summaryrefslogtreecommitdiff
path: root/src/core/hle/kernel
diff options
context:
space:
mode:
authorGravatar bunnei2020-04-17 16:33:08 -0400
committerGravatar GitHub2020-04-17 16:33:08 -0400
commitb8f5c71f2d7f819821acf036175cce65ab1ae12c (patch)
tree151d7ed4e47536dc0e149a7117387b6a502d7da6 /src/core/hle/kernel
parentMerge pull request #3682 from lioncash/uam (diff)
parentcore: hle: Address various feedback & code cleanup. (diff)
downloadyuzu-b8f5c71f2d7f819821acf036175cce65ab1ae12c.tar.gz
yuzu-b8f5c71f2d7f819821acf036175cce65ab1ae12c.tar.xz
yuzu-b8f5c71f2d7f819821acf036175cce65ab1ae12c.zip
Merge pull request #3666 from bunnei/new-vmm
Implement a new virtual memory manager
Diffstat (limited to 'src/core/hle/kernel')
-rw-r--r--src/core/hle/kernel/client_session.cpp3
-rw-r--r--src/core/hle/kernel/client_session.h4
-rw-r--r--src/core/hle/kernel/errors.h1
-rw-r--r--src/core/hle/kernel/kernel.cpp122
-rw-r--r--src/core/hle/kernel/kernel.h44
-rw-r--r--src/core/hle/kernel/memory/address_space_info.cpp118
-rw-r--r--src/core/hle/kernel/memory/address_space_info.h54
-rw-r--r--src/core/hle/kernel/memory/memory_block.h318
-rw-r--r--src/core/hle/kernel/memory/memory_block_manager.cpp190
-rw-r--r--src/core/hle/kernel/memory/memory_block_manager.h64
-rw-r--r--src/core/hle/kernel/memory/memory_layout.h73
-rw-r--r--src/core/hle/kernel/memory/memory_manager.cpp176
-rw-r--r--src/core/hle/kernel/memory/memory_manager.h97
-rw-r--r--src/core/hle/kernel/memory/memory_types.h18
-rw-r--r--src/core/hle/kernel/memory/page_heap.cpp119
-rw-r--r--src/core/hle/kernel/memory/page_heap.h370
-rw-r--r--src/core/hle/kernel/memory/page_linked_list.h93
-rw-r--r--src/core/hle/kernel/memory/page_table.cpp1130
-rw-r--r--src/core/hle/kernel/memory/page_table.h276
-rw-r--r--src/core/hle/kernel/memory/slab_heap.h164
-rw-r--r--src/core/hle/kernel/memory/system_control.cpp41
-rw-r--r--src/core/hle/kernel/memory/system_control.h18
-rw-r--r--src/core/hle/kernel/physical_memory.h2
-rw-r--r--src/core/hle/kernel/process.cpp200
-rw-r--r--src/core/hle/kernel/process.h45
-rw-r--r--src/core/hle/kernel/process_capability.cpp24
-rw-r--r--src/core/hle/kernel/process_capability.h24
-rw-r--r--src/core/hle/kernel/resource_limit.cpp50
-rw-r--r--src/core/hle/kernel/resource_limit.h12
-rw-r--r--src/core/hle/kernel/server_session.cpp5
-rw-r--r--src/core/hle/kernel/server_session.h6
-rw-r--r--src/core/hle/kernel/shared_memory.cpp151
-rw-r--r--src/core/hle/kernel/shared_memory.h127
-rw-r--r--src/core/hle/kernel/svc.cpp621
-rw-r--r--src/core/hle/kernel/svc.h6
-rw-r--r--src/core/hle/kernel/svc_types.h68
-rw-r--r--src/core/hle/kernel/transfer_memory.cpp104
-rw-r--r--src/core/hle/kernel/transfer_memory.h55
-rw-r--r--src/core/hle/kernel/vm_manager.cpp1175
-rw-r--r--src/core/hle/kernel/vm_manager.h796
40 files changed, 4009 insertions, 2955 deletions
diff --git a/src/core/hle/kernel/client_session.cpp b/src/core/hle/kernel/client_session.cpp
index 6d66276bc..5ab204b9b 100644
--- a/src/core/hle/kernel/client_session.cpp
+++ b/src/core/hle/kernel/client_session.cpp
@@ -47,7 +47,8 @@ ResultVal<std::shared_ptr<ClientSession>> ClientSession::Create(KernelCore& kern
47 return MakeResult(std::move(client_session)); 47 return MakeResult(std::move(client_session));
48} 48}
49 49
50ResultCode ClientSession::SendSyncRequest(std::shared_ptr<Thread> thread, Memory::Memory& memory) { 50ResultCode ClientSession::SendSyncRequest(std::shared_ptr<Thread> thread,
51 Core::Memory::Memory& memory) {
51 // Keep ServerSession alive until we're done working with it. 52 // Keep ServerSession alive until we're done working with it.
52 if (!parent->Server()) { 53 if (!parent->Server()) {
53 return ERR_SESSION_CLOSED_BY_REMOTE; 54 return ERR_SESSION_CLOSED_BY_REMOTE;
diff --git a/src/core/hle/kernel/client_session.h b/src/core/hle/kernel/client_session.h
index d15b09554..c5f760d7d 100644
--- a/src/core/hle/kernel/client_session.h
+++ b/src/core/hle/kernel/client_session.h
@@ -12,7 +12,7 @@
12 12
13union ResultCode; 13union ResultCode;
14 14
15namespace Memory { 15namespace Core::Memory {
16class Memory; 16class Memory;
17} 17}
18 18
@@ -42,7 +42,7 @@ public:
42 return HANDLE_TYPE; 42 return HANDLE_TYPE;
43 } 43 }
44 44
45 ResultCode SendSyncRequest(std::shared_ptr<Thread> thread, Memory::Memory& memory); 45 ResultCode SendSyncRequest(std::shared_ptr<Thread> thread, Core::Memory::Memory& memory);
46 46
47 bool ShouldWait(const Thread* thread) const override; 47 bool ShouldWait(const Thread* thread) const override;
48 48
diff --git a/src/core/hle/kernel/errors.h b/src/core/hle/kernel/errors.h
index 8097b3863..29bfa3621 100644
--- a/src/core/hle/kernel/errors.h
+++ b/src/core/hle/kernel/errors.h
@@ -14,6 +14,7 @@ constexpr ResultCode ERR_MAX_CONNECTIONS_REACHED{ErrorModule::Kernel, 7};
14constexpr ResultCode ERR_INVALID_CAPABILITY_DESCRIPTOR{ErrorModule::Kernel, 14}; 14constexpr ResultCode ERR_INVALID_CAPABILITY_DESCRIPTOR{ErrorModule::Kernel, 14};
15constexpr ResultCode ERR_INVALID_SIZE{ErrorModule::Kernel, 101}; 15constexpr ResultCode ERR_INVALID_SIZE{ErrorModule::Kernel, 101};
16constexpr ResultCode ERR_INVALID_ADDRESS{ErrorModule::Kernel, 102}; 16constexpr ResultCode ERR_INVALID_ADDRESS{ErrorModule::Kernel, 102};
17constexpr ResultCode ERR_OUT_OF_RESOURCES{ErrorModule::Kernel, 103};
17constexpr ResultCode ERR_OUT_OF_MEMORY{ErrorModule::Kernel, 104}; 18constexpr ResultCode ERR_OUT_OF_MEMORY{ErrorModule::Kernel, 104};
18constexpr ResultCode ERR_HANDLE_TABLE_FULL{ErrorModule::Kernel, 105}; 19constexpr ResultCode ERR_HANDLE_TABLE_FULL{ErrorModule::Kernel, 105};
19constexpr ResultCode ERR_INVALID_ADDRESS_STATE{ErrorModule::Kernel, 106}; 20constexpr ResultCode ERR_INVALID_ADDRESS_STATE{ErrorModule::Kernel, 106};
diff --git a/src/core/hle/kernel/kernel.cpp b/src/core/hle/kernel/kernel.cpp
index 014d647cf..7655382fa 100644
--- a/src/core/hle/kernel/kernel.cpp
+++ b/src/core/hle/kernel/kernel.cpp
@@ -18,15 +18,20 @@
18#include "core/core.h" 18#include "core/core.h"
19#include "core/core_timing.h" 19#include "core/core_timing.h"
20#include "core/core_timing_util.h" 20#include "core/core_timing_util.h"
21#include "core/device_memory.h"
21#include "core/hardware_properties.h" 22#include "core/hardware_properties.h"
22#include "core/hle/kernel/client_port.h" 23#include "core/hle/kernel/client_port.h"
23#include "core/hle/kernel/errors.h" 24#include "core/hle/kernel/errors.h"
24#include "core/hle/kernel/handle_table.h" 25#include "core/hle/kernel/handle_table.h"
25#include "core/hle/kernel/kernel.h" 26#include "core/hle/kernel/kernel.h"
27#include "core/hle/kernel/memory/memory_layout.h"
28#include "core/hle/kernel/memory/memory_manager.h"
29#include "core/hle/kernel/memory/slab_heap.h"
26#include "core/hle/kernel/physical_core.h" 30#include "core/hle/kernel/physical_core.h"
27#include "core/hle/kernel/process.h" 31#include "core/hle/kernel/process.h"
28#include "core/hle/kernel/resource_limit.h" 32#include "core/hle/kernel/resource_limit.h"
29#include "core/hle/kernel/scheduler.h" 33#include "core/hle/kernel/scheduler.h"
34#include "core/hle/kernel/shared_memory.h"
30#include "core/hle/kernel/synchronization.h" 35#include "core/hle/kernel/synchronization.h"
31#include "core/hle/kernel/thread.h" 36#include "core/hle/kernel/thread.h"
32#include "core/hle/kernel/time_manager.h" 37#include "core/hle/kernel/time_manager.h"
@@ -110,6 +115,7 @@ struct KernelCore::Impl {
110 115
111 InitializePhysicalCores(); 116 InitializePhysicalCores();
112 InitializeSystemResourceLimit(kernel); 117 InitializeSystemResourceLimit(kernel);
118 InitializeMemoryLayout();
113 InitializeThreads(); 119 InitializeThreads();
114 InitializePreemption(); 120 InitializePreemption();
115 } 121 }
@@ -154,12 +160,17 @@ struct KernelCore::Impl {
154 system_resource_limit = ResourceLimit::Create(kernel); 160 system_resource_limit = ResourceLimit::Create(kernel);
155 161
156 // If setting the default system values fails, then something seriously wrong has occurred. 162 // If setting the default system values fails, then something seriously wrong has occurred.
157 ASSERT(system_resource_limit->SetLimitValue(ResourceType::PhysicalMemory, 0x200000000) 163 ASSERT(system_resource_limit->SetLimitValue(ResourceType::PhysicalMemory, 0x100000000)
158 .IsSuccess()); 164 .IsSuccess());
159 ASSERT(system_resource_limit->SetLimitValue(ResourceType::Threads, 800).IsSuccess()); 165 ASSERT(system_resource_limit->SetLimitValue(ResourceType::Threads, 800).IsSuccess());
160 ASSERT(system_resource_limit->SetLimitValue(ResourceType::Events, 700).IsSuccess()); 166 ASSERT(system_resource_limit->SetLimitValue(ResourceType::Events, 700).IsSuccess());
161 ASSERT(system_resource_limit->SetLimitValue(ResourceType::TransferMemory, 200).IsSuccess()); 167 ASSERT(system_resource_limit->SetLimitValue(ResourceType::TransferMemory, 200).IsSuccess());
162 ASSERT(system_resource_limit->SetLimitValue(ResourceType::Sessions, 900).IsSuccess()); 168 ASSERT(system_resource_limit->SetLimitValue(ResourceType::Sessions, 900).IsSuccess());
169
170 if (!system_resource_limit->Reserve(ResourceType::PhysicalMemory, 0) ||
171 !system_resource_limit->Reserve(ResourceType::PhysicalMemory, 0x60000)) {
172 UNREACHABLE();
173 }
163 } 174 }
164 175
165 void InitializeThreads() { 176 void InitializeThreads() {
@@ -237,6 +248,57 @@ struct KernelCore::Impl {
237 return result; 248 return result;
238 } 249 }
239 250
251 void InitializeMemoryLayout() {
252 // Initialize memory layout
253 constexpr Memory::MemoryLayout layout{Memory::MemoryLayout::GetDefaultLayout()};
254 constexpr std::size_t hid_size{0x40000};
255 constexpr std::size_t font_size{0x1100000};
256 constexpr std::size_t irs_size{0x8000};
257 constexpr std::size_t time_size{0x1000};
258 constexpr PAddr hid_addr{layout.System().StartAddress()};
259 constexpr PAddr font_pa{layout.System().StartAddress() + hid_size};
260 constexpr PAddr irs_addr{layout.System().StartAddress() + hid_size + font_size};
261 constexpr PAddr time_addr{layout.System().StartAddress() + hid_size + font_size + irs_size};
262
263 // Initialize memory manager
264 memory_manager = std::make_unique<Memory::MemoryManager>();
265 memory_manager->InitializeManager(Memory::MemoryManager::Pool::Application,
266 layout.Application().StartAddress(),
267 layout.Application().EndAddress());
268 memory_manager->InitializeManager(Memory::MemoryManager::Pool::Applet,
269 layout.Applet().StartAddress(),
270 layout.Applet().EndAddress());
271 memory_manager->InitializeManager(Memory::MemoryManager::Pool::System,
272 layout.System().StartAddress(),
273 layout.System().EndAddress());
274
275 hid_shared_mem = Kernel::SharedMemory::Create(
276 system.Kernel(), system.DeviceMemory(), nullptr,
277 {hid_addr, hid_size / Memory::PageSize}, Memory::MemoryPermission::None,
278 Memory::MemoryPermission::Read, hid_addr, hid_size, "HID:SharedMemory");
279 font_shared_mem = Kernel::SharedMemory::Create(
280 system.Kernel(), system.DeviceMemory(), nullptr,
281 {font_pa, font_size / Memory::PageSize}, Memory::MemoryPermission::None,
282 Memory::MemoryPermission::Read, font_pa, font_size, "Font:SharedMemory");
283 irs_shared_mem = Kernel::SharedMemory::Create(
284 system.Kernel(), system.DeviceMemory(), nullptr,
285 {irs_addr, irs_size / Memory::PageSize}, Memory::MemoryPermission::None,
286 Memory::MemoryPermission::Read, irs_addr, irs_size, "IRS:SharedMemory");
287 time_shared_mem = Kernel::SharedMemory::Create(
288 system.Kernel(), system.DeviceMemory(), nullptr,
289 {time_addr, time_size / Memory::PageSize}, Memory::MemoryPermission::None,
290 Memory::MemoryPermission::Read, time_addr, time_size, "Time:SharedMemory");
291
292 // Allocate slab heaps
293 user_slab_heap_pages = std::make_unique<Memory::SlabHeap<Memory::Page>>();
294
295 // Initialize slab heaps
296 constexpr u64 user_slab_heap_size{0x3de000};
297 user_slab_heap_pages->Initialize(
298 system.DeviceMemory().GetPointer(Core::DramMemoryMap::SlabHeapBase),
299 user_slab_heap_size);
300 }
301
240 std::atomic<u32> next_object_id{0}; 302 std::atomic<u32> next_object_id{0};
241 std::atomic<u64> next_kernel_process_id{Process::InitialKIPIDMin}; 303 std::atomic<u64> next_kernel_process_id{Process::InitialKIPIDMin};
242 std::atomic<u64> next_user_process_id{Process::ProcessIDMin}; 304 std::atomic<u64> next_user_process_id{Process::ProcessIDMin};
