInvalidateRegion(*GpuToCpuAddress(gpu_addr), size);
55 system.CurrentProcess()->PageTable().LockForDeviceAddressSpace(cpu_addr, size).IsSuccess());
56 50
57 return gpu_addr; 51 UpdateRange(gpu_addr, PageEntry::State::Unmapped, size);
58} 52}
59 53
60GPUVAddr MemoryManager::MapBufferEx(VAddr cpu_addr, GPUVAddr gpu_addr, u64 size) { 54std::optional<GPUVAddr> MemoryManager::AllocateFixed(GPUVAddr gpu_addr, std::size_t size) {
61 ASSERT((gpu_addr & page_mask) == 0); 55 for (u64 offset{}; offset < size; offset += page_size) {
56 if (!GetPageEntry(gpu_addr + offset).IsUnmapped()) {
57 return {};
58 }
59 }
62 60
63 const u64 aligned_size{Common::AlignUp(size, page_size)}; 61 return UpdateRange(gpu_addr, PageEntry::State::Allocated, size);
62}
64 63
65 MapBackingMemory(gpu_addr, system.Memory().GetPointer(cpu_addr), aligned_size, cpu_addr); 64GPUVAddr MemoryManager::Allocate(std::size_t size, std::size_t align) {
66 ASSERT( 65 return *AllocateFixed(*FindFreeRange(size, align), size);
67 system.CurrentProcess()->PageTable().LockForDeviceAddressSpace(cpu_addr, size).IsSuccess());
68 return gpu_addr;
69} 66}
70 67
71GPUVAddr MemoryManager::UnmapBuffer(GPUVAddr gpu_addr, u64 size) { 68void MemoryManager::TryLockPage(PageEntry page_entry, std::size_t size) {
72 ASSERT((gpu_addr & page_mask) == 0); 69 if (!page_entry.IsValid()) {
70 return;
71 }
73 72
74 const u64 aligned_size{Common::AlignUp(size, page_size)}; 73 ASSERT(system.CurrentProcess()
75 const auto cpu_addr = GpuToCpuAddress(gpu_addr); 74 ->PageTable()
76 ASSERT(cpu_addr); 75 .LockForDeviceAddressSpace(page_entry.ToAddress(), size)
76 .IsSuccess());
77}
77 78
78 // Flush and invalidate through the GPU interface, to be asynchronous if possible. 79void MemoryManager::TryUnlockPage(PageEntry page_entry, std::size_t size) {
79 system.GPU().FlushAndInvalidateRegion(*cpu_addr, aligned_size); 80 if (!page_entry.IsValid()) {
81 return;
82 }
80 83
81 UnmapRange(gpu_addr, aligned_size);
82 ASSERT(system.CurrentProcess() 84 ASSERT(system.CurrentProcess()
83 ->PageTable() 85 ->PageTable()
84 .UnlockForDeviceAddressSpace(cpu_addr.value(), size) 86 .UnlockForDeviceAddressSpace(page_entry.ToAddress(), size)
85 .IsSuccess()); 87 .IsSuccess());
86
87 return gpu_addr;
88} 88}
89 89
90GPUVAddr MemoryManager::FindFreeRegion(GPUVAddr region_start, u64 size) const { 90PageEntry MemoryManager::GetPageEntry(GPUVAddr gpu_addr) const {
91 // Find the first Free VMA. 91 return page_table[PageEntryIndex(gpu_addr)];
92 const VMAHandle vma_handle{ 92}
93 std::find_if(vma_map.begin(), vma_map.end(), [region_start, size](const auto& vma) {
94 if (vma.second.type != VirtualMemoryArea::Type::Unmapped) {
95 return false;
96 }
97 93
98 const VAddr vma_end{vma.second.base + vma.second.size}; 94void MemoryManager::SetPageEntry(GPUVAddr gpu_addr, PageEntry page_entry, std::size_t size) {
99 return vma_end > region_start && vma_end >= region_start + size; 95 // TODO(bunnei): We should lock/unlock device regions. This currently causes issues due to
100 })}; 96 // improper tracking, but should be fixed in the future.
