summaryrefslogtreecommitdiff
path: root/src/video_core/rasterizer.cpp
diff options
context:
space:
mode:
authorGravatar Tony Wasserka2014-08-12 13:55:41 +0200
committerGravatar Tony Wasserka2014-08-12 13:55:41 +0200
commit36cabe35cc15a6590f5d18be695ae505a946cb06 (patch)
tree241e6d8b36e6ab9921ef7afb71e7350e52862e2a /src/video_core/rasterizer.cpp
parentMerge pull request #38 from neobrain/replace_registerset (diff)
parentPica: Add basic rasterizer. (diff)
downloadyuzu-36cabe35cc15a6590f5d18be695ae505a946cb06.tar.gz
yuzu-36cabe35cc15a6590f5d18be695ae505a946cb06.tar.xz
yuzu-36cabe35cc15a6590f5d18be695ae505a946cb06.zip
Merge pull request #37 from neobrain/pica
Initial work on Pica rendering.
Diffstat (limited to 'src/video_core/rasterizer.cpp')
-rw-r--r--src/video_core/rasterizer.cpp180
1 files changed, 180 insertions, 0 deletions
diff --git a/src/video_core/rasterizer.cpp b/src/video_core/rasterizer.cpp
new file mode 100644
index 000000000..a7c1bab3e
--- /dev/null
+++ b/src/video_core/rasterizer.cpp
@@ -0,0 +1,180 @@
1// Copyright 2014 Citra Emulator Project
2// Licensed under GPLv2
3// Refer to the license.txt file included.
4
5#include <algorithm>
6
7#include "common/common_types.h"
8
9#include "math.h"
10#include "pica.h"
11#include "rasterizer.h"
12#include "vertex_shader.h"
13
14namespace Pica {
15
16namespace Rasterizer {
17
18static void DrawPixel(int x, int y, const Math::Vec4<u8>& color) {
19 u32* color_buffer = (u32*)Memory::GetPointer(registers.framebuffer.GetColorBufferAddress());
20 u32 value = (color.a() << 24) | (color.r() << 16) | (color.g() << 8) | color.b();
21
22 // Assuming RGBA8 format until actual framebuffer format handling is implemented
23 *(color_buffer + x + y * registers.framebuffer.GetWidth() / 2) = value;
24}
25
26static u32 GetDepth(int x, int y) {
27 u16* depth_buffer = (u16*)Memory::GetPointer(registers.framebuffer.GetDepthBufferAddress());
28
29 // Assuming 16-bit depth buffer format until actual format handling is implemented
30 return *(depth_buffer + x + y * registers.framebuffer.GetWidth() / 2);
31}
32
33static void SetDepth(int x, int y, u16 value) {
34 u16* depth_buffer = (u16*)Memory::GetPointer(registers.framebuffer.GetDepthBufferAddress());
35
36 // Assuming 16-bit depth buffer format until actual format handling is implemented
37 *(depth_buffer + x + y * registers.framebuffer.GetWidth() / 2) = value;
38}
39
40void ProcessTriangle(const VertexShader::OutputVertex& v0,
41 const VertexShader::OutputVertex& v1,
42 const VertexShader::OutputVertex& v2)
43{
44 // NOTE: Assuming that rasterizer coordinates are 12.4 fixed-point values
45 struct Fix12P4 {
46 Fix12P4() {}
47 Fix12P4(u16 val) : val(val) {}
48
49 static u16 FracMask() { return 0xF; }
50 static u16 IntMask() { return (u16)~0xF; }
51
52 operator u16() const {
53 return val;
54 }
55
56 bool operator < (const Fix12P4& oth) const {
57 return (u16)*this < (u16)oth;
58 }
59
60 private:
61 u16 val;
62 };
63
64 // vertex positions in rasterizer coordinates
65 auto FloatToFix = [](float24 flt) {
66 return Fix12P4(flt.ToFloat32() * 16.0f);
67 };
68 auto ScreenToRasterizerCoordinates = [FloatToFix](const Math::Vec3<float24> vec) {
69 return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)};
70 };
71 Math::Vec3<Fix12P4> vtxpos[3]{ ScreenToRasterizerCoordinates(v0.screenpos),
72 ScreenToRasterizerCoordinates(v1.screenpos),
73 ScreenToRasterizerCoordinates(v2.screenpos) };
74
75 // TODO: Proper scissor rect test!
76 u16 min_x = std::min({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
77 u16 min_y = std::min({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
78 u16 max_x = std::max({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
79 u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
80
81 min_x = min_x & Fix12P4::IntMask();
82 min_y = min_y & Fix12P4::IntMask();
83 max_x = (max_x + Fix12P4::FracMask()) & Fix12P4::IntMask();
84 max_y = (max_y + Fix12P4::FracMask()) & Fix12P4::IntMask();
85
86 // Triangle filling rules: Pixels on the right-sided edge or on flat bottom edges are not
87 // drawn. Pixels on any other triangle border are drawn. This is implemented with three bias
88 // values which are added to the barycentric coordinates w0, w1 and w2, respectively.