@@ -271,6 +333,16 @@ struct KernelCore::Impl {
271 std::bitset<Core::Hardware::NUM_CPU_CORES> registered_core_threads; 333 std::bitset<Core::Hardware::NUM_CPU_CORES> registered_core_threads;
272 std::mutex register_thread_mutex; 334 std::mutex register_thread_mutex;
273 335
336 // Kernel memory management
337 std::unique_ptr<Memory::MemoryManager> memory_manager;
338 std::unique_ptr<Memory::SlabHeap<Memory::Page>> user_slab_heap_pages;
339
340 // Shared memory for services
341 std::shared_ptr<Kernel::SharedMemory> hid_shared_mem;
342 std::shared_ptr<Kernel::SharedMemory> font_shared_mem;
343 std::shared_ptr<Kernel::SharedMemory> irs_shared_mem;
344 std::shared_ptr<Kernel::SharedMemory> time_shared_mem;
345
274 // System context 346 // System context
275 Core::System& system; 347 Core::System& system;
276}; 348};
@@ -437,4 +509,52 @@ Core::EmuThreadHandle KernelCore::GetCurrentEmuThreadID() const {
437 return impl->GetCurrentEmuThreadID(); 509 return impl->GetCurrentEmuThreadID();
438} 510}
439 511
512Memory::MemoryManager& KernelCore::MemoryManager() {
513 return *impl->memory_manager;
514}
515
516const Memory::MemoryManager& KernelCore::MemoryManager() const {
517 return *impl->memory_manager;
518}
519
520Memory::SlabHeap<Memory::Page>& KernelCore::GetUserSlabHeapPages() {
521 return *impl->user_slab_heap_pages;
522}
523
524const Memory::SlabHeap<Memory::Page>& KernelCore::GetUserSlabHeapPages() const {
525 return *impl->user_slab_heap_pages;
526}
527
528Kernel::SharedMemory& KernelCore::GetHidSharedMem() {
529 return *impl->hid_shared_mem;
530}
531
532const Kernel::SharedMemory& KernelCore::GetHidSharedMem() const {
533 return *impl->hid_shared_mem;
534}
535
536Kernel::SharedMemory& KernelCore::GetFontSharedMem() {
537 return *impl->font_shared_mem;
538}
539
540const Kernel::SharedMemory& KernelCore::GetFontSharedMem() const {
541 return *impl->font_shared_mem;
542}
543
544Kernel::SharedMemory& KernelCore::GetIrsSharedMem() {
545 return *impl->irs_shared_mem;
546}
547
548const Kernel::SharedMemory& KernelCore::GetIrsSharedMem() const {
549 return *impl->irs_shared_mem;
550}
551
552Kernel::SharedMemory& KernelCore::GetTimeSharedMem() {
553 return *impl->time_shared_mem;
554}
555
556const Kernel::SharedMemory& KernelCore::GetTimeSharedMem() const {
557 return *impl->time_shared_mem;
558}
559
440} // namespace Kernel 560} // namespace Kernel
diff --git a/src/core/hle/kernel/kernel.h b/src/core/hle/kernel/kernel.h
index c4f78ab71..83de1f542 100644
--- a/src/core/hle/kernel/kernel.h
+++ b/src/core/hle/kernel/kernel.h
@@ -8,6 +8,7 @@
8#include <string> 8#include <string>
9#include <unordered_map> 9#include <unordered_map>
10#include <vector> 10#include <vector>
11#include "core/hle/kernel/memory/memory_types.h"
11#include "core/hle/kernel/object.h" 12#include "core/hle/kernel/object.h"
12 13
13namespace Core { 14namespace Core {
@@ -23,6 +24,12 @@ struct EventType;
23 24
24namespace Kernel { 25namespace Kernel {
25 26
27namespace Memory {
28class MemoryManager;
29template <typename T>
30class SlabHeap;
31} // namespace Memory
32
26class AddressArbiter; 33class AddressArbiter;
27class ClientPort; 34class ClientPort;
28class GlobalScheduler; 35class GlobalScheduler;
@@ -31,6 +38,7 @@ class PhysicalCore;
31class Process; 38class Process;
32class ResourceLimit; 39class ResourceLimit;
33class Scheduler; 40class Scheduler;
41class SharedMemory;
34class Synchronization; 42class Synchronization;
35class Thread; 43class Thread;
36class TimeManager; 44class TimeManager;
@@ -147,6 +155,42 @@ public:
147 /// Register the current thread as a non CPU core thread. 155 /// Register the current thread as a non CPU core thread.
148 void RegisterHostThread(); 156 void RegisterHostThread();
149 157
158 /// Gets the virtual memory manager for the kernel.
159 Memory::MemoryManager& MemoryManager();
160
161 /// Gets the virtual memory manager for the kernel.
162 const Memory::MemoryManager& MemoryManager() const;
163
164 /// Gets the slab heap allocated for user space pages.
165 Memory::SlabHeap<Memory::Page>& GetUserSlabHeapPages();
166
167 /// Gets the slab heap allocated for user space pages.
168 const Memory::SlabHeap<Memory::Page>& GetUserSlabHeapPages() const;
169
170 /// Gets the shared memory object for HID services.
171 Kernel::SharedMemory& GetHidSharedMem();
172
173 /// Gets the shared memory object for HID services.
174 const Kernel::SharedMemory& GetHidSharedMem() const;
175
176 /// Gets the shared memory object for font services.
177 Kernel::SharedMemory& GetFontSharedMem();
178
179 /// Gets the shared memory object for font services.
180 const Kernel::SharedMemory& GetFontSharedMem() const;
181
182 /// Gets the shared memory object for IRS services.
183 Kernel::SharedMemory& GetIrsSharedMem();
184
185 /// Gets the shared memory object for IRS services.
186 const Kernel::SharedMemory& GetIrsSharedMem() const;
187
188 /// Gets the shared memory object for Time services.
189 Kernel::SharedMemory& GetTimeSharedMem();
190
191 /// Gets the shared memory object for Time services.
192 const Kernel::SharedMemory& GetTimeSharedMem() const;
193
150private: 194private:
151 friend class Object; 195 friend class Object;
152 friend class Process; 196 friend class Process;
diff --git a/src/core/hle/kernel/memory/address_space_info.cpp b/src/core/hle/kernel/memory/address_space_info.cpp
new file mode 100644
index 000000000..27fae05e7
--- /dev/null
+++ b/src/core/hle/kernel/memory/address_space_info.cpp
@@ -0,0 +1,118 @@
1// Copyright 2020 yuzu Emulator Project
2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included.
4
5// This file references various implementation details from Atmosphère, an open-source firmware for
6// the Nintendo Switch. Copyright 2018-2020 Atmosphère-NX.
7
8#include <array>
9
10#include "common/assert.h"
11#include "core/hle/kernel/memory/address_space_info.h"
12
13namespace Kernel::Memory {
14
15namespace {
16
17enum : u64 {
18 Size_1_MB = 0x100000,
19 Size_2_MB = 2 * Size_1_MB,
20 Size_128_MB = 128 * Size_1_MB,
21 Size_1_GB = 0x40000000,
22 Size_2_GB = 2 * Size_1_GB,
23 Size_4_GB = 4 * Size_1_GB,
24 Size_6_GB = 6 * Size_1_GB,
25 Size_64_GB = 64 * Size_1_GB,
26 Size_512_GB = 512 * Size_1_GB,
27 Invalid = std::numeric_limits<u64>::max(),
28};
29
30// clang-format off
31constexpr std::array<AddressSpaceInfo, 13> AddressSpaceInfos{{
32 { 32 /*bit_width*/, Size_2_MB /*addr*/, Size_1_GB - Size_2_MB /*size*/, AddressSpaceInfo::Type::Is32Bit, },
33 { 32 /*bit_width*/, Size_1_GB /*addr*/, Size_4_GB - Size_1_GB /*size*/, AddressSpaceInfo::Type::Small64Bit, },
34 { 32 /*bit_width*/, Invalid /*addr*/, Size_1_GB /*size*/, AddressSpaceInfo::Type::Heap, },
35 { 32 /*bit_width*/, Invalid /*addr*/, Size_1_GB /*size*/, AddressSpaceInfo::Type::Alias, },
36 { 36 /*bit_width*/, Size_128_MB /*addr*/, Size_2_GB - Size_128_MB /*size*/, AddressSpaceInfo::Type::Is32Bit, },
37 { 36 /*bit_width*/, Size_2_GB /*addr*/, Size_64_GB - Size_2_GB /*size*/, AddressSpaceInfo::Type::Small64Bit, },
38 { 36 /*bit_width*/, Invalid /*addr*/, Size_6_GB /*size*/, AddressSpaceInfo::Type::Heap, },
39 { 36 /*bit_width*/, Invalid /*addr*/, Size_6_GB /*size*/, AddressSpaceInfo::Type::Alias, },
40 { 39 /*bit_width*/, Size_128_MB /*addr*/, Size_512_GB - Size_128_MB /*size*/, AddressSpaceInfo::Type::Large64Bit, },
41 { 39 /*bit_width*/, Invalid /*addr*/, Size_64_GB /*size*/, AddressSpaceInfo::Type::Is32Bit },
42 { 39 /*bit_width*/, Invalid /*addr*/, Size_6_GB /*size*/, AddressSpaceInfo::Type::Heap, },
43 { 39 /*bit_width*/, Invalid /*addr*/, Size_64_GB /*size*/, AddressSpaceInfo::Type::Alias, },
44 { 39 /*bit_width*/, Invalid /*addr*/, Size_2_GB /*size*/, AddressSpaceInfo::Type::Stack, },
45}};
46// clang-format on
47
48constexpr bool IsAllowedIndexForAddress(std::size_t index) {
49 return index < std::size(AddressSpaceInfos) && AddressSpaceInfos[index].GetAddress() != Invalid;
50}
51
52constexpr std::size_t
53 AddressSpaceIndices32Bit[static_cast<std::size_t>(AddressSpaceInfo::Type::Count)]{
54 0, 1, 0, 2, 0, 3,
55 };
56
57constexpr std::size_t
58 AddressSpaceIndices36Bit[static_cast<std::size_t>(AddressSpaceInfo::Type::Count)]{
59 4, 5, 4, 6, 4, 7,
60 };
61
62constexpr std::size_t
63 AddressSpaceIndices39Bit[static_cast<std::size_t>(AddressSpaceInfo::Type::Count)]{
64 9, 8, 8, 10, 12, 11,
65 };
66
67constexpr bool IsAllowed32BitType(AddressSpaceInfo::Type type) {
68 return type < AddressSpaceInfo::Type::Count && type != AddressSpaceInfo::Type::Large64Bit &&
69 type != AddressSpaceInfo::Type::Stack;
70}
71
72constexpr bool IsAllowed36BitType(AddressSpaceInfo::Type type) {
73 return type < AddressSpaceInfo::Type::Count && type != AddressSpaceInfo::Type::Large64Bit &&
74 type != AddressSpaceInfo::Type::Stack;
75}
76
77constexpr bool IsAllowed39BitType(AddressSpaceInfo::Type type) {
78 return type < AddressSpaceInfo::Type::Count && type != AddressSpaceInfo::Type::Small64Bit;
79}
80
81} // namespace
82
83u64 AddressSpaceInfo::GetAddressSpaceStart(std::size_t width, AddressSpaceInfo::Type type) {
84 const std::size_t index{static_cast<std::size_t>(type)};
85 switch (width) {
86 case 32:
87 ASSERT(IsAllowed32BitType(type));
88 ASSERT(IsAllowedIndexForAddress(AddressSpaceIndices32Bit[index]));
89 return AddressSpaceInfos[AddressSpaceIndices32Bit[index]].GetAddress();
90 case 36:
91 ASSERT(IsAllowed36BitType(type));
92 ASSERT(IsAllowedIndexForAddress(AddressSpaceIndices36Bit[index]));
93 return AddressSpaceInfos[AddressSpaceIndices36Bit[index]].GetAddress();
94 case 39:
95 ASSERT(IsAllowed39BitType(type));
96 ASSERT(IsAllowedIndexForAddress(AddressSpaceIndices39Bit[index]));
97 return AddressSpaceInfos[AddressSpaceIndices39Bit[index]].GetAddress();
98 }
99 UNREACHABLE();
100}
101
102std::size_t AddressSpaceInfo::GetAddressSpaceSize(std::size_t width, AddressSpaceInfo::Type type) {
103 const std::size_t index{static_cast<std::size_t>(type)};
104 switch (width) {
105 case 32:
106 ASSERT(IsAllowed32BitType(type));
107 return AddressSpaceInfos[AddressSpaceIndices32Bit[index]].GetSize();
108 case 36:
109 ASSERT(IsAllowed36BitType(type));
110 return AddressSpaceInfos[AddressSpaceIndices36Bit[index]].GetSize();
111 case 39:
112 ASSERT(IsAllowed39BitType(type));
113 return AddressSpaceInfos[AddressSpaceIndices39Bit[index]].GetSize();
114 }
115 UNREACHABLE();
116}
117
118} // namespace Kernel::Memory
diff --git a/src/core/hle/kernel/memory/address_space_info.h b/src/core/hle/kernel/memory/address_space_info.h
new file mode 100644
index 000000000..cc9a6421e
--- /dev/null
+++ b/src/core/hle/kernel/memory/address_space_info.h
@@ -0,0 +1,54 @@
1// Copyright 2020 yuzu Emulator Project
2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included.
4
5// This file references various implementation details from Atmosphère, an open-source firmware for
6// the Nintendo Switch. Copyright 2018-2020 Atmosphère-NX.
7
8#pragma once
9
10#include "common/common_funcs.h"
11#include "common/common_types.h"
12
13namespace Kernel::Memory {
14
15class AddressSpaceInfo final : NonCopyable {
16public:
17 enum class Type : u32 {
18 Is32Bit = 0,
19 Small64Bit = 1,
20 Large64Bit = 2,
21 Heap = 3,
22 Stack = 4,
23 Alias = 5,
24 Count,
25 };
26
27private:
28 std::size_t bit_width{};
29 std::size_t addr{};
30 std::size_t size{};
31 Type type{};
32
33public:
34 static u64 GetAddressSpaceStart(std::size_t width, Type type);
35 static std::size_t GetAddressSpaceSize(std::size_t width, Type type);
36
37 constexpr AddressSpaceInfo(std::size_t bit_width, std::size_t addr, std::size_t size, Type type)
38 : bit_width{bit_width}, addr{addr}, size{size}, type{type} {}
39
40 constexpr std::size_t GetWidth() const {
41 return bit_width;
42 }
43 constexpr std::size_t GetAddress() const {
44 return addr;
45 }
46 constexpr std::size_t GetSize() const {
47 return size;
48 }
49 constexpr Type GetType() const {
50 return type;
51 }
52};
53
54} // namespace Kernel::Memory
diff --git a/src/core/hle/kernel/memory/memory_block.h b/src/core/hle/kernel/memory/memory_block.h
new file mode 100644
index 000000000..e11043b60
--- /dev/null
+++ b/src/core/hle/kernel/memory/memory_block.h
@@ -0,0 +1,318 @@
1// Copyright 2020 yuzu Emulator Project
2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included.