101 97
102 if (vma_handle == vma_map.end()) { 98 //// Unlock the old page
103 return {}; 99 // TryUnlockPage(page_table[PageEntryIndex(gpu_addr)], size);
104 }
105 100
106 return std::max(region_start, vma_handle->second.base); 101 //// Lock the new page
107} 102 // TryLockPage(page_entry, size);
108 103
109bool MemoryManager::IsAddressValid(GPUVAddr addr) const { 104 page_table[PageEntryIndex(gpu_addr)] = page_entry;
110 return (addr >> page_bits) < page_table.pointers.size();
111} 105}
112 106
113std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr addr) const { 107std::optional<GPUVAddr> MemoryManager::FindFreeRange(std::size_t size, std::size_t align) const {
114 if (!IsAddressValid(addr)) { 108 if (!align) {
115 return {}; 109 align = page_size;
110 } else {
111 align = Common::AlignUp(align, page_size);
116 } 112 }
117 113
118 const VAddr cpu_addr{page_table.backing_addr[addr >> page_bits]}; 114 u64 available_size{};
119 if (cpu_addr) { 115 GPUVAddr gpu_addr{address_space_start};
120 return cpu_addr + (addr & page_mask); 116 while (gpu_addr + available_size < address_space_size) {
117 if (GetPageEntry(gpu_addr + available_size).IsUnmapped()) {
118 available_size += page_size;
119
120 if (available_size >= size) {
121 return gpu_addr;
122 }
123 } else {
124 gpu_addr += available_size + page_size;
125 available_size = 0;
126
127 const auto remainder{gpu_addr % align};
128 if (remainder) {
129 gpu_addr = (gpu_addr - remainder) + align;
130 }
131 }
121 } 132 }
122 133
123 return {}; 134 return {};
124} 135}
125 136
126template <typename T> 137std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr gpu_addr) const {
127T MemoryManager::Read(GPUVAddr addr) const { 138 const auto page_entry{GetPageEntry(gpu_addr)};
128 if (!IsAddressValid(addr)) { 139 if (!page_entry.IsValid()) {
129 return {}; 140 return {};
130 } 141 }
131 142
132 const u8* page_pointer{GetPointer(addr)}; 143 return page_entry.ToAddress() + (gpu_addr & page_mask);
133 if (page_pointer) { 144}
145
146template <typename T>
147T MemoryManager::Read(GPUVAddr addr) const {
148 if (auto page_pointer{GetPointer(addr)}; page_pointer) {
134 // NOTE: Avoid adding any extra logic to this fast-path block 149 // NOTE: Avoid adding any extra logic to this fast-path block
135 T value; 150 T value;
136 std::memcpy(&value, page_pointer, sizeof(T)); 151 std::memcpy(&value, page_pointer, sizeof(T));
@@ -144,12 +159,7 @@ T MemoryManager::Read(GPUVAddr addr) const {
144 159
145template <typename T> 160template <typename T>
146void MemoryManager::Write(GPUVAddr addr, T data) { 161void MemoryManager::Write(GPUVAddr addr, T data) {
147 if (!IsAddressValid(addr)) { 162 if (auto page_pointer{GetPointer(addr)}; page_pointer) {
148 return;
149 }
150
151 u8* page_pointer{GetPointer(addr)};
152 if (page_pointer) {
153 // NOTE: Avoid adding any extra logic to this fast-path block 163 // NOTE: Avoid adding any extra logic to this fast-path block
154 std::memcpy(page_pointer, &data, sizeof(T)); 164 std::memcpy(page_pointer, &data, sizeof(T));
155 return; 165 return;
@@ -167,66 +177,49 @@ template void MemoryManager::Write<u16>(GPUVAddr addr, u16 data);
167template void MemoryManager::Write<u32>(GPUVAddr addr, u32 data); 177template void MemoryManager::Write<u32>(GPUVAddr addr, u32 data);
168template void MemoryManager::Write<u64>(GPUVAddr addr, u64 data); 178template void MemoryManager::Write<u64>(GPUVAddr addr, u64 data);
169 179
170u8* MemoryManager::GetPointer(GPUVAddr addr) { 180u8* MemoryManager::GetPointer(GPUVAddr gpu_addr) {
171 if (!IsAddressValid(addr)) { 181 if (!GetPageEntry(gpu_addr).IsValid()) {
172 return {}; 182 return {};
173 } 183 }
174 184
175 auto& memory = system.Memory(); 185 const auto address{GpuToCpuAddress(gpu_addr)};
176 186 if (!address) {
177 const VAddr page_addr{page_table.backing_addr[addr >> page_bits]}; 187 return {};
178
179 if (page_addr != 0) {
180 return memory.GetPointer(page_addr + (addr & page_mask));
181 } 188 }
182 189
183 LOG_ERROR(HW_GPU, "Unknown GetPointer @ 0x{:016X}", addr); 190 return system.Memory().GetPointer(*address);
184 return {};
185} 191}
186 192
187const u8* MemoryManager::GetPointer(GPUVAddr addr) const { 193const u8* MemoryManager::GetPointer(GPUVAddr gpu_addr) const {
188 if (!IsAddressValid(addr)) { 194 if (!GetPageEntry(gpu_addr).IsValid()) {
189 return {}; 195 return {};
190 } 196 }
191 197
192 const auto& memory = system.Memory(); 198 const auto address{GpuToCpuAddress(gpu_addr)};
193 199 if (!address) {
194 const VAddr page_addr{page_table.backing_addr[addr >> page_bits]}; 200 return {};
195
196 if (page_addr != 0) {
197 return memory.GetPointer(page_addr + (addr & page_mask));
198 } 201 }
199 202
200 LOG_ERROR(HW_GPU, "Unknown GetPointer @ 0x{:016X}", addr); 203 return system.Memory().GetPointer(*address);
201 return {};
202}
203
204bool MemoryManager::IsBlockContinuous(const GPUVAddr start, const std::size_t size) const {
205 const std::size_t inner_size = size - 1;
206 const GPUVAddr end = start + inner_size;