89 // NOTE: These are the PSP filling rules. Not sure if the 3DS uses the same ones...
90 auto IsRightSideOrFlatBottomEdge = [](const Math::Vec2<Fix12P4>& vtx,
91 const Math::Vec2<Fix12P4>& line1,
92 const Math::Vec2<Fix12P4>& line2)
93 {
94 if (line1.y == line2.y) {
95 // just check if vertex is above us => bottom line parallel to x-axis
96 return vtx.y < line1.y;
97 } else {
98 // check if vertex is on our left => right side
99 // TODO: Not sure how likely this is to overflow
100 return (int)vtx.x < (int)line1.x + ((int)line2.x - (int)line1.x) * ((int)vtx.y - (int)line1.y) / ((int)line2.y - (int)line1.y);
101 }
102 };
103 int bias0 = IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0;
104 int bias1 = IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0;
105 int bias2 = IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0;
106
107 // TODO: Not sure if looping through x first might be faster
108 for (u16 y = min_y; y < max_y; y += 0x10) {
109 for (u16 x = min_x; x < max_x; x += 0x10) {
110
111 // Calculate the barycentric coordinates w0, w1 and w2
112 auto orient2d = [](const Math::Vec2<Fix12P4>& vtx1,
113 const Math::Vec2<Fix12P4>& vtx2,
114 const Math::Vec2<Fix12P4>& vtx3) {
115 const auto vec1 = (vtx2.Cast<int>() - vtx1.Cast<int>()).Append(0);
116 const auto vec2 = (vtx3.Cast<int>() - vtx1.Cast<int>()).Append(0);
117 // TODO: There is a very small chance this will overflow for sizeof(int) == 4
118 return Cross(vec1, vec2).z;
119 };
120
121 int w0 = bias0 + orient2d(vtxpos[1].xy(), vtxpos[2].xy(), {x, y});
122 int w1 = bias1 + orient2d(vtxpos[2].xy(), vtxpos[0].xy(), {x, y});
123 int w2 = bias2 + orient2d(vtxpos[0].xy(), vtxpos[1].xy(), {x, y});
124 int wsum = w0 + w1 + w2;
125
126 // If current pixel is not covered by the current primitive
127 if (w0 < 0 || w1 < 0 || w2 < 0)
128 continue;
129
130 // Perspective correct attribute interpolation:
131 // Attribute values cannot be calculated by simple linear interpolation since
132 // they are not linear in screen space. For example, when interpolating a
133 // texture coordinate across two vertices, something simple like
134 // u = (u0*w0 + u1*w1)/(w0+w1)
135 // will not work. However, the attribute value divided by the
136 // clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear
137 // in screenspace. Hence, we can linearly interpolate these two independently and
138 // calculate the interpolated attribute by dividing the results.
139 // I.e.
140 // u_over_w = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1)
141 // one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1)
142 // u = u_over_w / one_over_w
143 //
144 // The generalization to three vertices is straightforward in baricentric coordinates.
145 auto GetInterpolatedAttribute = [&](float24 attr0, float24 attr1, float24 attr2) {
146 auto attr_over_w = Math::MakeVec3(attr0 / v0.pos.w,
147 attr1 / v1.pos.w,
148 attr2 / v2.pos.w);
149 auto w_inverse = Math::MakeVec3(float24::FromFloat32(1.f) / v0.pos.w,
150 float24::FromFloat32(1.f) / v1.pos.w,
151 float24::FromFloat32(1.f) / v2.pos.w);
152 auto baricentric_coordinates = Math::MakeVec3(float24::FromFloat32(w0),
153 float24::FromFloat32(w1),
154 float24::FromFloat32(w2));
155
156 float24 interpolated_attr_over_w = Math::Dot(attr_over_w, baricentric_coordinates);
157 float24 interpolated_w_inverse = Math::Dot(w_inverse, baricentric_coordinates);
158 return interpolated_attr_over_w / interpolated_w_inverse;
159 };
160
161 Math::Vec4<u8> primary_color{
162 (u8)(GetInterpolatedAttribute(v0.color.r(), v1.color.r(), v2.color.r()).ToFloat32() * 255),
163 (u8)(GetInterpolatedAttribute(v0.color.g(), v1.color.g(), v2.color.g()).ToFloat32() * 255),
164 (u8)(GetInterpolatedAttribute(v0.color.b(), v1.color.b(), v2.color.b()).ToFloat32() * 255),
165 (u8)(GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() * 255)
166 };
167
168 u16 z = (u16)(((float)v0.screenpos[2].ToFloat32() * w0 +
169 (float)v1.screenpos[2].ToFloat32() * w1 +
170 (float)v2.screenpos[2].ToFloat32() * w2) * 65535.f / wsum); // TODO: Shouldn't need to multiply by 65536?
171 SetDepth(x >> 4, y >> 4, z);
172
173 DrawPixel(x >> 4, y >> 4, primary_color);
174 }
175 }
176}
177
178} // namespace Rasterizer
179
180} // namespace Pica