4
5// This file references various implementation details from Atmosphère, an open-source firmware for
6// the Nintendo Switch. Copyright 2018-2020 Atmosphère-NX.
7
8#pragma once
9
10#include "common/alignment.h"
11#include "common/assert.h"
12#include "common/common_types.h"
13#include "core/hle/kernel/memory/memory_types.h"
14#include "core/hle/kernel/svc_types.h"
15
16namespace Kernel::Memory {
17
18enum class MemoryState : u32 {
19 None = 0,
20 Mask = 0xFFFFFFFF, // TODO(bunnei): This should probable be 0xFF
21 All = ~None,
22
23 FlagCanReprotect = (1 << 8),
24 FlagCanDebug = (1 << 9),
25 FlagCanUseIpc = (1 << 10),
26 FlagCanUseNonDeviceIpc = (1 << 11),
27 FlagCanUseNonSecureIpc = (1 << 12),
28 FlagMapped = (1 << 13),
29 FlagCode = (1 << 14),
30 FlagCanAlias = (1 << 15),
31 FlagCanCodeAlias = (1 << 16),
32 FlagCanTransfer = (1 << 17),
33 FlagCanQueryPhysical = (1 << 18),
34 FlagCanDeviceMap = (1 << 19),
35 FlagCanAlignedDeviceMap = (1 << 20),
36 FlagCanIpcUserBuffer = (1 << 21),
37 FlagReferenceCounted = (1 << 22),
38 FlagCanMapProcess = (1 << 23),
39 FlagCanChangeAttribute = (1 << 24),
40 FlagCanCodeMemory = (1 << 25),
41
42 FlagsData = FlagCanReprotect | FlagCanUseIpc | FlagCanUseNonDeviceIpc | FlagCanUseNonSecureIpc |
43 FlagMapped | FlagCanAlias | FlagCanTransfer | FlagCanQueryPhysical |
44 FlagCanDeviceMap | FlagCanAlignedDeviceMap | FlagCanIpcUserBuffer |
45 FlagReferenceCounted | FlagCanChangeAttribute,
46
47 FlagsCode = FlagCanDebug | FlagCanUseIpc | FlagCanUseNonDeviceIpc | FlagCanUseNonSecureIpc |
48 FlagMapped | FlagCode | FlagCanQueryPhysical | FlagCanDeviceMap |
49 FlagCanAlignedDeviceMap | FlagReferenceCounted,
50
51 FlagsMisc = FlagMapped | FlagReferenceCounted | FlagCanQueryPhysical | FlagCanDeviceMap,
52
53 Free = static_cast<u32>(Svc::MemoryState::Free),
54 Io = static_cast<u32>(Svc::MemoryState::Io) | FlagMapped,
55 Static = static_cast<u32>(Svc::MemoryState::Static) | FlagMapped | FlagCanQueryPhysical,
56 Code = static_cast<u32>(Svc::MemoryState::Code) | FlagsCode | FlagCanMapProcess,
57 CodeData = static_cast<u32>(Svc::MemoryState::CodeData) | FlagsData | FlagCanMapProcess |
58 FlagCanCodeMemory,
59 Shared = static_cast<u32>(Svc::MemoryState::Shared) | FlagMapped | FlagReferenceCounted,
60 Normal = static_cast<u32>(Svc::MemoryState::Normal) | FlagsData | FlagCanCodeMemory,
61
62 AliasCode = static_cast<u32>(Svc::MemoryState::AliasCode) | FlagsCode | FlagCanMapProcess |
63 FlagCanCodeAlias,
64 AliasCodeData = static_cast<u32>(Svc::MemoryState::AliasCodeData) | FlagsData |
65 FlagCanMapProcess | FlagCanCodeAlias | FlagCanCodeMemory,
66
67 Ipc = static_cast<u32>(Svc::MemoryState::Ipc) | FlagsMisc | FlagCanAlignedDeviceMap |
68 FlagCanUseIpc | FlagCanUseNonSecureIpc | FlagCanUseNonDeviceIpc,
69
70 Stack = static_cast<u32>(Svc::MemoryState::Stack) | FlagsMisc | FlagCanAlignedDeviceMap |
71 FlagCanUseIpc | FlagCanUseNonSecureIpc | FlagCanUseNonDeviceIpc,
72
73 ThreadLocal =
74 static_cast<u32>(Svc::MemoryState::ThreadLocal) | FlagMapped | FlagReferenceCounted,
75
76 Transfered = static_cast<u32>(Svc::MemoryState::Transfered) | FlagsMisc |
77 FlagCanAlignedDeviceMap | FlagCanChangeAttribute | FlagCanUseIpc |
78 FlagCanUseNonSecureIpc | FlagCanUseNonDeviceIpc,
79
80 SharedTransfered = static_cast<u32>(Svc::MemoryState::SharedTransfered) | FlagsMisc |
81 FlagCanAlignedDeviceMap | FlagCanUseNonSecureIpc | FlagCanUseNonDeviceIpc,
82
83 SharedCode = static_cast<u32>(Svc::MemoryState::SharedCode) | FlagMapped |
84 FlagReferenceCounted | FlagCanUseNonSecureIpc | FlagCanUseNonDeviceIpc,
85
86 Inaccessible = static_cast<u32>(Svc::MemoryState::Inaccessible),
87
88 NonSecureIpc = static_cast<u32>(Svc::MemoryState::NonSecureIpc) | FlagsMisc |
89 FlagCanAlignedDeviceMap | FlagCanUseNonSecureIpc | FlagCanUseNonDeviceIpc,
90
91 NonDeviceIpc =
92 static_cast<u32>(Svc::MemoryState::NonDeviceIpc) | FlagsMisc | FlagCanUseNonDeviceIpc,
93
94 Kernel = static_cast<u32>(Svc::MemoryState::Kernel) | FlagMapped,
95
96 GeneratedCode = static_cast<u32>(Svc::MemoryState::GeneratedCode) | FlagMapped |
97 FlagReferenceCounted | FlagCanDebug,
98 CodeOut = static_cast<u32>(Svc::MemoryState::CodeOut) | FlagMapped | FlagReferenceCounted,
99};
100DECLARE_ENUM_FLAG_OPERATORS(MemoryState);
101
102static_assert(static_cast<u32>(MemoryState::Free) == 0x00000000);
103static_assert(static_cast<u32>(MemoryState::Io) == 0x00002001);
104static_assert(static_cast<u32>(MemoryState::Static) == 0x00042002);
105static_assert(static_cast<u32>(MemoryState::Code) == 0x00DC7E03);
106static_assert(static_cast<u32>(MemoryState::CodeData) == 0x03FEBD04);
107static_assert(static_cast<u32>(MemoryState::Normal) == 0x037EBD05);
108static_assert(static_cast<u32>(MemoryState::Shared) == 0x00402006);
109static_assert(static_cast<u32>(MemoryState::AliasCode) == 0x00DD7E08);
110static_assert(static_cast<u32>(MemoryState::AliasCodeData) == 0x03FFBD09);
111static_assert(static_cast<u32>(MemoryState::Ipc) == 0x005C3C0A);
112static_assert(static_cast<u32>(MemoryState::Stack) == 0x005C3C0B);
113static_assert(static_cast<u32>(MemoryState::ThreadLocal) == 0x0040200C);
114static_assert(static_cast<u32>(MemoryState::Transfered) == 0x015C3C0D);
115static_assert(static_cast<u32>(MemoryState::SharedTransfered) == 0x005C380E);
116static_assert(static_cast<u32>(MemoryState::SharedCode) == 0x0040380F);
117static_assert(static_cast<u32>(MemoryState::Inaccessible) == 0x00000010);
118static_assert(static_cast<u32>(MemoryState::NonSecureIpc) == 0x005C3811);
119static_assert(static_cast<u32>(MemoryState::NonDeviceIpc) == 0x004C2812);
120static_assert(static_cast<u32>(MemoryState::Kernel) == 0x00002013);
121static_assert(static_cast<u32>(MemoryState::GeneratedCode) == 0x00402214);
122static_assert(static_cast<u32>(MemoryState::CodeOut) == 0x00402015);
123
124enum class MemoryPermission : u8 {
125 None = 0,
126 Mask = static_cast<u8>(~None),
127
128 Read = 1 << 0,
129 Write = 1 << 1,
130 Execute = 1 << 2,
131
132 ReadAndWrite = Read | Write,
133 ReadAndExecute = Read | Execute,
134
135 UserMask = static_cast<u8>(Svc::MemoryPermission::Read | Svc::MemoryPermission::Write |
136 Svc::MemoryPermission::Execute),
137};
138DECLARE_ENUM_FLAG_OPERATORS(MemoryPermission);
139
140enum class MemoryAttribute : u8 {
141 None = 0x00,
142 Mask = 0x7F,
143 All = Mask,
144 DontCareMask = 0x80,
145
146 Locked = static_cast<u8>(Svc::MemoryAttribute::Locked),
147 IpcLocked = static_cast<u8>(Svc::MemoryAttribute::IpcLocked),
148 DeviceShared = static_cast<u8>(Svc::MemoryAttribute::DeviceShared),
149 Uncached = static_cast<u8>(Svc::MemoryAttribute::Uncached),
150
151 IpcAndDeviceMapped = IpcLocked | DeviceShared,
152 LockedAndIpcLocked = Locked | IpcLocked,
153 DeviceSharedAndUncached = DeviceShared | Uncached
154};
155DECLARE_ENUM_FLAG_OPERATORS(MemoryAttribute);
156
157static_assert((static_cast<u8>(MemoryAttribute::Mask) &
158 static_cast<u8>(MemoryAttribute::DontCareMask)) == 0);
159
160struct MemoryInfo {
161 VAddr addr{};
162 std::size_t size{};
163 MemoryState state{};
164 MemoryPermission perm{};
165 MemoryAttribute attribute{};
166 MemoryPermission original_perm{};
167 u16 ipc_lock_count{};
168 u16 device_use_count{};
169
170 constexpr Svc::MemoryInfo GetSvcMemoryInfo() const {
171 return {
172 addr,
173 size,
174 static_cast<Svc::MemoryState>(state & MemoryState::Mask),
175 static_cast<Svc::MemoryAttribute>(attribute & MemoryAttribute::Mask),
176 static_cast<Svc::MemoryPermission>(perm & MemoryPermission::UserMask),
177 ipc_lock_count,
178 device_use_count,
179 };
180 }
181
182 constexpr VAddr GetAddress() const {
183 return addr;
184 }
185 constexpr std::size_t GetSize() const {
186 return size;
187 }
188 constexpr std::size_t GetNumPages() const {
189 return GetSize() / PageSize;
190 }
191 constexpr VAddr GetEndAddress() const {
192 return GetAddress() + GetSize();
193 }
194 constexpr VAddr GetLastAddress() const {
195 return GetEndAddress() - 1;
196 }
197};
198
199class MemoryBlock final {
200 friend class MemoryBlockManager;
201
202private:
203 VAddr addr{};
204 std::size_t num_pages{};
205 MemoryState state{MemoryState::None};
206 u16 ipc_lock_count{};
207 u16 device_use_count{};
208 MemoryPermission perm{MemoryPermission::None};
209 MemoryPermission original_perm{MemoryPermission::None};
210 MemoryAttribute attribute{MemoryAttribute::None};
211
212public:
213 static constexpr int Compare(const MemoryBlock& lhs, const MemoryBlock& rhs) {
214 if (lhs.GetAddress() < rhs.GetAddress()) {
215 return -1;
216 } else if (lhs.GetAddress() <= rhs.GetLastAddress()) {
217 return 0;
218 } else {
219 return 1;
220 }
221 }
222
223public:
224 constexpr MemoryBlock() = default;
225 constexpr MemoryBlock(VAddr addr, std::size_t num_pages, MemoryState state,
226 MemoryPermission perm, MemoryAttribute attribute)
227 : addr{addr}, num_pages(num_pages), state{state}, perm{perm}, attribute{attribute} {}
228
229 constexpr VAddr GetAddress() const {
230 return addr;
231 }
232
233 constexpr std::size_t GetNumPages() const {
234 return num_pages;
235 }
236
237 constexpr std::size_t GetSize() const {
238 return GetNumPages() * PageSize;
239 }
240
241 constexpr VAddr GetEndAddress() const {
242 return GetAddress() + GetSize();
243 }
244
245 constexpr VAddr GetLastAddress() const {
246 return GetEndAddress() - 1;
247 }
248
249 constexpr MemoryInfo GetMemoryInfo() const {
250 return {
251 GetAddress(), GetSize(), state, perm,
252 attribute, original_perm, ipc_lock_count, device_use_count,
253 };
254 }
255
256private:
257 constexpr bool HasProperties(MemoryState s, MemoryPermission p, MemoryAttribute a) const {
258 constexpr MemoryAttribute AttributeIgnoreMask{MemoryAttribute::DontCareMask |
259 MemoryAttribute::IpcLocked |
260 MemoryAttribute::DeviceShared};
261 return state == s && perm == p &&
262 (attribute | AttributeIgnoreMask) == (a | AttributeIgnoreMask);
263 }
264
265 constexpr bool HasSameProperties(const MemoryBlock& rhs) const {
266 return state == rhs.state && perm == rhs.perm && original_perm == rhs.original_perm &&
267 attribute == rhs.attribute && ipc_lock_count == rhs.ipc_lock_count &&
268 device_use_count == rhs.device_use_count;
269 }
270
271 constexpr bool Contains(VAddr start) const {
272 return GetAddress() <= start && start <= GetEndAddress();
273 }
274
275 constexpr void Add(std::size_t count) {
276 ASSERT(count > 0);
277 ASSERT(GetAddress() + count * PageSize - 1 < GetEndAddress() + count * PageSize - 1);
278
279 num_pages += count;
280 }
281
282 constexpr void Update(MemoryState new_state, MemoryPermission new_perm,
283 MemoryAttribute new_attribute) {
284 ASSERT(original_perm == MemoryPermission::None);
285 ASSERT((attribute & MemoryAttribute::IpcLocked) == MemoryAttribute::None);
286
287 state = new_state;
288 perm = new_perm;
289
290 // TODO(bunnei): Is this right?
291 attribute = static_cast<MemoryAttribute>(
292 new_attribute /*| (attribute & (MemoryAttribute::IpcLocked | MemoryAttribute::DeviceShared))*/);
293 }
294
295 constexpr MemoryBlock Split(VAddr split_addr) {
296 ASSERT(GetAddress() < split_addr);
297 ASSERT(Contains(split_addr));
298 ASSERT(Common::IsAligned(split_addr, PageSize));
299
300 MemoryBlock block;
301 block.addr = addr;
302 block.num_pages = (split_addr - GetAddress()) / PageSize;
303 block.state = state;
304 block.ipc_lock_count = ipc_lock_count;
305 block.device_use_count = device_use_count;
306 block.perm = perm;
307 block.original_perm = original_perm;
308 block.attribute = attribute;
309
310 addr = split_addr;
311 num_pages -= block.num_pages;
312
313 return block;
314 }
315};
316static_assert(std::is_trivially_destructible<MemoryBlock>::value);
317
318} // namespace Kernel::Memory
diff --git a/src/core/hle/kernel/memory/memory_block_manager.cpp b/src/core/hle/kernel/memory/memory_block_manager.cpp
new file mode 100644
index 000000000..1ebc126c0
--- /dev/null
+++ b/src/core/hle/kernel/memory/memory_block_manager.cpp
@@ -0,0 +1,190 @@
1// Copyright 2020 yuzu Emulator Project
2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included.