207 const auto host_ptr_start = reinterpret_cast<std::uintptr_t>(GetPointer(start));
208 const auto host_ptr_end = reinterpret_cast<std::uintptr_t>(GetPointer(end));
209 const auto range = static_cast<std::size_t>(host_ptr_end - host_ptr_start);
210 return range == inner_size;
211} 204}
212 205
213void MemoryManager::ReadBlock(GPUVAddr gpu_src_addr, void* dest_buffer, 206void MemoryManager::ReadBlock(GPUVAddr gpu_src_addr, void* dest_buffer, std::size_t size) const {
214 const std::size_t size) const {
215 std::size_t remaining_size{size}; 207 std::size_t remaining_size{size};
216 std::size_t page_index{gpu_src_addr >> page_bits}; 208 std::size_t page_index{gpu_src_addr >> page_bits};
217 std::size_t page_offset{gpu_src_addr & page_mask}; 209 std::size_t page_offset{gpu_src_addr & page_mask};
218 210
219 auto& memory = system.Memory();
220
221 while (remaining_size > 0) { 211 while (remaining_size > 0) {
222 const std::size_t copy_amount{ 212 const std::size_t copy_amount{
223 std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)}; 213 std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)};
224 214
225 const VAddr src_addr{page_table.backing_addr[page_index] + page_offset}; 215 if (const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; page_addr) {
226 // Flush must happen on the rasterizer interface, such that memory is always synchronous 216 const auto src_addr{*page_addr + page_offset};
227 // when it is read (even when in asynchronous GPU mode). Fixes Dead Cells title menu. 217
228 rasterizer.FlushRegion(src_addr, copy_amount); 218 // Flush must happen on the rasterizer interface, such that memory is always synchronous
229 memory.ReadBlockUnsafe(src_addr, dest_buffer, copy_amount); 219 // when it is read (even when in asynchronous GPU mode). Fixes Dead Cells title menu.
220 rasterizer.FlushRegion(src_addr, copy_amount);
221 system.Memory().ReadBlockUnsafe(src_addr, dest_buffer, copy_amount);
222 }
230 223
231 page_index++; 224 page_index++;
232 page_offset = 0; 225 page_offset = 0;
@@ -241,18 +234,17 @@ void MemoryManager::ReadBlockUnsafe(GPUVAddr gpu_src_addr, void* dest_buffer,
241 std::size_t page_index{gpu_src_addr >> page_bits}; 234 std::size_t page_index{gpu_src_addr >> page_bits};
242 std::size_t page_offset{gpu_src_addr & page_mask}; 235 std::size_t page_offset{gpu_src_addr & page_mask};
243 236
244 auto& memory = system.Memory();
245
246 while (remaining_size > 0) { 237 while (remaining_size > 0) {
247 const std::size_t copy_amount{ 238 const std::size_t copy_amount{
248 std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)}; 239 std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)};
249 const u8* page_pointer = page_table.pointers[page_index]; 240
250 if (page_pointer) { 241 if (const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; page_addr) {
251 const VAddr src_addr{page_table.backing_addr[page_index] + page_offset}; 242 const auto src_addr{*page_addr + page_offset};
252 memory.ReadBlockUnsafe(src_addr, dest_buffer, copy_amount); 243 system.Memory().ReadBlockUnsafe(src_addr, dest_buffer, copy_amount);
253 } else { 244 } else {
254 std::memset(dest_buffer, 0, copy_amount); 245 std::memset(dest_buffer, 0, copy_amount);
255 } 246 }
247
256 page_index++; 248 page_index++;
257 page_offset = 0; 249 page_offset = 0;
258 dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount; 250 dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
@@ -260,23 +252,23 @@ void MemoryManager::ReadBlockUnsafe(GPUVAddr gpu_src_addr, void* dest_buffer,
260 } 252 }
261} 253}
262 254
263void MemoryManager::WriteBlock(GPUVAddr gpu_dest_addr, const void* src_buffer, 255void MemoryManager::WriteBlock(GPUVAddr gpu_dest_addr, const void* src_buffer, std::size_t size) {
264 const std::size_t size) {
265 std::size_t remaining_size{size}; 256 std::size_t remaining_size{size};
266 std::size_t page_index{gpu_dest_addr >> page_bits}; 257 std::size_t page_index{gpu_dest_addr >> page_bits};
267 std::size_t page_offset{gpu_dest_addr & page_mask}; 258 std::size_t page_offset{gpu_dest_addr & page_mask};
268 259
269 auto& memory = system.Memory();
270
271 while (remaining_size > 0) { 260 while (remaining_size > 0) {
272 const std::size_t copy_amount{ 261 const std::size_t copy_amount{
273 std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)}; 262 std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)};
274 263
275 const VAddr dest_addr{page_table.backing_addr[page_index] + page_offset}; 264 if (const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; page_addr) {
276 // Invalidate must happen on the rasterizer interface, such that memory is always 265 const auto dest_addr{*page_addr + page_offset};
277 // synchronous when it is written (even when in asynchronous GPU mode). 266
278 rasterizer.InvalidateRegion(dest_addr, copy_amount); 267 // Invalidate must happen on the rasterizer interface, such that memory is always
279 memory.WriteBlockUnsafe(dest_addr, src_buffer, copy_amount); 268 // synchronous when it is written (even when in asynchronous GPU mode).
269 rasterizer.InvalidateRegion(dest_addr, copy_amount);
270 system.Memory().WriteBlockUnsafe(dest_addr, src_buffer, copy_amount);
271 }
280 272
281 page_index++; 273 page_index++;
282 page_offset = 0; 274 page_offset = 0;
@@ -286,21 +278,20 @@ void MemoryManager::WriteBlock(GPUVAddr gpu_dest_addr, const void* src_buffer,
286} 278}
287 279
288void MemoryManager::WriteBlockUnsafe(GPUVAddr gpu_dest_addr, const void* src_buffer, 280void MemoryManager::WriteBlockUnsafe(GPUVAddr gpu_dest_addr, const void* src_buffer,
289 const std::size_t size) { 281 std::size_t size) {
290 std::size_t remaining_size{size}; 282 std::size_t remaining_size{size};
291 std::size_t page_index{gpu_dest_addr >> page_bits}; 283 std::size_t page_index{gpu_dest_addr >> page_bits};
292 std::size_t page_offset{gpu_dest_addr & page_mask}; 284 std::size_t page_offset{gpu_dest_addr & page_mask};
293 285
294 auto& memory = system.Memory();
295
296 while (remaining_size > 0) { 286 while (remaining_size > 0) {
297 const std::size_t copy_amount{ 287 const std::size_t copy_amount{
298 std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)}; 288 std::min(static_cast<std::size_t>(page_size) - page_offset, remaining_size)};
299 u8* page_pointer = page_table.pointers[page_index]; 289
300 if (page_pointer) { 290 if (const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; page_addr) {
301 const VAddr dest_addr{page_table.backing_addr[page_index] + page_offset}; 291 const auto dest_addr{*page_addr + page_offset};
302 memory.WriteBlockUnsafe(dest_addr, src_buffer, copy_amount); 292 system.Memory().WriteBlockUnsafe(dest_addr, src_buffer, copy_amount);
303 } 293 }
294
304 page_index++; 295 page_index++;
305 page_offset = 0; 296 page_offset = 0;
306 src_buffer = static_cast<const u8*>(src_buffer) + copy_amount; 297 src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
@@ -308,273 +299,26 @@ void MemoryManager::WriteBlockUnsafe(GPUVAddr gpu_dest_addr, const void* src_buf
308 } 299 }
309} 300}
310 301
311void MemoryManager::CopyBlock(GPUVAddr gpu_dest_addr, GPUVAddr gpu_src_addr, 302void MemoryManager::CopyBlock(GPUVAddr gpu_dest_addr, GPUVAddr gpu_src_addr, std::size_t size) {
312 const std::size_t size) {
313 std::vector<u8> tmp_buffer(size); 303 std::vector<u8> tmp_buffer(size);
314 ReadBlock(gpu_src_addr, tmp_buffer.data(), size); 304 ReadBlock(gpu_src_addr, tmp_buffer.data(), size);
315 WriteBlock(gpu_dest_addr, tmp_buffer.data(), size); 305 WriteBlock(gpu_dest_addr, tmp_buffer.data(), size);
316} 306}
317 307
318void MemoryManager::CopyBlockUnsafe(GPUVAddr gpu_dest_addr, GPUVAddr gpu_src_addr, 308void MemoryManager::CopyBlockUnsafe(GPUVAddr gpu_dest_addr, GPUVAddr gpu_src_addr,
319 const std::size_t size) { 309 std::size_t size) {
320 std::vector<u8> tmp_buffer(size); 310 std::vector<u8> tmp_buffer(size);
321 ReadBlockUnsafe(gpu_src_addr, tmp_buffer.data(), size); 311 ReadBlockUnsafe(gpu_src_addr, tmp_buffer.data(), size);
322 WriteBlockUnsafe(gpu_dest_addr, tmp_buffer.data(), size); 312 WriteBlockUnsafe(gpu_dest_addr, tmp_buffer.data(), size);
323} 313}
324 314
325bool MemoryManager::IsGranularRange(GPUVAddr gpu_addr, std::size_t size) { 315bool MemoryManager::IsGranularRange(GPUVAddr gpu_addr, std::size_t size) {
326 const VAddr addr = page_table.backing_addr[gpu_addr >> page_bits]; 316 const auto cpu_addr{GpuToCpuAddress(gpu_addr)};
327 const std::size_t page = (addr & Core::Memory::PAGE_MASK) + size; 317 if (!cpu_addr) {
328 return page <= Core::Memory::PAGE_SIZE;
329}
330
331void MemoryManager::MapPages(GPUVAddr base, u64 size, u8* memory, Common::PageType type,
332 VAddr backing_addr) {
333 LOG_DEBUG(HW_GPU, "Mapping {} onto {:016X}-{:016X}", fmt::ptr(memory), base * page_size,
334 (base + size) * page_size);
335
336 const VAddr end{base + size};
337 ASSERT_MSG(end <= page_table.pointers.size(), "out of range mapping at {:016X}",