4
5#include "core/hle/kernel/memory/memory_block_manager.h"
6#include "core/hle/kernel/memory/memory_types.h"
7
8namespace Kernel::Memory {
9
10MemoryBlockManager::MemoryBlockManager(VAddr start_addr, VAddr end_addr)
11 : start_addr{start_addr}, end_addr{end_addr} {
12 const u64 num_pages{(end_addr - start_addr) / PageSize};
13 memory_block_tree.emplace_back(start_addr, num_pages, MemoryState::Free, MemoryPermission::None,
14 MemoryAttribute::None);
15}
16
17MemoryBlockManager::iterator MemoryBlockManager::FindIterator(VAddr addr) {
18 auto node{memory_block_tree.begin()};
19 while (node != end()) {
20 const VAddr end_addr{node->GetNumPages() * PageSize + node->GetAddress()};
21 if (node->GetAddress() <= addr && end_addr - 1 >= addr) {
22 return node;
23 }
24 node = std::next(node);
25 }
26 return end();
27}
28
29VAddr MemoryBlockManager::FindFreeArea(VAddr region_start, std::size_t region_num_pages,
30 std::size_t num_pages, std::size_t align, std::size_t offset,
31 std::size_t guard_pages) {
32 if (num_pages == 0) {
33 return {};
34 }
35
36 const VAddr region_end{region_start + region_num_pages * PageSize};
37 const VAddr region_last{region_end - 1};
38 for (auto it{FindIterator(region_start)}; it != memory_block_tree.cend(); it++) {
39 const auto info{it->GetMemoryInfo()};
40 if (region_last < info.GetAddress()) {
41 break;
42 }
43
44 if (info.state != MemoryState::Free) {
45 continue;
46 }
47
48 VAddr area{(info.GetAddress() <= region_start) ? region_start : info.GetAddress()};
49 area += guard_pages * PageSize;
50
51 const VAddr offset_area{Common::AlignDown(area, align) + offset};
52 area = (area <= offset_area) ? offset_area : offset_area + align;
53
54 const VAddr area_end{area + num_pages * PageSize + guard_pages * PageSize};
55 const VAddr area_last{area_end - 1};
56
57 if (info.GetAddress() <= area && area < area_last && area_last <= region_last &&
58 area_last <= info.GetLastAddress()) {
59 return area;
60 }
61 }
62
63 return {};
64}
65
66void MemoryBlockManager::Update(VAddr addr, std::size_t num_pages, MemoryState prev_state,
67 MemoryPermission prev_perm, MemoryAttribute prev_attribute,
68 MemoryState state, MemoryPermission perm,
69 MemoryAttribute attribute) {
70 const std::size_t prev_count{memory_block_tree.size()};
71 const VAddr end_addr{addr + num_pages * PageSize};
72 iterator node{memory_block_tree.begin()};
73
74 prev_attribute |= MemoryAttribute::IpcAndDeviceMapped;
75
76 while (node != memory_block_tree.end()) {
77 MemoryBlock* block{&(*node)};
78 iterator next_node{std::next(node)};
79 const VAddr cur_addr{block->GetAddress()};
80 const VAddr cur_end_addr{block->GetNumPages() * PageSize + cur_addr};
81
82 if (addr < cur_end_addr && cur_addr < end_addr) {
83 if (!block->HasProperties(prev_state, prev_perm, prev_attribute)) {
84 node = next_node;
85 continue;
86 }
87
88 iterator new_node{node};
89 if (addr > cur_addr) {
90 memory_block_tree.insert(node, block->Split(addr));
91 }
92
93 if (end_addr < cur_end_addr) {
94 new_node = memory_block_tree.insert(node, block->Split(end_addr));
95 }
96
97 new_node->Update(state, perm, attribute);
98
99 MergeAdjacent(new_node, next_node);
100 }
101
102 if (cur_end_addr - 1 >= end_addr - 1) {
103 break;
104 }
105
106 node = next_node;
107 }
108}
109
110void MemoryBlockManager::Update(VAddr addr, std::size_t num_pages, MemoryState state,
111 MemoryPermission perm, MemoryAttribute attribute) {
112 const std::size_t prev_count{memory_block_tree.size()};
113 const VAddr end_addr{addr + num_pages * PageSize};
114 iterator node{memory_block_tree.begin()};
115
116 while (node != memory_block_tree.end()) {
117 MemoryBlock* block{&(*node)};
118 iterator next_node{std::next(node)};
119 const VAddr cur_addr{block->GetAddress()};
120 const VAddr cur_end_addr{block->GetNumPages() * PageSize + cur_addr};
121
122 if (addr < cur_end_addr && cur_addr < end_addr) {
123 iterator new_node{node};
124
125 if (addr > cur_addr) {
126 memory_block_tree.insert(node, block->Split(addr));
127 }
128
129 if (end_addr < cur_end_addr) {
130 new_node = memory_block_tree.insert(node, block->Split(end_addr));
131 }
132
133 new_node->Update(state, perm, attribute);
134
135 MergeAdjacent(new_node, next_node);
136 }
137
138 if (cur_end_addr - 1 >= end_addr - 1) {
139 break;
140 }
141
142 node = next_node;
143 }
144}
145
146void MemoryBlockManager::IterateForRange(VAddr start, VAddr end, IterateFunc&& func) {
147 const_iterator it{FindIterator(start)};
148 MemoryInfo info{};
149 do {
150 info = it->GetMemoryInfo();
151 func(info);
152 it = std::next(it);
153 } while (info.addr + info.size - 1 < end - 1 && it != cend());
154}
155
156void MemoryBlockManager::MergeAdjacent(iterator it, iterator& next_it) {
157 MemoryBlock* block{&(*it)};
158
159 auto EraseIt = [&](const iterator it_to_erase) {
160 if (next_it == it_to_erase) {
161 next_it = std::next(next_it);
162 }
163 memory_block_tree.erase(it_to_erase);
164 };
165
166 if (it != memory_block_tree.begin()) {
167 MemoryBlock* prev{&(*std::prev(it))};
168
169 if (block->HasSameProperties(*prev)) {
170 const iterator prev_it{std::prev(it)};
171
172 prev->Add(block->GetNumPages());
173 EraseIt(it);
174
175 it = prev_it;
176 block = prev;
177 }
178 }
179
180 if (it != cend()) {
181 const MemoryBlock* const next{&(*std::next(it))};
182
183 if (block->HasSameProperties(*next)) {
184 block->Add(next->GetNumPages());
185 EraseIt(std::next(it));
186 }
187 }
188}
189
190} // namespace Kernel::Memory
diff --git a/src/core/hle/kernel/memory/memory_block_manager.h b/src/core/hle/kernel/memory/memory_block_manager.h
new file mode 100644
index 000000000..0f2270f0f
--- /dev/null
+++ b/src/core/hle/kernel/memory/memory_block_manager.h
@@ -0,0 +1,64 @@
1// Copyright 2020 yuzu Emulator Project
2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included.
4
5#pragma once
6
7#include <functional>
8#include <list>
9#include <memory>
10
11#include "common/common_types.h"
12#include "core/hle/kernel/memory/memory_block.h"
13
14namespace Kernel::Memory {
15
16class MemoryBlockManager final {
17public:
18 using MemoryBlockTree = std::list<MemoryBlock>;
19 using iterator = MemoryBlockTree::iterator;
20 using const_iterator = MemoryBlockTree::const_iterator;
21
22public:
23 MemoryBlockManager(VAddr start_addr, VAddr end_addr);
24
25 iterator end() {
26 return memory_block_tree.end();
27 }
28 const_iterator end() const {
29 return memory_block_tree.end();
30 }
31 const_iterator cend() const {
32 return memory_block_tree.cend();
33 }
34
35 iterator FindIterator(VAddr addr);
36
37 VAddr FindFreeArea(VAddr region_start, std::size_t region_num_pages, std::size_t num_pages,
38 std::size_t align, std::size_t offset, std::size_t guard_pages);
39
40 void Update(VAddr addr, std::size_t num_pages, MemoryState prev_state,
41 MemoryPermission prev_perm, MemoryAttribute prev_attribute, MemoryState state,
42 MemoryPermission perm, MemoryAttribute attribute);
43
44 void Update(VAddr addr, std::size_t num_pages, MemoryState state,
45 MemoryPermission perm = MemoryPermission::None,
46 MemoryAttribute attribute = MemoryAttribute::None);
47
48 using IterateFunc = std::function<void(const MemoryInfo&)>;
49 void IterateForRange(VAddr start, VAddr end, IterateFunc&& func);
50
51 MemoryBlock& FindBlock(VAddr addr) {
52 return *FindIterator(addr);
53 }
54
55private:
56 void MergeAdjacent(iterator it, iterator& next_it);
57
58 const VAddr start_addr;
59 const VAddr end_addr;
60
61 MemoryBlockTree memory_block_tree;
62};
63
64} // namespace Kernel::Memory
diff --git a/src/core/hle/kernel/memory/memory_layout.h b/src/core/hle/kernel/memory/memory_layout.h
new file mode 100644
index 000000000..830c6f0d7
--- /dev/null
+++ b/src/core/hle/kernel/memory/memory_layout.h
@@ -0,0 +1,73 @@
1// Copyright 2020 yuzu Emulator Project
2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included.
4
5#pragma once
6
7#include "common/common_types.h"
8
9namespace Kernel::Memory {
10
11class MemoryRegion final {
12 friend class MemoryLayout;
13
14public:
15 constexpr PAddr StartAddress() const {
16 return start_address;
17 }
18
19 constexpr PAddr EndAddress() const {
20 return end_address;
21 }
22
23private:
24 constexpr MemoryRegion() = default;
25 constexpr MemoryRegion(PAddr start_address, PAddr end_address)
26 : start_address{start_address}, end_address{end_address} {}
27
28 const PAddr start_address{};
29 const PAddr end_address{};
30};
31
32class MemoryLayout final {
33public:
34 constexpr const MemoryRegion& Application() const {
35 return application;
36 }
37
38 constexpr const MemoryRegion& Applet() const {
39 return applet;
40 }
41
42 constexpr const MemoryRegion& System() const {
43 return system;
44 }
45
46 static constexpr MemoryLayout GetDefaultLayout() {
47 constexpr std::size_t application_size{0xcd500000};
48 constexpr std::size_t applet_size{0x1fb00000};
49 constexpr PAddr application_start_address{Core::DramMemoryMap::End - application_size};
50 constexpr PAddr application_end_address{Core::DramMemoryMap::End};
51 constexpr PAddr applet_start_address{application_start_address - applet_size};
52 constexpr PAddr applet_end_address{applet_start_address + applet_size};
53 constexpr PAddr system_start_address{Core::DramMemoryMap::SlabHeapEnd};
54 constexpr PAddr system_end_address{applet_start_address};
55 return {application_start_address, application_end_address, applet_start_address,
56 applet_end_address, system_start_address, system_end_address};
57 }
58
59private:
60 constexpr MemoryLayout(PAddr application_start_address, std::size_t application_size,
61 PAddr applet_start_address, std::size_t applet_size,
62 PAddr system_start_address, std::size_t system_size)
63 : application{application_start_address, application_size},
64 applet{applet_start_address, applet_size}, system{system_start_address, system_size} {}
65
66 const MemoryRegion application;
67 const MemoryRegion applet;
68 const MemoryRegion system;
69
70 const PAddr start_address{};
71};
72
73} // namespace Kernel::Memory
diff --git a/src/core/hle/kernel/memory/memory_manager.cpp b/src/core/hle/kernel/memory/memory_manager.cpp
new file mode 100644
index 000000000..3cd4f9e85
--- /dev/null
+++ b/src/core/hle/kernel/memory/memory_manager.cpp
@@ -0,0 +1,176 @@
1// Copyright 2020 yuzu Emulator Project
2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included.
4
5#include <algorithm>
6
7#include "common/alignment.h"
8#include "common/assert.h"
9#include "common/common_types.h"
10#include "common/scope_exit.h"
11#include "core/hle/kernel/errors.h"
12#include "core/hle/kernel/memory/memory_manager.h"
13#include "core/hle/kernel/memory/page_linked_list.h"
14
15namespace Kernel::Memory {
16
17std::size_t MemoryManager::Impl::Initialize(Pool new_pool, u64 start_address, u64 end_address) {
18 const auto size{end_address - start_address};
19
20 // Calculate metadata sizes
21 const auto ref_count_size{(size / PageSize) * sizeof(u16)};
22 const auto optimize_map_size{(Common::AlignUp((size / PageSize), 64) / 64) * sizeof(u64)};
23 const auto manager_size{Common::AlignUp(optimize_map_size + ref_count_size, PageSize)};
24 const auto page_heap_size{PageHeap::CalculateMetadataOverheadSize(size)};
25 const auto total_metadata_size{manager_size + page_heap_size};
26 ASSERT(manager_size <= total_metadata_size);
27 ASSERT(Common::IsAligned(total_metadata_size, PageSize));
28
29 // Setup region
30 pool = new_pool;
31
32 // Initialize the manager's KPageHeap
33 heap.Initialize(start_address, size, page_heap_size);
34
35 // Free the memory to the heap
36 heap.Free(start_address, size / PageSize);
37
38 // Update the heap's used size
39 heap.UpdateUsedSize();
40
41 return total_metadata_size;
42}
43
44void MemoryManager::InitializeManager(Pool pool, u64 start_address, u64 end_address) {
45 ASSERT(pool < Pool::Count);
46 managers[static_cast<std::size_t>(pool)].Initialize(pool, start_address, end_address);
47}
48
49VAddr MemoryManager::AllocateContinuous(std::size_t num_pages, std::size_t align_pages, Pool pool,
50 Direction dir) {
51 // Early return if we're allocating no pages
52 if (num_pages == 0) {
53 return {};
54 }
55
56 // Lock the pool that we're allocating from
57 const auto pool_index{static_cast<std::size_t>(pool)};
58 std::lock_guard lock{pool_locks[pool_index]};
59
60 // Choose a heap based on our page size request
61 const s32 heap_index{PageHeap::GetAlignedBlockIndex(num_pages, align_pages)};
62
63 // Loop, trying to iterate from each block
64 // TODO (bunnei): Support multiple managers
65 Impl& chosen_manager{managers[pool_index]};
66 VAddr allocated_block{chosen_manager.AllocateBlock(heap_index)};
67
68 // If we failed to allocate, quit now
69 if (!allocated_block) {
70 return {};
71 }
72
73 // If we allocated more than we need, free some
74 const auto allocated_pages{PageHeap::GetBlockNumPages(heap_index)};
75 if (allocated_pages > num_pages) {
76 chosen_manager.Free(allocated_block + num_pages * PageSize, allocated_pages - num_pages);
77 }
78
79 return allocated_block;
80}
81
82ResultCode MemoryManager::Allocate(PageLinkedList& page_list, std::size_t num_pages, Pool pool,
83 Direction dir) {
84 ASSERT(page_list.GetNumPages() == 0);
85
86 // Early return if we're allocating no pages
87 if (num_pages == 0) {
88 return RESULT_SUCCESS;
89 }
90
91 // Lock the pool that we're allocating from
92 const auto pool_index{static_cast<std::size_t>(pool)};
93 std::lock_guard lock{pool_locks[pool_index]};
94
95 // Choose a heap based on our page size request
96 const s32 heap_index{PageHeap::GetBlockIndex(num_pages)};
97 if (heap_index < 0) {
98 return ERR_OUT_OF_MEMORY;
99 }
100
101 // TODO (bunnei): Support multiple managers
102 Impl& chosen_manager{managers[pool_index]};
103
104 // Ensure that we don't leave anything un-freed
105 auto group_guard = detail::ScopeExit([&] {
106 for (const auto& it : page_list.Nodes()) {
107 const auto num_pages{std::min(
108 it.GetNumPages(), (chosen_manager.GetEndAddress() - it.GetAddress()) / PageSize)};
109 chosen_manager.Free(it.GetAddress(), num_pages);
110 }
111 });
112
113 // Keep allocating until we've allocated all our pages
114 for (s32 index{heap_index}; index >= 0 && num_pages > 0; index--) {
115 const auto pages_per_alloc{PageHeap::GetBlockNumPages(index)};
116
117 while (num_pages >= pages_per_alloc) {
118 // Allocate a block
119 VAddr allocated_block{chosen_manager.AllocateBlock(index)};
120 if (!allocated_block) {
121 break;
122 }
123
124 // Safely add it to our group
125 {
126 auto block_guard = detail::ScopeExit(
127 [&] { chosen_manager.Free(allocated_block, pages_per_alloc); });
128
129 if (const ResultCode result{page_list.AddBlock(allocated_block, pages_per_alloc)};
130 result.IsError()) {
131 return result;
132 }
133
134 block_guard.Cancel();
135 }
136
137 num_pages -= pages_per_alloc;
138 }
139 }
140
141 // Only succeed if we allocated as many pages as we wanted
142 ASSERT(num_pages >= 0);
143 if (num_pages) {
144 return ERR_OUT_OF_MEMORY;
145 }
146
147 // We succeeded!