338 base + page_table.pointers.size());
339
340 if (memory == nullptr) {
341 while (base != end) {
342 page_table.pointers[base] = nullptr;
343 page_table.backing_addr[base] = 0;
344
345 base += 1;
346 }
347 } else {
348 while (base != end) {
349 page_table.pointers[base] = memory;
350 page_table.backing_addr[base] = backing_addr;
351
352 base += 1;
353 memory += page_size;
354 backing_addr += page_size;
355 }
356 }
357}
358
359void MemoryManager::MapMemoryRegion(GPUVAddr base, u64 size, u8* target, VAddr backing_addr) {
360 ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: {:016X}", size);
361 ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: {:016X}", base);
362 MapPages(base / page_size, size / page_size, target, Common::PageType::Memory, backing_addr);
363}
364
365void MemoryManager::UnmapRegion(GPUVAddr base, u64 size) {
366 ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: {:016X}", size);
367 ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: {:016X}", base);
368 MapPages(base / page_size, size / page_size, nullptr, Common::PageType::Unmapped);
369}
370
371bool VirtualMemoryArea::CanBeMergedWith(const VirtualMemoryArea& next) const {
372 ASSERT(base + size == next.base);
373 if (type != next.type) {
374 return {};
375 }
376 if (type == VirtualMemoryArea::Type::Allocated && (offset + size != next.offset)) {
377 return {};
378 }
379 if (type == VirtualMemoryArea::Type::Mapped && backing_memory + size != next.backing_memory) {
380 return {};
381 }
382 return true;
383}
384
385MemoryManager::VMAHandle MemoryManager::FindVMA(GPUVAddr target) const {
386 if (target >= address_space_end) {
387 return vma_map.end();
388 } else {
389 return std::prev(vma_map.upper_bound(target));
390 }
391}
392
393MemoryManager::VMAIter MemoryManager::Allocate(VMAIter vma_handle) {
394 VirtualMemoryArea& vma{vma_handle->second};
395
396 vma.type = VirtualMemoryArea::Type::Allocated;
397 vma.backing_addr = 0;
398 vma.backing_memory = {};
399 UpdatePageTableForVMA(vma);
400
401 return MergeAdjacent(vma_handle);
402}
403
404MemoryManager::VMAHandle MemoryManager::AllocateMemory(GPUVAddr target, std::size_t offset,
405 u64 size) {
406
407 // This is the appropriately sized VMA that will turn into our allocation.
408 VMAIter vma_handle{CarveVMA(target, size)};
409 VirtualMemoryArea& vma{vma_handle->second};
410
411 ASSERT(vma.size == size);
412
413 vma.offset = offset;
414
415 return Allocate(vma_handle);
416}
417
418MemoryManager::VMAHandle MemoryManager::MapBackingMemory(GPUVAddr target, u8* memory, u64 size,
419 VAddr backing_addr) {
420 // This is the appropriately sized VMA that will turn into our allocation.
421 VMAIter vma_handle{CarveVMA(target, size)};
422 VirtualMemoryArea& vma{vma_handle->second};
423
424 ASSERT(vma.size == size);
425
426 vma.type = VirtualMemoryArea::Type::Mapped;
427 vma.backing_memory = memory;
428 vma.backing_addr = backing_addr;
429 UpdatePageTableForVMA(vma);
430
431 return MergeAdjacent(vma_handle);
432}
433
434void MemoryManager::UnmapRange(GPUVAddr target, u64 size) {
435 VMAIter vma{CarveVMARange(target, size)};
436 const VAddr target_end{target + size};
437 const VMAIter end{vma_map.end()};
438
439 // The comparison against the end of the range must be done using addresses since VMAs can be
440 // merged during this process, causing invalidation of the iterators.
441 while (vma != end && vma->second.base < target_end) {
442 // Unmapped ranges return to allocated state and can be reused
443 // This behavior is used by Super Mario Odyssey, Sonic Forces, and likely other games
444 vma = std::next(Allocate(vma));
445 }
446
447 ASSERT(FindVMA(target)->second.size >= size);
448}
449
450MemoryManager::VMAIter MemoryManager::StripIterConstness(const VMAHandle& iter) {
451 // This uses a neat C++ trick to convert a const_iterator to a regular iterator, given
452 // non-const access to its container.