148 group_guard.Cancel();
149 return RESULT_SUCCESS;
150}
151
152ResultCode MemoryManager::Free(PageLinkedList& page_list, std::size_t num_pages, Pool pool,
153 Direction dir) {
154 // Early return if we're freeing no pages
155 if (!num_pages) {
156 return RESULT_SUCCESS;
157 }
158
159 // Lock the pool that we're freeing from
160 const auto pool_index{static_cast<std::size_t>(pool)};
161 std::lock_guard lock{pool_locks[pool_index]};
162
163 // TODO (bunnei): Support multiple managers
164 Impl& chosen_manager{managers[pool_index]};
165
166 // Free all of the pages
167 for (const auto& it : page_list.Nodes()) {
168 const auto num_pages{std::min(
169 it.GetNumPages(), (chosen_manager.GetEndAddress() - it.GetAddress()) / PageSize)};
170 chosen_manager.Free(it.GetAddress(), num_pages);
171 }
172
173 return RESULT_SUCCESS;
174}
175
176} // namespace Kernel::Memory
diff --git a/src/core/hle/kernel/memory/memory_manager.h b/src/core/hle/kernel/memory/memory_manager.h
new file mode 100644
index 000000000..b078d7a5e
--- /dev/null
+++ b/src/core/hle/kernel/memory/memory_manager.h
@@ -0,0 +1,97 @@
1// Copyright 2020 yuzu Emulator Project
2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included.
4
5#pragma once
6
7#include <array>
8#include <mutex>
9
10#include "common/common_funcs.h"
11#include "common/common_types.h"
12#include "core/hle/kernel/memory/page_heap.h"
13#include "core/hle/result.h"
14
15namespace Kernel::Memory {
16
17class PageLinkedList;
18
19class MemoryManager final : NonCopyable {
20public:
21 enum class Pool : u32 {
22 Application = 0,
23 Applet = 1,
24 System = 2,
25 SystemNonSecure = 3,
26
27 Count,
28
29 Shift = 4,
30 Mask = (0xF << Shift),
31 };
32
33 enum class Direction : u32 {
34 FromFront = 0,
35 FromBack = 1,
36
37 Shift = 0,
38 Mask = (0xF << Shift),
39 };
40
41 MemoryManager() = default;
42
43 constexpr std::size_t GetSize(Pool pool) const {
44 return managers[static_cast<std::size_t>(pool)].GetSize();
45 }
46
47 void InitializeManager(Pool pool, u64 start_address, u64 end_address);
48 VAddr AllocateContinuous(std::size_t num_pages, std::size_t align_pages, Pool pool,
49 Direction dir = Direction::FromFront);
50 ResultCode Allocate(PageLinkedList& page_list, std::size_t num_pages, Pool pool,
51 Direction dir = Direction::FromFront);
52 ResultCode Free(PageLinkedList& page_list, std::size_t num_pages, Pool pool,
53 Direction dir = Direction::FromFront);
54
55 static constexpr std::size_t MaxManagerCount = 10;
56
57private:
58 class Impl final : NonCopyable {
59 private:
60 using RefCount = u16;
61
62 private:
63 PageHeap heap;
64 Pool pool{};
65
66 public:
67 Impl() = default;
68
69 std::size_t Initialize(Pool new_pool, u64 start_address, u64 end_address);
70
71 VAddr AllocateBlock(s32 index) {
72 return heap.AllocateBlock(index);
73 }
74
75 void Free(VAddr addr, std::size_t num_pages) {
76 heap.Free(addr, num_pages);
77 }
78
79 constexpr std::size_t GetSize() const {
80 return heap.GetSize();
81 }
82
83 constexpr VAddr GetAddress() const {
84 return heap.GetAddress();
85 }
86
87 constexpr VAddr GetEndAddress() const {
88 return heap.GetEndAddress();
89 }
90 };
91
92private:
93 std::array<std::mutex, static_cast<std::size_t>(Pool::Count)> pool_locks;
94 std::array<Impl, MaxManagerCount> managers;
95};
96
97} // namespace Kernel::Memory
diff --git a/src/core/hle/kernel/memory/memory_types.h b/src/core/hle/kernel/memory/memory_types.h
new file mode 100644
index 000000000..a75bf77c0
--- /dev/null
+++ b/src/core/hle/kernel/memory/memory_types.h
@@ -0,0 +1,18 @@
1// Copyright 2020 yuzu Emulator Project
2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included.
4
5#pragma once
6
7#include <array>
8
9#include "common/common_types.h"
10
11namespace Kernel::Memory {
12
13constexpr std::size_t PageBits{12};
14constexpr std::size_t PageSize{1 << PageBits};
15
16using Page = std::array<u8, PageSize>;
17
18} // namespace Kernel::Memory
diff --git a/src/core/hle/kernel/memory/page_heap.cpp b/src/core/hle/kernel/memory/page_heap.cpp
new file mode 100644
index 000000000..efcbb3cad
--- /dev/null
+++ b/src/core/hle/kernel/memory/page_heap.cpp
@@ -0,0 +1,119 @@
1// Copyright 2020 yuzu Emulator Project
2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included.
4
5// This file references various implementation details from Atmosphère, an open-source firmware for
6// the Nintendo Switch. Copyright 2018-2020 Atmosphère-NX.
7
8#include "core/core.h"
9#include "core/hle/kernel/memory/page_heap.h"
10#include "core/memory.h"
11
12namespace Kernel::Memory {
13
14void PageHeap::Initialize(VAddr address, std::size_t size, std::size_t metadata_size) {
15 // Check our assumptions
16 ASSERT(Common::IsAligned((address), PageSize));
17 ASSERT(Common::IsAligned(size, PageSize));
18
19 // Set our members
20 heap_address = address;
21 heap_size = size;
22
23 // Setup bitmaps
24 metadata.resize(metadata_size / sizeof(u64));
25 u64* cur_bitmap_storage{metadata.data()};
26 for (std::size_t i = 0; i < MemoryBlockPageShifts.size(); i++) {
27 const std::size_t cur_block_shift{MemoryBlockPageShifts[i]};
28 const std::size_t next_block_shift{
29 (i != MemoryBlockPageShifts.size() - 1) ? MemoryBlockPageShifts[i + 1] : 0};
30 cur_bitmap_storage = blocks[i].Initialize(heap_address, heap_size, cur_block_shift,
31 next_block_shift, cur_bitmap_storage);
32 }
33}
34
35VAddr PageHeap::AllocateBlock(s32 index) {
36 const std::size_t needed_size{blocks[index].GetSize()};
37
38 for (s32 i{index}; i < static_cast<s32>(MemoryBlockPageShifts.size()); i++) {
39 if (const VAddr addr{blocks[i].PopBlock()}; addr) {
40 if (const std::size_t allocated_size{blocks[i].GetSize()};
41 allocated_size > needed_size) {
42 Free(addr + needed_size, (allocated_size - needed_size) / PageSize);
43 }
44 return addr;
45 }
46 }
47
48 return 0;
49}
50
51void PageHeap::FreeBlock(VAddr block, s32 index) {
52 do {
53 block = blocks[index++].PushBlock(block);
54 } while (block != 0);
55}
56
57void PageHeap::Free(VAddr addr, std::size_t num_pages) {
58 // Freeing no pages is a no-op
59 if (num_pages == 0) {
60 return;
61 }
62
63 // Find the largest block size that we can free, and free as many as possible
64 s32 big_index{static_cast<s32>(MemoryBlockPageShifts.size()) - 1};
65 const VAddr start{addr};
66 const VAddr end{(num_pages * PageSize) + addr};
67 VAddr before_start{start};
68 VAddr before_end{start};
69 VAddr after_start{end};
70 VAddr after_end{end};
71 while (big_index >= 0) {
72 const std::size_t block_size{blocks[big_index].GetSize()};
73 const VAddr big_start{Common::AlignUp((start), block_size)};
74 const VAddr big_end{Common::AlignDown((end), block_size)};
75 if (big_start < big_end) {
76 // Free as many big blocks as we can
77 for (auto block{big_start}; block < big_end; block += block_size) {
78 FreeBlock(block, big_index);
79 }
80 before_end = big_start;
81 after_start = big_end;
82 break;
83 }
84 big_index--;
85 }
86 ASSERT(big_index >= 0);
87
88 // Free space before the big blocks
89 for (s32 i{big_index - 1}; i >= 0; i--) {
90 const std::size_t block_size{blocks[i].GetSize()};
91 while (before_start + block_size <= before_end) {
92 before_end -= block_size;
93 FreeBlock(before_end, i);
94 }
95 }
96
97 // Free space after the big blocks
98 for (s32 i{big_index - 1}; i >= 0; i--) {
99 const std::size_t block_size{blocks[i].GetSize()};
100 while (after_start + block_size <= after_end) {
101 FreeBlock(after_start, i);
102 after_start += block_size;
103 }
104 }
105}
106
107std::size_t PageHeap::CalculateMetadataOverheadSize(std::size_t region_size) {
108 std::size_t overhead_size = 0;
109 for (std::size_t i = 0; i < MemoryBlockPageShifts.size(); i++) {
110 const std::size_t cur_block_shift{MemoryBlockPageShifts[i]};
111 const std::size_t next_block_shift{
112 (i != MemoryBlockPageShifts.size() - 1) ? MemoryBlockPageShifts[i + 1] : 0};
113 overhead_size += PageHeap::Block::CalculateMetadataOverheadSize(
114 region_size, cur_block_shift, next_block_shift);
115 }
116 return Common::AlignUp(overhead_size, PageSize);
117}
118
119} // namespace Kernel::Memory
diff --git a/src/core/hle/kernel/memory/page_heap.h b/src/core/hle/kernel/memory/page_heap.h
new file mode 100644
index 000000000..380c3f5a1
--- /dev/null
+++ b/src/core/hle/kernel/memory/page_heap.h
@@ -0,0 +1,370 @@
1// Copyright 2020 yuzu Emulator Project
2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included.
4
5// This file references various implementation details from Atmosphère, an open-source firmware for
6// the Nintendo Switch. Copyright 2018-2020 Atmosphère-NX.
7
8#pragma once
9
10#include <array>
11#include <vector>
12
13#include "common/alignment.h"
14#include "common/assert.h"
15#include "common/bit_util.h"
16#include "common/common_funcs.h"
17#include "common/common_types.h"
18#include "core/hle/kernel/memory/memory_types.h"
19
20namespace Kernel::Memory {
21
22class PageHeap final : NonCopyable {
23public:
24 static constexpr s32 GetAlignedBlockIndex(std::size_t num_pages, std::size_t align_pages) {
25 const auto target_pages{std::max(num_pages, align_pages)};
26 for (std::size_t i = 0; i < NumMemoryBlockPageShifts; i++) {
27 if (target_pages <=
28 (static_cast<std::size_t>(1) << MemoryBlockPageShifts[i]) / PageSize) {
29 return static_cast<s32>(i);
30 }
31 }
32 return -1;
33 }
34
35 static constexpr s32 GetBlockIndex(std::size_t num_pages) {
36 for (s32 i{static_cast<s32>(NumMemoryBlockPageShifts) - 1}; i >= 0; i--) {
37 if (num_pages >= (static_cast<std::size_t>(1) << MemoryBlockPageShifts[i]) / PageSize) {
38 return i;
39 }
40 }
41 return -1;
42 }
43
44 static constexpr std::size_t GetBlockSize(std::size_t index) {
45 return static_cast<std::size_t>(1) << MemoryBlockPageShifts[index];
46 }
47
48 static constexpr std::size_t GetBlockNumPages(std::size_t index) {
49 return GetBlockSize(index) / PageSize;
50 }
51
52private:
53 static constexpr std::size_t NumMemoryBlockPageShifts{7};
54 static constexpr std::array<std::size_t, NumMemoryBlockPageShifts> MemoryBlockPageShifts{
55 0xC, 0x10, 0x15, 0x16, 0x19, 0x1D, 0x1E,
56 };
57
58 class Block final : NonCopyable {
59 private:
60 class Bitmap final : NonCopyable {
61 public:
62 static constexpr std::size_t MaxDepth{4};
63
64 private:
65 std::array<u64*, MaxDepth> bit_storages{};
66 std::size_t num_bits{};
67 std::size_t used_depths{};
68
69 public:
70 constexpr Bitmap() = default;
71
72 constexpr std::size_t GetNumBits() const {
73 return num_bits;
74 }
75 constexpr s32 GetHighestDepthIndex() const {
76 return static_cast<s32>(used_depths) - 1;
77 }
78
79 constexpr u64* Initialize(u64* storage, std::size_t size) {
80 //* Initially, everything is un-set
81 num_bits = 0;
82
83 // Calculate the needed bitmap depth
84 used_depths = static_cast<std::size_t>(GetRequiredDepth(size));
85 ASSERT(used_depths <= MaxDepth);
86
87 // Set the bitmap pointers
88 for (s32 depth{GetHighestDepthIndex()}; depth >= 0; depth--) {
89 bit_storages[depth] = storage;
90 size = Common::AlignUp(size, 64) / 64;
91 storage += size;
92 }
93
94 return storage;
95 }
96
97 s64 FindFreeBlock() const {
98 uintptr_t offset{};
99 s32 depth{};
100
101 do {
102 const u64 v{bit_storages[depth][offset]};
103 if (v == 0) {
104 // Non-zero depth indicates that a previous level had a free block
105 ASSERT(depth == 0);
106 return -1;
107 }
108 offset = offset * 64 + Common::CountTrailingZeroes64(v);
109 ++depth;
110 } while (depth < static_cast<s32>(used_depths));
111
112 return static_cast<s64>(offset);
113 }
114
115 constexpr void SetBit(std::size_t offset) {
116 SetBit(GetHighestDepthIndex(), offset);
117 num_bits++;
118 }
119
120 constexpr void ClearBit(std::size_t offset) {
121 ClearBit(GetHighestDepthIndex(), offset);
122 num_bits--;
123 }
124
125 constexpr bool ClearRange(std::size_t offset, std::size_t count) {
126 const s32 depth{GetHighestDepthIndex()};
127 const auto bit_ind{offset / 64};
128 u64* bits{bit_storages[depth]};
129 if (count < 64) {
130 const auto shift{offset % 64};
131 ASSERT(shift + count <= 64);
132 // Check that all the bits are set
133 const u64 mask{((1ULL << count) - 1) << shift};
134 u64 v{bits[bit_ind]};
135 if ((v & mask) != mask) {
136 return false;
137 }
138
139 // Clear the bits
140 v &= ~mask;
141 bits[bit_ind] = v;
142 if (v == 0) {
143 ClearBit(depth - 1, bit_ind);
144 }
145 } else {
146 ASSERT(offset % 64 == 0);
147 ASSERT(count % 64 == 0);
148 // Check that all the bits are set
149 std::size_t remaining{count};
150 std::size_t i = 0;
151 do {
152 if (bits[bit_ind + i++] != ~u64(0)) {
153 return false;
154 }
155 remaining -= 64;
156 } while (remaining > 0);
157
158 // Clear the bits
159 remaining = count;
160 i = 0;
161 do {
162 bits[bit_ind + i] = 0;
163 ClearBit(depth - 1, bit_ind + i);
164 i++;
165 remaining -= 64;
166 } while (remaining > 0);
167 }
168
169 num_bits -= count;
170 return true;
171 }
172
173 private:
174 constexpr void SetBit(s32 depth, std::size_t offset) {
175 while (depth >= 0) {
176 const auto ind{offset / 64};
177 const auto which{offset % 64};
178 const u64 mask{1ULL << which};
179
180 u64* bit{std::addressof(bit_storages[depth][ind])};
181 const u64 v{*bit};
182 ASSERT((v & mask) == 0);
183 *bit = v | mask;
184 if (v) {
185 break;
186 }
187 offset = ind;
188 depth--;
189 }
190 }
191
192 constexpr void ClearBit(s32 depth, std::size_t offset) {
193 while (depth >= 0) {
194 const auto ind{offset / 64};
195 const auto which{offset % 64};
196 const u64 mask{1ULL << which};
197
198 u64* bit{std::addressof(bit_storages[depth][ind])};
199 u64 v{*bit};
200 ASSERT((v & mask) != 0);
201 v &= ~mask;
202 *bit = v;
203 if (v) {
204 break;
205 }
206 offset = ind;
207 depth--;
208 }
209 }
210
211 private:
212 static constexpr s32 GetRequiredDepth(std::size_t region_size) {
213 s32 depth = 0;
214 while (true) {
215 region_size /= 64;
216 depth++;
217 if (region_size == 0) {
218 return depth;
219 }
220 }
221 }
222
223 public:
224 static constexpr std::size_t CalculateMetadataOverheadSize(std::size_t region_size) {
225 std::size_t overhead_bits = 0;
226 for (s32 depth{GetRequiredDepth(region_size) - 1}; depth >= 0; depth--) {
227 region_size = Common::AlignUp(region_size, 64) / 64;
228 overhead_bits += region_size;
229 }
230 return overhead_bits * sizeof(u64);
231 }
232 };
233
234 private:
235 Bitmap bitmap;
236 VAddr heap_address{};
237 uintptr_t end_offset{};
238 std::size_t block_shift{};
239 std::size_t next_block_shift{};
240
241 public:
242 constexpr Block() = default;
243
244 constexpr std::size_t GetShift() const {
245 return block_shift;
246 }
247 constexpr std::size_t GetNextShift() const {
248 return next_block_shift;
249 }
250 constexpr std::size_t GetSize() const {
251 return static_cast<std::size_t>(1) << GetShift();
252 }
253 constexpr std::size_t GetNumPages() const {
254 return GetSize() / PageSize;
255 }
256 constexpr std::size_t GetNumFreeBlocks() const {
257 return bitmap.GetNumBits();
258 }
259 constexpr std::size_t GetNumFreePages() const {
260 return GetNumFreeBlocks() * GetNumPages();
261 }
262
263 constexpr u64* Initialize(VAddr addr, std::size_t size, std::size_t bs, std::size_t nbs,
264 u64* bit_storage) {
265 // Set shifts
266 block_shift = bs;
267 next_block_shift = nbs;
268
269 // Align up the address
270 VAddr end{addr + size};
271 const auto align{(next_block_shift != 0) ? (1ULL << next_block_shift)
272 : (1ULL << block_shift)};
273 addr = Common::AlignDown((addr), align);
274 end = Common::AlignUp((end), align);
275
276 heap_address = addr;
277 end_offset = (end - addr) / (1ULL << block_shift);
278 return bitmap.Initialize(bit_storage, end_offset);
279 }
280
281 constexpr VAddr PushBlock(VAddr address) {
282 // Set the bit for the free block
283 std::size_t offset{(address - heap_address) >> GetShift()};
284 bitmap.SetBit(offset);
285
286 // If we have a next shift, try to clear the blocks below and return the address
287 if (GetNextShift()) {
288 const auto diff{1ULL << (GetNextShift() - GetShift())};
289 offset = Common::AlignDown(offset, diff);
290 if (bitmap.ClearRange(offset, diff)) {
291 return heap_address + (offset << GetShift());
292 }
293 }
294
295 // We couldn't coalesce, or we're already as big as possible
296 return 0;
297 }
298
299 VAddr PopBlock() {
300 // Find a free block
301 const s64 soffset{bitmap.FindFreeBlock()};
302 if (soffset < 0) {
303 return 0;
304 }
305 const auto offset{static_cast<std::size_t>(soffset)};
306
307 // Update our tracking and return it
308 bitmap.ClearBit(offset);
309 return heap_address + (offset << GetShift());
310 }
311
312 public:
313 static constexpr std::size_t CalculateMetadataOverheadSize(std::size_t region_size,
314 std::size_t cur_block_shift,
315 std::size_t next_block_shift) {
316 const auto cur_block_size{(1ULL << cur_block_shift)};
317 const auto next_block_size{(1ULL << next_block_shift)};
318 const auto align{(next_block_shift != 0) ? next_block_size : cur_block_size};
319 return Bitmap::CalculateMetadataOverheadSize(
320 (align * 2 + Common::AlignUp(region_size, align)) / cur_block_size);
321 }
322 };
323
324public:
325 PageHeap() = default;
326
327 constexpr VAddr GetAddress() const {
328 return heap_address;
329 }
330 constexpr std::size_t GetSize() const {
331 return heap_size;
332 }
333 constexpr VAddr GetEndAddress() const {
334 return GetAddress() + GetSize();
335 }
336 constexpr std::size_t GetPageOffset(VAddr block) const {
337 return (block - GetAddress()) / PageSize;
338 }
339
340 void Initialize(VAddr heap_address, std::size_t heap_size, std::size_t metadata_size);
341 VAddr AllocateBlock(s32 index);
342 void Free(VAddr addr, std::size_t num_pages);
343
344 void UpdateUsedSize() {
345 used_size = heap_size - (GetNumFreePages() * PageSize);
346 }
347
348 static std::size_t CalculateMetadataOverheadSize(std::size_t region_size);
349
350private:
351 constexpr std::size_t GetNumFreePages() const {
352 std::size_t num_free{};
353
354 for (const auto& block : blocks) {
355 num_free += block.GetNumFreePages();
356 }
357
358 return num_free;
359 }
360
361 void FreeBlock(VAddr block, s32 index);
362
363 VAddr heap_address{};
364 std::size_t heap_size{};
365 std::size_t used_size{};
366 std::array<Block, NumMemoryBlockPageShifts> blocks{};
367 std::vector<u64> metadata;
368};
369
370} // namespace Kernel::Memory
diff --git a/src/core/hle/kernel/memory/page_linked_list.h b/src/core/hle/kernel/memory/page_linked_list.h
new file mode 100644
index 000000000..0668d00c6
--- /dev/null
+++ b/src/core/hle/kernel/memory/page_linked_list.h
@@ -0,0 +1,93 @@
1// Copyright 2020 yuzu Emulator Project
2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included.
4
5#pragma once
6
7#include <list>
8
9#include "common/assert.h"
10#include "common/common_funcs.h"
11#include "common/common_types.h"
12#include "core/hle/kernel/memory/memory_types.h"
13#include "core/hle/result.h"
14
15namespace Kernel::Memory {
16
17class PageLinkedList final {
18public:
19 class Node final {
20 public:
21 constexpr Node(u64 addr, std::size_t num_pages) : addr{addr}, num_pages{num_pages} {}
22
23 constexpr u64 GetAddress() const {
24 return addr;
25 }
26
27 constexpr std::size_t GetNumPages() const {
28 return num_pages;
29 }
30
31 private:
32 u64 addr{};
33 std::size_t num_pages{};
34 };
35
36public:
37 PageLinkedList() = default;
38 PageLinkedList(u64 address, u64 num_pages) {
39 ASSERT(AddBlock(address, num_pages).IsSuccess());
40 }
41
42 constexpr std::list<Node>& Nodes() {
43 return nodes;
44 }
45
46 constexpr const std::list<Node>& Nodes() const {
47 return nodes;
48 }
49
50 std::size_t GetNumPages() const {
51 std::size_t num_pages = 0;
52 for (const Node& node : nodes) {
53 num_pages += node.GetNumPages();
54 }
55 return num_pages;
56 }
57
58 bool IsEqual(PageLinkedList& other) const {
59 auto this_node = nodes.begin();
60 auto other_node = other.nodes.begin();
61 while (this_node != nodes.end() && other_node != other.nodes.end()) {
62 if (this_node->GetAddress() != other_node->GetAddress() ||
63 this_node->GetNumPages() != other_node->GetNumPages()) {
64 return false;
65 }
66 this_node = std::next(this_node);
67 other_node = std::next(other_node);
68 }
69
70 return this_node == nodes.end() && other_node == other.nodes.end();
71 }
72
73 ResultCode AddBlock(u64 address, u64 num_pages) {
74 if (!num_pages) {
75 return RESULT_SUCCESS;
76 }
77 if (!nodes.empty()) {
78 const auto node = nodes.back();
79 if (node.GetAddress() + node.GetNumPages() * PageSize == address) {
80 address = node.GetAddress();
81 num_pages += node.GetNumPages();
82 nodes.pop_back();
83 }
84 }
85 nodes.push_back({address, num_pages});
86 return RESULT_SUCCESS;
87 }
88
89private:
90 std::list<Node> nodes;
91};
92
93} // namespace Kernel::Memory
diff --git a/src/core/hle/kernel/memory/page_table.cpp b/src/core/hle/kernel/memory/page_table.cpp
new file mode 100644
index 000000000..091e52ca4
--- /dev/null
+++ b/src/core/hle/kernel/memory/page_table.cpp
@@ -0,0 +1,1130 @@
1// Copyright 2020 yuzu Emulator Project
2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included.