453 return vma_map.erase(iter, iter); // Erases an empty range of elements
454}
455
456MemoryManager::VMAIter MemoryManager::CarveVMA(GPUVAddr base, u64 size) {
457 ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: 0x{:016X}", size);
458 ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: 0x{:016X}", base);
459
460 VMAIter vma_handle{StripIterConstness(FindVMA(base))};
461 if (vma_handle == vma_map.end()) {
462 // Target address is outside the managed range
463 return {};
464 }
465
466 const VirtualMemoryArea& vma{vma_handle->second};
467 if (vma.type == VirtualMemoryArea::Type::Mapped) {
468 // Region is already allocated
469 return vma_handle;
470 }
471
472 const VAddr start_in_vma{base - vma.base};
473 const VAddr end_in_vma{start_in_vma + size};
474
475 ASSERT_MSG(end_in_vma <= vma.size, "region size 0x{:016X} is less than required size 0x{:016X}",
476 vma.size, end_in_vma);
477
478 if (end_in_vma < vma.size) {
479 // Split VMA at the end of the allocated region
480 SplitVMA(vma_handle, end_in_vma);
481 }
482 if (start_in_vma != 0) {
483 // Split VMA at the start of the allocated region
484 vma_handle = SplitVMA(vma_handle, start_in_vma);
485 }
486
487 return vma_handle;
488}
489
490MemoryManager::VMAIter MemoryManager::CarveVMARange(GPUVAddr target, u64 size) {
491 ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: 0x{:016X}", size);
492 ASSERT_MSG((target & page_mask) == 0, "non-page aligned base: 0x{:016X}", target);
493
494 const VAddr target_end{target + size};
495 ASSERT(target_end >= target);
496 ASSERT(size > 0);
497
498 VMAIter begin_vma{StripIterConstness(FindVMA(target))};
499 const VMAIter i_end{vma_map.lower_bound(target_end)};
500 if (std::any_of(begin_vma, i_end, [](const auto& entry) {
501 return entry.second.type == VirtualMemoryArea::Type::Unmapped;
502 })) {
503 return {}; 318 return {};
504 } 319 }
505 320 const std::size_t page{(*cpu_addr & Core::Memory::PAGE_MASK) + size};
506 if (target != begin_vma->second.base) { 321 return page <= Core::Memory::PAGE_SIZE;
507 begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base);
508 }
509
510 VMAIter end_vma{StripIterConstness(FindVMA(target_end))};
511 if (end_vma != vma_map.end() && target_end != end_vma->second.base) {
512 end_vma = SplitVMA(end_vma, target_end - end_vma->second.base);
513 }
514
515 return begin_vma;
516}
517
518MemoryManager::VMAIter MemoryManager::SplitVMA(VMAIter vma_handle, u64 offset_in_vma) {
519 VirtualMemoryArea& old_vma{vma_handle->second};
520 VirtualMemoryArea new_vma{old_vma}; // Make a copy of the VMA
521
522 // For now, don't allow no-op VMA splits (trying to split at a boundary) because it's probably
523 // a bug. This restriction might be removed later.
524 ASSERT(offset_in_vma < old_vma.size);
525 ASSERT(offset_in_vma > 0);
526
527 old_vma.size = offset_in_vma;
528 new_vma.base += offset_in_vma;
529 new_vma.size -= offset_in_vma;
530
531 switch (new_vma.type) {
532 case VirtualMemoryArea::Type::Unmapped:
533 break;
534 case VirtualMemoryArea::Type::Allocated:
535 new_vma.offset += offset_in_vma;
536 break;
537 case VirtualMemoryArea::Type::Mapped:
538 new_vma.backing_memory += offset_in_vma;
539 break;
540 }
541
542 ASSERT(old_vma.CanBeMergedWith(new_vma));
543
544 return vma_map.emplace_hint(std::next(vma_handle), new_vma.base, new_vma);
545}
546
547MemoryManager::VMAIter MemoryManager::MergeAdjacent(VMAIter iter) {
548 const VMAIter next_vma{std::next(iter)};
549 if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) {
550 iter->second.size += next_vma->second.size;
551 vma_map.erase(next_vma);
552 }
553
554 if (iter != vma_map.begin()) {
555 VMAIter prev_vma{std::prev(iter)};
556 if (prev_vma->second.CanBeMergedWith(iter->second)) {
557 prev_vma->second.size += iter->second.size;
558 vma_map.erase(iter);
559 iter = prev_vma;
560 }
561 }
562
563 return iter;
564}
565
566void MemoryManager::UpdatePageTableForVMA(const VirtualMemoryArea& vma) {
567 switch (vma.type) {
568 case VirtualMemoryArea::Type::Unmapped:
569 UnmapRegion(vma.base, vma.size);
570 break;
571 case VirtualMemoryArea::Type::Allocated:
572 MapMemoryRegion(vma.base, vma.size, nullptr, vma.backing_addr);
573 break;
574 case VirtualMemoryArea::Type::Mapped:
575 MapMemoryRegion(vma.base, vma.size, vma.backing_memory, vma.backing_addr);
576 break;
577 }
578} 322}
579 323
580} // namespace Tegra 324} // namespace Tegra
diff --git a/src/video_core/memory_manager.h b/src/video_core/memory_manager.h
index 87658e87a..681bd9588 100644
--- a/src/video_core/memory_manager.h
+++ b/src/video_core/memory_manager.h
@@ -6,9 +6,9 @@
6 6
7#include <map> 7#include <map>
8#include <optional> 8#include <optional>
9#include <vector>
9 10
10#include "common/common_types.h" 11#include "common/common_types.h"
11#include "common/page_table.h"
12 12
13namespace VideoCore { 13namespace VideoCore {
14class RasterizerInterface; 14class RasterizerInterface;
@@ -20,45 +20,57 @@ class System;
20 20
21namespace Tegra { 21namespace Tegra {
22 22
23/** 23class PageEntry final {
24 * Represents a VMA in an address space. A VMA is a contiguous region of virtual addressing space 24public:
25 * with homogeneous attributes across its extents. In this particular implementation each VMA is 25 enum class State : u32 {
26 * also backed by a single host memory allocation. 26 Unmapped = static_cast<u32>(-1),
27 */ 27 Allocated = static_cast<u32>(-2),
28struct VirtualMemoryArea {
29 enum class Type : u8 {
30 Unmapped,
31 Allocated,
32 Mapped,
33 }; 28 };
34 29
35 /// Virtual base address of the region. 30 constexpr PageEntry() = default;
36 GPUVAddr base{}; 31 constexpr PageEntry(State state) : state{state} {}
37 /// Size of the region. 32 constexpr PageEntry(VAddr addr) : state{static_cast<State>(addr >> ShiftBits)} {}
38 u64 size{}; 33
39 /// Memory area mapping type. 34 constexpr bool IsUnmapped() const {
40 Type type{Type::Unmapped}; 35 return state == State::Unmapped;
41 /// CPU memory mapped address corresponding to this memory area. 36 }
42 VAddr backing_addr{}; 37
43 /// Offset into the backing_memory the mapping starts from. 38 constexpr bool IsAllocated() const {
44 std::size_t offset{}; 39 return state == State::Allocated;
45 /// Pointer backing this VMA. 40 }
46 u8* backing_memory{}; 41
47 42 constexpr bool IsValid() const {
48 /// Tests if this area can be merged to the right with `next`. 43 return !IsUnmapped() && !IsAllocated();
49 bool CanBeMergedWith(const VirtualMemoryArea& next) const; 44 }
45
46 constexpr VAddr ToAddress() const {
47 if (!IsValid()) {
48 return {};
49 }
50
51 return static_cast<VAddr>(state) << ShiftBits;
52 }
53
54 constexpr PageEntry operator+(u64 offset) {
55 // If this is a reserved value, offsets do not apply
56 if (!IsValid()) {
57 return *this;
58 }
59 return PageEntry{(static_cast<VAddr>(state) << ShiftBits) + offset};
60 }
61
62private:
63 static constexpr std::size_t ShiftBits{12};
64
65 State state{State::Unmapped};
50}; 66};
67static_assert(sizeof(PageEntry) == 4, "PageEntry is too large");
51 68
52class MemoryManager final { 69class MemoryManager final {
53public: 70public:
54 explicit MemoryManager(Core::System& system, VideoCore::RasterizerInterface& rasterizer); 71 explicit MemoryManager(Core::System& system, VideoCore::RasterizerInterface& rasterizer);
55 ~MemoryManager(); 72 ~MemoryManager();
56 73
57 GPUVAddr AllocateSpace(u64 size, u64 align);
58 GPUVAddr AllocateSpace(GPUVAddr addr, u64 size, u64 align);
59 GPUVAddr MapBufferEx(VAddr cpu_addr, u64 size);
60 GPUVAddr MapBufferEx(VAddr cpu_addr, GPUVAddr addr, u64 size);
61 GPUVAddr UnmapBuffer(GPUVAddr addr, u64 size);
62 std::optional<VAddr> GpuToCpuAddress(GPUVAddr addr) const; 74 std::optional<VAddr> GpuToCpuAddress(GPUVAddr addr) const;
63 75
64 template <typename T> 76 template <typename T>
@@ -70,9 +82,6 @@ public:
70 u8* GetPointer(GPUVAddr addr); 82 u8* GetPointer(GPUVAddr addr);
71 const u8* GetPointer(GPUVAddr addr) const; 83 const u8* GetPointer(GPUVAddr addr) const;
72 84
73 /// Returns true if the block is continuous in host memory, false otherwise
74 bool IsBlockContinuous(GPUVAddr start, std::size_t size) const;
75
76 /** 85 /**
77 * ReadBlock and WriteBlock are full read and write operations over virtual 86 * ReadBlock and WriteBlock are full read and write operations over virtual
78 * GPU Memory. It's important to use these when GPU memory may not be continuous 87 * GPU Memory. It's important to use these when GPU memory may not be continuous
@@ -98,92 +107,43 @@ public:
98 void CopyBlockUnsafe(GPUVAddr gpu_dest_addr, GPUVAddr gpu_src_addr, std::size_t size); 107 void CopyBlockUnsafe(GPUVAddr gpu_dest_addr, GPUVAddr gpu_src_addr, std::size_t size);
99 108
100 /** 109 /**
101 * IsGranularRange checks if a gpu region can be simply read with a pointer 110 * IsGranularRange checks if a gpu region can be simply read with a pointer.