4
5#include "common/alignment.h"
6#include "common/assert.h"
7#include "common/scope_exit.h"
8#include "core/core.h"
9#include "core/device_memory.h"
10#include "core/hle/kernel/errors.h"
11#include "core/hle/kernel/kernel.h"
12#include "core/hle/kernel/memory/address_space_info.h"
13#include "core/hle/kernel/memory/memory_block.h"
14#include "core/hle/kernel/memory/memory_block_manager.h"
15#include "core/hle/kernel/memory/page_linked_list.h"
16#include "core/hle/kernel/memory/page_table.h"
17#include "core/hle/kernel/memory/system_control.h"
18#include "core/hle/kernel/process.h"
19#include "core/hle/kernel/resource_limit.h"
20#include "core/memory.h"
21
22namespace Kernel::Memory {
23
24namespace {
25
26constexpr std::size_t GetAddressSpaceWidthFromType(FileSys::ProgramAddressSpaceType as_type) {
27 switch (as_type) {
28 case FileSys::ProgramAddressSpaceType::Is32Bit:
29 case FileSys::ProgramAddressSpaceType::Is32BitNoMap:
30 return 32;
31 case FileSys::ProgramAddressSpaceType::Is36Bit:
32 return 36;
33 case FileSys::ProgramAddressSpaceType::Is39Bit:
34 return 39;
35 default:
36 UNREACHABLE();
37 return {};
38 }
39}
40
41constexpr u64 GetAddressInRange(const MemoryInfo& info, VAddr addr) {
42 if (info.GetAddress() < addr) {
43 return addr;
44 }
45 return info.GetAddress();
46}
47
48constexpr std::size_t GetSizeInRange(const MemoryInfo& info, VAddr start, VAddr end) {
49 std::size_t size{info.GetSize()};
50 if (info.GetAddress() < start) {
51 size -= start - info.GetAddress();
52 }
53 if (info.GetEndAddress() > end) {
54 size -= info.GetEndAddress() - end;
55 }
56 return size;
57}
58
59} // namespace
60
61PageTable::PageTable(Core::System& system) : system{system} {}
62
63ResultCode PageTable::InitializeForProcess(FileSys::ProgramAddressSpaceType as_type,
64 bool enable_aslr, VAddr code_addr, std::size_t code_size,
65 Memory::MemoryManager::Pool pool) {
66
67 const auto GetSpaceStart = [this](AddressSpaceInfo::Type type) {
68 return AddressSpaceInfo::GetAddressSpaceStart(address_space_width, type);
69 };
70 const auto GetSpaceSize = [this](AddressSpaceInfo::Type type) {
71 return AddressSpaceInfo::GetAddressSpaceSize(address_space_width, type);
72 };
73
74 // Set our width and heap/alias sizes
75 address_space_width = GetAddressSpaceWidthFromType(as_type);
76 const VAddr start = 0;
77 const VAddr end{1ULL << address_space_width};
78 std::size_t alias_region_size{GetSpaceSize(AddressSpaceInfo::Type::Alias)};
79 std::size_t heap_region_size{GetSpaceSize(AddressSpaceInfo::Type::Heap)};
80
81 ASSERT(start <= code_addr);
82 ASSERT(code_addr < code_addr + code_size);
83 ASSERT(code_addr + code_size - 1 <= end - 1);
84
85 // Adjust heap/alias size if we don't have an alias region
86 if (as_type == FileSys::ProgramAddressSpaceType::Is32BitNoMap) {
87 heap_region_size += alias_region_size;
88 alias_region_size = 0;
89 }
90
91 // Set code regions and determine remaining
92 constexpr std::size_t RegionAlignment{2 * 1024 * 1024};
93 VAddr process_code_start{};
94 VAddr process_code_end{};
95 std::size_t stack_region_size{};
96 std::size_t kernel_map_region_size{};
97
98 if (address_space_width == 39) {
99 alias_region_size = GetSpaceSize(AddressSpaceInfo::Type::Alias);
100 heap_region_size = GetSpaceSize(AddressSpaceInfo::Type::Heap);
101 stack_region_size = GetSpaceSize(AddressSpaceInfo::Type::Stack);
102 kernel_map_region_size = GetSpaceSize(AddressSpaceInfo::Type::Is32Bit);
103 code_region_start = GetSpaceStart(AddressSpaceInfo::Type::Large64Bit);
104 code_region_end = code_region_start + GetSpaceSize(AddressSpaceInfo::Type::Large64Bit);
105 alias_code_region_start = code_region_start;
106 alias_code_region_end = code_region_end;
107 process_code_start = Common::AlignDown(code_addr, RegionAlignment);
108 process_code_end = Common::AlignUp(code_addr + code_size, RegionAlignment);
109 } else {
110 stack_region_size = 0;
111 kernel_map_region_size = 0;
112 code_region_start = GetSpaceStart(AddressSpaceInfo::Type::Is32Bit);
113 code_region_end = code_region_start + GetSpaceSize(AddressSpaceInfo::Type::Is32Bit);
114 stack_region_start = code_region_start;
115 alias_code_region_start = code_region_start;
116 alias_code_region_end = GetSpaceStart(AddressSpaceInfo::Type::Small64Bit) +
117 GetSpaceSize(AddressSpaceInfo::Type::Small64Bit);
118 stack_region_end = code_region_end;
119 kernel_map_region_start = code_region_start;
120 kernel_map_region_end = code_region_end;
121 process_code_start = code_region_start;
122 process_code_end = code_region_end;
123 }
124
125 // Set other basic fields
126 is_aslr_enabled = enable_aslr;
127 address_space_start = start;
128 address_space_end = end;
129 is_kernel = false;
130
131 // Determine the region we can place our undetermineds in
132 VAddr alloc_start{};
133 std::size_t alloc_size{};
134 if ((process_code_start - code_region_start) >= (end - process_code_end)) {
135 alloc_start = code_region_start;
136 alloc_size = process_code_start - code_region_start;
137 } else {
138 alloc_start = process_code_end;
139 alloc_size = end - process_code_end;
140 }
141 const std::size_t needed_size{
142 (alias_region_size + heap_region_size + stack_region_size + kernel_map_region_size)};
143 if (alloc_size < needed_size) {
144 UNREACHABLE();
145 return ERR_OUT_OF_MEMORY;
146 }
147
148 const std::size_t remaining_size{alloc_size - needed_size};
149
150 // Determine random placements for each region
151 std::size_t alias_rnd{}, heap_rnd{}, stack_rnd{}, kmap_rnd{};
152 if (enable_aslr) {
153 alias_rnd = SystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) *
154 RegionAlignment;
155 heap_rnd = SystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) *
156 RegionAlignment;
157 stack_rnd = SystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) *
158 RegionAlignment;
159 kmap_rnd = SystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) *
160 RegionAlignment;
161 }
162
163 // Setup heap and alias regions
164 alias_region_start = alloc_start + alias_rnd;
165 alias_region_end = alias_region_start + alias_region_size;
166 heap_region_start = alloc_start + heap_rnd;
167 heap_region_end = heap_region_start + heap_region_size;
168
169 if (alias_rnd <= heap_rnd) {
170 heap_region_start += alias_region_size;
171 heap_region_end += alias_region_size;
172 } else {
173 alias_region_start += heap_region_size;
174 alias_region_end += heap_region_size;
175 }
176
177 // Setup stack region
178 if (stack_region_size) {
179 stack_region_start = alloc_start + stack_rnd;
180 stack_region_end = stack_region_start + stack_region_size;
181
182 if (alias_rnd < stack_rnd) {
183 stack_region_start += alias_region_size;
184 stack_region_end += alias_region_size;
185 } else {
186 alias_region_start += stack_region_size;
187 alias_region_end += stack_region_size;
188 }
189
190 if (heap_rnd < stack_rnd) {
191 stack_region_start += heap_region_size;
192 stack_region_end += heap_region_size;
193 } else {
194 heap_region_start += stack_region_size;
195 heap_region_end += stack_region_size;
196 }
197 }
198
199 // Setup kernel map region
200 if (kernel_map_region_size) {
201 kernel_map_region_start = alloc_start + kmap_rnd;
202 kernel_map_region_end = kernel_map_region_start + kernel_map_region_size;
203
204 if (alias_rnd < kmap_rnd) {
205 kernel_map_region_start += alias_region_size;
206 kernel_map_region_end += alias_region_size;
207 } else {
208 alias_region_start += kernel_map_region_size;
209 alias_region_end += kernel_map_region_size;
210 }
211
212 if (heap_rnd < kmap_rnd) {
213 kernel_map_region_start += heap_region_size;
214 kernel_map_region_end += heap_region_size;
215 } else {
216 heap_region_start += kernel_map_region_size;
217 heap_region_end += kernel_map_region_size;
218 }
219
220 if (stack_region_size) {
221 if (stack_rnd < kmap_rnd) {
222 kernel_map_region_start += stack_region_size;
223 kernel_map_region_end += stack_region_size;
224 } else {
225 stack_region_start += kernel_map_region_size;
226 stack_region_end += kernel_map_region_size;
227 }
228 }
229 }
230
231 // Set heap members
232 current_heap_end = heap_region_start;
233 max_heap_size = 0;
234 max_physical_memory_size = 0;
235
236 // Ensure that we regions inside our address space
237 auto IsInAddressSpace = [&](VAddr addr) {
238 return address_space_start <= addr && addr <= address_space_end;
239 };
240 ASSERT(IsInAddressSpace(alias_region_start));
241 ASSERT(IsInAddressSpace(alias_region_end));
242 ASSERT(IsInAddressSpace(heap_region_start));
243 ASSERT(IsInAddressSpace(heap_region_end));
244 ASSERT(IsInAddressSpace(stack_region_start));
245 ASSERT(IsInAddressSpace(stack_region_end));
246 ASSERT(IsInAddressSpace(kernel_map_region_start));
247 ASSERT(IsInAddressSpace(kernel_map_region_end));
248
249 // Ensure that we selected regions that don't overlap
250 const VAddr alias_start{alias_region_start};
251 const VAddr alias_last{alias_region_end - 1};
252 const VAddr heap_start{heap_region_start};
253 const VAddr heap_last{heap_region_end - 1};
254 const VAddr stack_start{stack_region_start};
255 const VAddr stack_last{stack_region_end - 1};
256 const VAddr kmap_start{kernel_map_region_start};
257 const VAddr kmap_last{kernel_map_region_end - 1};
258 ASSERT(alias_last < heap_start || heap_last < alias_start);
259 ASSERT(alias_last < stack_start || stack_last < alias_start);
260 ASSERT(alias_last < kmap_start || kmap_last < alias_start);
261 ASSERT(heap_last < stack_start || stack_last < heap_start);
262 ASSERT(heap_last < kmap_start || kmap_last < heap_start);
263
264 current_heap_addr = heap_region_start;
265 heap_capacity = 0;
266 physical_memory_usage = 0;
267 memory_pool = pool;
268
269 page_table_impl.Resize(address_space_width, PageBits, true);
270
271 return InitializeMemoryLayout(start, end);
272}
273
274ResultCode PageTable::MapProcessCode(VAddr addr, std::size_t num_pages, MemoryState state,
275 MemoryPermission perm) {
276 std::lock_guard lock{page_table_lock};
277
278 const u64 size{num_pages * PageSize};
279
280 if (!CanContain(addr, size, state)) {
281 return ERR_INVALID_ADDRESS_STATE;
282 }
283
284 if (IsRegionMapped(addr, size)) {
285 return ERR_INVALID_ADDRESS_STATE;
286 }
287
288 PageLinkedList page_linked_list;
289 CASCADE_CODE(
290 system.Kernel().MemoryManager().Allocate(page_linked_list, num_pages, memory_pool));
291 CASCADE_CODE(Operate(addr, num_pages, page_linked_list, OperationType::MapGroup));
292
293 block_manager->Update(addr, num_pages, state, perm);
294
295 return RESULT_SUCCESS;
296}
297
298ResultCode PageTable::MapProcessCodeMemory(VAddr dst_addr, VAddr src_addr, std::size_t size) {
299 std::lock_guard lock{page_table_lock};
300
301 const std::size_t num_pages{size / PageSize};
302
303 MemoryState state{};
304 MemoryPermission perm{};
305 CASCADE_CODE(CheckMemoryState(&state, &perm, nullptr, src_addr, size, MemoryState::All,
306 MemoryState::Normal, MemoryPermission::Mask,
307 MemoryPermission::ReadAndWrite, MemoryAttribute::Mask,
308 MemoryAttribute::None, MemoryAttribute::IpcAndDeviceMapped));
309
310 if (IsRegionMapped(dst_addr, size)) {
311 return ERR_INVALID_ADDRESS_STATE;
312 }
313
314 PageLinkedList page_linked_list;
315 AddRegionToPages(src_addr, num_pages, page_linked_list);
316
317 {
318 auto block_guard = detail::ScopeExit(
319 [&] { Operate(src_addr, num_pages, perm, OperationType::ChangePermissions); });
320
321 CASCADE_CODE(
322 Operate(src_addr, num_pages, MemoryPermission::None, OperationType::ChangePermissions));
323 CASCADE_CODE(MapPages(dst_addr, page_linked_list, MemoryPermission::None));
324
325 block_guard.Cancel();
326 }
327
328 block_manager->Update(src_addr, num_pages, state, MemoryPermission::None,
329 MemoryAttribute::Locked);
330 block_manager->Update(dst_addr, num_pages, MemoryState::AliasCode);
331
332 return RESULT_SUCCESS;
333}
334
335ResultCode PageTable::UnmapProcessCodeMemory(VAddr dst_addr, VAddr src_addr, std::size_t size) {
336 std::lock_guard lock{page_table_lock};
337
338 if (!size) {
339 return RESULT_SUCCESS;
340 }
341
342 const std::size_t num_pages{size / PageSize};
343
344 CASCADE_CODE(CheckMemoryState(nullptr, nullptr, nullptr, src_addr, size, MemoryState::All,
345 MemoryState::Normal, MemoryPermission::None,
346 MemoryPermission::None, MemoryAttribute::Mask,
347 MemoryAttribute::Locked, MemoryAttribute::IpcAndDeviceMapped));
348
349 MemoryState state{};
350 CASCADE_CODE(CheckMemoryState(
351 &state, nullptr, nullptr, dst_addr, PageSize, MemoryState::FlagCanCodeAlias,
352 MemoryState::FlagCanCodeAlias, MemoryPermission::None, MemoryPermission::None,
353 MemoryAttribute::Mask, MemoryAttribute::None, MemoryAttribute::IpcAndDeviceMapped));
354 CASCADE_CODE(CheckMemoryState(dst_addr, size, MemoryState::All, state, MemoryPermission::None,
355 MemoryPermission::None, MemoryAttribute::Mask,
356 MemoryAttribute::None));
357 CASCADE_CODE(Operate(dst_addr, num_pages, MemoryPermission::None, OperationType::Unmap));
358
359 block_manager->Update(dst_addr, num_pages, MemoryState::Free);
360 block_manager->Update(src_addr, num_pages, MemoryState::Normal, MemoryPermission::ReadAndWrite);
361
362 return RESULT_SUCCESS;
363}
364
365void PageTable::MapPhysicalMemory(PageLinkedList& page_linked_list, VAddr start, VAddr end) {
366 auto node{page_linked_list.Nodes().begin()};
367 PAddr map_addr{node->GetAddress()};
368 std::size_t src_num_pages{node->GetNumPages()};
369
370 block_manager->IterateForRange(start, end, [&](const MemoryInfo& info) {
371 if (info.state != MemoryState::Free) {
372 return;
373 }
374
375 std::size_t dst_num_pages{GetSizeInRange(info, start, end) / PageSize};
376 VAddr dst_addr{GetAddressInRange(info, start)};
377
378 while (dst_num_pages) {
379 if (!src_num_pages) {
380 node = std::next(node);
381 map_addr = node->GetAddress();
382 src_num_pages = node->GetNumPages();
383 }
384
385 const std::size_t num_pages{std::min(src_num_pages, dst_num_pages)};
386 Operate(dst_addr, num_pages, MemoryPermission::ReadAndWrite, OperationType::Map,
387 map_addr);
388
389 dst_addr += num_pages * PageSize;
390 map_addr += num_pages * PageSize;
391 src_num_pages -= num_pages;
392 dst_num_pages -= num_pages;
393 }
394 });
395}
396
397ResultCode PageTable::MapPhysicalMemory(VAddr addr, std::size_t size) {
398 std::lock_guard lock{page_table_lock};
399
400 std::size_t mapped_size{};
401 const VAddr end_addr{addr + size};
402
403 block_manager->IterateForRange(addr, end_addr, [&](const MemoryInfo& info) {
404 if (info.state != MemoryState::Free) {
405 mapped_size += GetSizeInRange(info, addr, end_addr);
406 }
407 });
408
409 if (mapped_size == size) {