102 */ 111 */
103 bool IsGranularRange(GPUVAddr gpu_addr, std::size_t size); 112 bool IsGranularRange(GPUVAddr gpu_addr, std::size_t size);
104 113
105private: 114 GPUVAddr Map(VAddr cpu_addr, GPUVAddr gpu_addr, std::size_t size);
106 using VMAMap = std::map<GPUVAddr, VirtualMemoryArea>; 115 GPUVAddr MapAllocate(VAddr cpu_addr, std::size_t size, std::size_t align);
107 using VMAHandle = VMAMap::const_iterator; 116 std::optional<GPUVAddr> AllocateFixed(GPUVAddr gpu_addr, std::size_t size);
108 using VMAIter = VMAMap::iterator; 117 GPUVAddr Allocate(std::size_t size, std::size_t align);
109 118 void Unmap(GPUVAddr gpu_addr, std::size_t size);
110 bool IsAddressValid(GPUVAddr addr) const;
111 void MapPages(GPUVAddr base, u64 size, u8* memory, Common::PageType type,
112 VAddr backing_addr = 0);
113 void MapMemoryRegion(GPUVAddr base, u64 size, u8* target, VAddr backing_addr);
114 void UnmapRegion(GPUVAddr base, u64 size);
115
116 /// Finds the VMA in which the given address is included in, or `vma_map.end()`.
117 VMAHandle FindVMA(GPUVAddr target) const;
118
119 VMAHandle AllocateMemory(GPUVAddr target, std::size_t offset, u64 size);
120
121 /**
122 * Maps an unmanaged host memory pointer at a given address.
123 *
124 * @param target The guest address to start the mapping at.
125 * @param memory The memory to be mapped.
126 * @param size Size of the mapping in bytes.
127 * @param backing_addr The base address of the range to back this mapping.
128 */
129 VMAHandle MapBackingMemory(GPUVAddr target, u8* memory, u64 size, VAddr backing_addr);
130
131 /// Unmaps a range of addresses, splitting VMAs as necessary.
132 void UnmapRange(GPUVAddr target, u64 size);
133
134 /// Converts a VMAHandle to a mutable VMAIter.
135 VMAIter StripIterConstness(const VMAHandle& iter);
136
137 /// Marks as the specified VMA as allocated.
138 VMAIter Allocate(VMAIter vma);
139
140 /**
141 * Carves a VMA of a specific size at the specified address by splitting Free VMAs while doing
142 * the appropriate error checking.
143 */
144 VMAIter CarveVMA(GPUVAddr base, u64 size);
145
146 /**
147 * Splits the edges of the given range of non-Free VMAs so that there is a VMA split at each
148 * end of the range.
149 */
150 VMAIter CarveVMARange(GPUVAddr base, u64 size);
151
152 /**
153 * Splits a VMA in two, at the specified offset.
154 * @returns the right side of the split, with the original iterator becoming the left side.
155 */
156 VMAIter SplitVMA(VMAIter vma, u64 offset_in_vma);
157 119
158 /** 120private:
159 * Checks for and merges the specified VMA with adjacent ones if possible. 121 PageEntry GetPageEntry(GPUVAddr gpu_addr) const;
160 * @returns the merged VMA or the original if no merging was possible. 122 void SetPageEntry(GPUVAddr gpu_addr, PageEntry page_entry, std::size_t size = page_size);
161 */ 123 GPUVAddr UpdateRange(GPUVAddr gpu_addr, PageEntry page_entry, std::size_t size);
162 VMAIter MergeAdjacent(VMAIter vma); 124 std::optional<GPUVAddr> FindFreeRange(std::size_t size, std::size_t align) const;
163 125
164 /// Updates the pages corresponding to this VMA so they match the VMA's attributes. 126 void TryLockPage(PageEntry page_entry, std::size_t size);
165 void UpdatePageTableForVMA(const VirtualMemoryArea& vma); 127 void TryUnlockPage(PageEntry page_entry, std::size_t size);
166 128
167 /// Finds a free (unmapped region) of the specified size starting at the specified address. 129 static constexpr std::size_t PageEntryIndex(GPUVAddr gpu_addr) {
168 GPUVAddr FindFreeRegion(GPUVAddr region_start, u64 size) const; 130 return (gpu_addr >> page_bits) & page_table_mask;
131 }
169 132
170private: 133 static constexpr u64 address_space_size = 1ULL << 40;
134 static constexpr u64 address_space_start = 1ULL << 32;
171 static constexpr u64 page_bits{16}; 135 static constexpr u64 page_bits{16};
172 static constexpr u64 page_size{1 << page_bits}; 136 static constexpr u64 page_size{1 << page_bits};
173 static constexpr u64 page_mask{page_size - 1}; 137 static constexpr u64 page_mask{page_size - 1};
138 static constexpr u64 page_table_bits{24};
139 static constexpr u64 page_table_size{1 << page_table_bits};
140 static constexpr u64 page_table_mask{page_table_size - 1};
174 141
175 /// Address space in bits, according to Tegra X1 TRM 142 Core::System& system;
176 static constexpr u32 address_space_width{40};
177 /// Start address for mapping, this is fairly arbitrary but must be non-zero.
178 static constexpr GPUVAddr address_space_base{0x100000};
179 /// End of address space, based on address space in bits.
180 static constexpr GPUVAddr address_space_end{1ULL << address_space_width};
181 143
182 Common::PageTable page_table;
183 VMAMap vma_map;
184 VideoCore::RasterizerInterface& rasterizer; 144 VideoCore::RasterizerInterface& rasterizer;
185 145
186 Core::System& system; 146 std::vector<PageEntry> page_table;
187}; 147};
188 148
189} // namespace Tegra 149} // namespace Tegra