410 return RESULT_SUCCESS;
411 }
412
413 auto process{system.Kernel().CurrentProcess()};
414 const std::size_t remaining_size{size - mapped_size};
415 const std::size_t remaining_pages{remaining_size / PageSize};
416
417 if (process->GetResourceLimit() &&
418 !process->GetResourceLimit()->Reserve(ResourceType::PhysicalMemory, remaining_size)) {
419 return ERR_RESOURCE_LIMIT_EXCEEDED;
420 }
421
422 PageLinkedList page_linked_list;
423 {
424 auto block_guard = detail::ScopeExit([&] {
425 system.Kernel().MemoryManager().Free(page_linked_list, remaining_pages, memory_pool);
426 process->GetResourceLimit()->Release(ResourceType::PhysicalMemory, remaining_size);
427 });
428
429 CASCADE_CODE(system.Kernel().MemoryManager().Allocate(page_linked_list, remaining_pages,
430 memory_pool));
431
432 block_guard.Cancel();
433 }
434
435 MapPhysicalMemory(page_linked_list, addr, end_addr);
436
437 physical_memory_usage += remaining_size;
438
439 const std::size_t num_pages{size / PageSize};
440 block_manager->Update(addr, num_pages, MemoryState::Free, MemoryPermission::None,
441 MemoryAttribute::None, MemoryState::Normal,
442 MemoryPermission::ReadAndWrite, MemoryAttribute::None);
443
444 return RESULT_SUCCESS;
445}
446
447ResultCode PageTable::UnmapPhysicalMemory(VAddr addr, std::size_t size) {
448 std::lock_guard lock{page_table_lock};
449
450 const VAddr end_addr{addr + size};
451 ResultCode result{RESULT_SUCCESS};
452 std::size_t mapped_size{};
453
454 // Verify that the region can be unmapped
455 block_manager->IterateForRange(addr, end_addr, [&](const MemoryInfo& info) {
456 if (info.state == MemoryState::Normal) {
457 if (info.attribute != MemoryAttribute::None) {
458 result = ERR_INVALID_ADDRESS_STATE;
459 return;
460 }
461 mapped_size += GetSizeInRange(info, addr, end_addr);
462 } else if (info.state != MemoryState::Free) {
463 result = ERR_INVALID_ADDRESS_STATE;
464 }
465 });
466
467 if (result.IsError()) {
468 return result;
469 }
470
471 if (!mapped_size) {
472 return RESULT_SUCCESS;
473 }
474
475 CASCADE_CODE(UnmapMemory(addr, size));
476
477 auto process{system.Kernel().CurrentProcess()};
478 process->GetResourceLimit()->Release(ResourceType::PhysicalMemory, mapped_size);
479 physical_memory_usage -= mapped_size;
480
481 return RESULT_SUCCESS;
482}
483
484ResultCode PageTable::UnmapMemory(VAddr addr, std::size_t size) {
485 std::lock_guard lock{page_table_lock};
486
487 const VAddr end_addr{addr + size};
488 ResultCode result{RESULT_SUCCESS};
489 PageLinkedList page_linked_list;
490
491 // Unmap each region within the range
492 block_manager->IterateForRange(addr, end_addr, [&](const MemoryInfo& info) {
493 if (info.state == MemoryState::Normal) {
494 const std::size_t block_size{GetSizeInRange(info, addr, end_addr)};
495 const std::size_t block_num_pages{block_size / PageSize};
496 const VAddr block_addr{GetAddressInRange(info, addr)};
497
498 AddRegionToPages(block_addr, block_size / PageSize, page_linked_list);
499
500 if (result = Operate(block_addr, block_num_pages, MemoryPermission::None,
501 OperationType::Unmap);
502 result.IsError()) {
503 return;
504 }
505 }
506 });
507
508 if (result.IsError()) {
509 return result;
510 }
511
512 const std::size_t num_pages{size / PageSize};
513 system.Kernel().MemoryManager().Free(page_linked_list, num_pages, memory_pool);
514
515 block_manager->Update(addr, num_pages, MemoryState::Free);
516
517 return RESULT_SUCCESS;
518}
519
520ResultCode PageTable::Map(VAddr dst_addr, VAddr src_addr, std::size_t size) {
521 std::lock_guard lock{page_table_lock};
522
523 MemoryState src_state{};
524 CASCADE_CODE(CheckMemoryState(
525 &src_state, nullptr, nullptr, src_addr, size, MemoryState::FlagCanAlias,
526 MemoryState::FlagCanAlias, MemoryPermission::Mask, MemoryPermission::ReadAndWrite,
527 MemoryAttribute::Mask, MemoryAttribute::None, MemoryAttribute::IpcAndDeviceMapped));
528
529 if (IsRegionMapped(dst_addr, size)) {
530 return ERR_INVALID_ADDRESS_STATE;
531 }
532
533 PageLinkedList page_linked_list;
534 const std::size_t num_pages{size / PageSize};
535
536 AddRegionToPages(src_addr, num_pages, page_linked_list);
537
538 {
539 auto block_guard = detail::ScopeExit([&] {
540 Operate(src_addr, num_pages, MemoryPermission::ReadAndWrite,
541 OperationType::ChangePermissions);
542 });
543
544 CASCADE_CODE(
545 Operate(src_addr, num_pages, MemoryPermission::None, OperationType::ChangePermissions));
546 CASCADE_CODE(MapPages(dst_addr, page_linked_list, MemoryPermission::ReadAndWrite));
547
548 block_guard.Cancel();
549 }
550
551 block_manager->Update(src_addr, num_pages, src_state, MemoryPermission::None,
552 MemoryAttribute::Locked);
553 block_manager->Update(dst_addr, num_pages, MemoryState::Stack, MemoryPermission::ReadAndWrite);
554
555 return RESULT_SUCCESS;
556}
557
558ResultCode PageTable::Unmap(VAddr dst_addr, VAddr src_addr, std::size_t size) {
559 std::lock_guard lock{page_table_lock};
560
561 MemoryState src_state{};
562 CASCADE_CODE(CheckMemoryState(
563 &src_state, nullptr, nullptr, src_addr, size, MemoryState::FlagCanAlias,
564 MemoryState::FlagCanAlias, MemoryPermission::Mask, MemoryPermission::None,
565 MemoryAttribute::Mask, MemoryAttribute::Locked, MemoryAttribute::IpcAndDeviceMapped));
566
567 MemoryPermission dst_perm{};
568 CASCADE_CODE(CheckMemoryState(nullptr, &dst_perm, nullptr, dst_addr, size, MemoryState::All,
569 MemoryState::Stack, MemoryPermission::None,
570 MemoryPermission::None, MemoryAttribute::Mask,
571 MemoryAttribute::None, MemoryAttribute::IpcAndDeviceMapped));
572
573 PageLinkedList src_pages;
574 PageLinkedList dst_pages;
575 const std::size_t num_pages{size / PageSize};
576
577 AddRegionToPages(src_addr, num_pages, src_pages);
578 AddRegionToPages(dst_addr, num_pages, dst_pages);
579
580 if (!dst_pages.IsEqual(src_pages)) {
581 return ERR_INVALID_MEMORY_RANGE;
582 }
583
584 {
585 auto block_guard = detail::ScopeExit([&] { MapPages(dst_addr, dst_pages, dst_perm); });
586
587 CASCADE_CODE(Operate(dst_addr, num_pages, MemoryPermission::None, OperationType::Unmap));
588 CASCADE_CODE(Operate(src_addr, num_pages, MemoryPermission::ReadAndWrite,
589 OperationType::ChangePermissions));
590
591 block_guard.Cancel();
592 }
593
594 block_manager->Update(src_addr, num_pages, src_state, MemoryPermission::ReadAndWrite);
595 block_manager->Update(dst_addr, num_pages, MemoryState::Free);
596
597 return RESULT_SUCCESS;
598}
599
600ResultCode PageTable::MapPages(VAddr addr, const PageLinkedList& page_linked_list,
601 MemoryPermission perm) {
602 VAddr cur_addr{addr};
603
604 for (const auto& node : page_linked_list.Nodes()) {
605 if (const auto result{
606 Operate(cur_addr, node.GetNumPages(), perm, OperationType::Map, node.GetAddress())};
607 result.IsError()) {
608 const MemoryInfo info{block_manager->FindBlock(cur_addr).GetMemoryInfo()};
609 const std::size_t num_pages{(addr - cur_addr) / PageSize};
610
611 ASSERT(
612 Operate(addr, num_pages, MemoryPermission::None, OperationType::Unmap).IsSuccess());
613
614 return result;
615 }
616
617 cur_addr += node.GetNumPages() * PageSize;
618 }
619
620 return RESULT_SUCCESS;
621}
622
623ResultCode PageTable::MapPages(VAddr addr, PageLinkedList& page_linked_list, MemoryState state,
624 MemoryPermission perm) {
625 std::lock_guard lock{page_table_lock};
626
627 const std::size_t num_pages{page_linked_list.GetNumPages()};
628 const std::size_t size{num_pages * PageSize};
629
630 if (!CanContain(addr, size, state)) {
631 return ERR_INVALID_ADDRESS_STATE;
632 }
633
634 if (IsRegionMapped(addr, num_pages * PageSize)) {
635 return ERR_INVALID_ADDRESS_STATE;
636 }
637
638 CASCADE_CODE(MapPages(addr, page_linked_list, perm));
639
640 block_manager->Update(addr, num_pages, state, perm);
641
642 return RESULT_SUCCESS;
643}
644
645ResultCode PageTable::SetCodeMemoryPermission(VAddr addr, std::size_t size, MemoryPermission perm) {
646
647 std::lock_guard lock{page_table_lock};
648
649 MemoryState prev_state{};
650 MemoryPermission prev_perm{};
651
652 CASCADE_CODE(CheckMemoryState(
653 &prev_state, &prev_perm, nullptr, addr, size, MemoryState::FlagCode, MemoryState::FlagCode,
654 MemoryPermission::None, MemoryPermission::None, MemoryAttribute::Mask,
655 MemoryAttribute::None, MemoryAttribute::IpcAndDeviceMapped));
656
657 MemoryState state{prev_state};
658
659 // Ensure state is mutable if permission allows write
660 if ((perm & MemoryPermission::Write) != MemoryPermission::None) {
661 if (prev_state == MemoryState::Code) {
662 state = MemoryState::CodeData;
663 } else if (prev_state == MemoryState::AliasCode) {
664 state = MemoryState::AliasCodeData;
665 } else {
666 UNREACHABLE();
667 }
668 }
669
670 // Return early if there is nothing to change
671 if (state == prev_state && perm == prev_perm) {
672 return RESULT_SUCCESS;
673 }
674
675 const std::size_t num_pages{size / PageSize};
676 const OperationType operation{(perm & MemoryPermission::Execute) != MemoryPermission::None
677 ? OperationType::ChangePermissionsAndRefresh
678 : OperationType::ChangePermissions};
679
680 CASCADE_CODE(Operate(addr, num_pages, perm, operation));
681
682 block_manager->Update(addr, num_pages, state, perm);
683
684 return RESULT_SUCCESS;
685}
686
687MemoryInfo PageTable::QueryInfoImpl(VAddr addr) {
688 std::lock_guard lock{page_table_lock};
689
690 return block_manager->FindBlock(addr).GetMemoryInfo();
691}
692
693MemoryInfo PageTable::QueryInfo(VAddr addr) {
694 if (!Contains(addr, 1)) {
695 return {address_space_end, 0 - address_space_end, MemoryState::Inaccessible,
696 MemoryPermission::None, MemoryAttribute::None, MemoryPermission::None};
697 }
698
699 return QueryInfoImpl(addr);
700}
701
702ResultCode PageTable::ReserveTransferMemory(VAddr addr, std::size_t size, MemoryPermission perm) {
703 std::lock_guard lock{page_table_lock};
704
705 MemoryState state{};
706 MemoryAttribute attribute{};
707
708 CASCADE_CODE(CheckMemoryState(&state, nullptr, &attribute, addr, size,
709 MemoryState::FlagCanTransfer | MemoryState::FlagReferenceCounted,
710 MemoryState::FlagCanTransfer | MemoryState::FlagReferenceCounted,
711 MemoryPermission::Mask, MemoryPermission::ReadAndWrite,
712 MemoryAttribute::Mask, MemoryAttribute::None,
713 MemoryAttribute::IpcAndDeviceMapped));
714
715 block_manager->Update(addr, size / PageSize, state, perm, attribute | MemoryAttribute::Locked);
716
717 return RESULT_SUCCESS;
718}
719
720ResultCode PageTable::ResetTransferMemory(VAddr addr, std::size_t size) {
721 std::lock_guard lock{page_table_lock};
722
723 MemoryState state{};
724
725 CASCADE_CODE(CheckMemoryState(&state, nullptr, nullptr, addr, size,
726 MemoryState::FlagCanTransfer | MemoryState::FlagReferenceCounted,
727 MemoryState::FlagCanTransfer | MemoryState::FlagReferenceCounted,
728 MemoryPermission::None, MemoryPermission::None,
729 MemoryAttribute::Mask, MemoryAttribute::Locked,
730 MemoryAttribute::IpcAndDeviceMapped));
731
732 block_manager->Update(addr, size / PageSize, state, MemoryPermission::ReadAndWrite);
733
734 return RESULT_SUCCESS;
735}
736
737ResultCode PageTable::SetMemoryAttribute(VAddr addr, std::size_t size, MemoryAttribute mask,
738 MemoryAttribute value) {
739 std::lock_guard lock{page_table_lock};
740
741 MemoryState state{};
742 MemoryPermission perm{};
743 MemoryAttribute attribute{};
744
745 CASCADE_CODE(CheckMemoryState(&state, &perm, &attribute, addr, size,
746 MemoryState::FlagCanChangeAttribute,
747 MemoryState::FlagCanChangeAttribute, MemoryPermission::None,
748 MemoryPermission::None, MemoryAttribute::LockedAndIpcLocked,
749 MemoryAttribute::None, MemoryAttribute::DeviceSharedAndUncached));
750
751 attribute = attribute & ~mask;
752 attribute = attribute | (mask & value);
753
754 block_manager->Update(addr, size / PageSize, state, perm, attribute);
755
756 return RESULT_SUCCESS;
757}
758
759ResultCode PageTable::SetHeapCapacity(std::size_t new_heap_capacity) {
760 std::lock_guard lock{page_table_lock};
761 heap_capacity = new_heap_capacity;
762 return RESULT_SUCCESS;
763}
764
765ResultVal<VAddr> PageTable::SetHeapSize(std::size_t size) {
766
767 if (size > heap_region_end - heap_region_start) {
768 return ERR_OUT_OF_MEMORY;
769 }
770
771 const u64 previous_heap_size{GetHeapSize()};
772
773 UNIMPLEMENTED_IF_MSG(previous_heap_size > size, "Heap shrink is unimplemented");
774
775 // Increase the heap size
776 {
777 std::lock_guard lock{page_table_lock};
778
779 const u64 delta{size - previous_heap_size};
780
781 auto process{system.Kernel().CurrentProcess()};
782 if (process->GetResourceLimit() && delta != 0 &&
783 !process->GetResourceLimit()->Reserve(ResourceType::PhysicalMemory, delta)) {
784 return ERR_RESOURCE_LIMIT_EXCEEDED;
785 }
786
787 PageLinkedList page_linked_list;
788 const std::size_t num_pages{delta / PageSize};
789
790 CASCADE_CODE(
791 system.Kernel().MemoryManager().Allocate(page_linked_list, num_pages, memory_pool));
792
793 if (IsRegionMapped(current_heap_addr, delta)) {
794 return ERR_INVALID_ADDRESS_STATE;
795 }
796
797 CASCADE_CODE(
798 Operate(current_heap_addr, num_pages, page_linked_list, OperationType::MapGroup));
799
800 block_manager->Update(current_heap_addr, num_pages, MemoryState::Normal,
801 MemoryPermission::ReadAndWrite);
802
803 current_heap_addr = heap_region_start + size;
804 }
805
806 return MakeResult<VAddr>(heap_region_start);
807}
808
809ResultVal<VAddr> PageTable::AllocateAndMapMemory(std::size_t needed_num_pages, std::size_t align,
810 bool is_map_only, VAddr region_start,
811 std::size_t region_num_pages, MemoryState state,
812 MemoryPermission perm, PAddr map_addr) {
813 std::lock_guard lock{page_table_lock};
814
815 if (!CanContain(region_start, region_num_pages * PageSize, state)) {
816 return ERR_INVALID_ADDRESS_STATE;
817 }
818
819 if (region_num_pages <= needed_num_pages) {
820 return ERR_OUT_OF_MEMORY;
821 }
822
823 const VAddr addr{
824 AllocateVirtualMemory(region_start, region_num_pages, needed_num_pages, align)};
825 if (!addr) {
826 return ERR_OUT_OF_MEMORY;
827 }
828
829 if (is_map_only) {
830 CASCADE_CODE(Operate(addr, needed_num_pages, perm, OperationType::Map, map_addr));
831 } else {
832 PageLinkedList page_group;
833 CASCADE_CODE(
834 system.Kernel().MemoryManager().Allocate(page_group, needed_num_pages, memory_pool));
835 CASCADE_CODE(Operate(addr, needed_num_pages, page_group, OperationType::MapGroup));
836 }
837
838 block_manager->Update(addr, needed_num_pages, state, perm);
839
840 return MakeResult<VAddr>(addr);
841}
842
843ResultCode PageTable::InitializeMemoryLayout(VAddr start, VAddr end) {
844 block_manager = std::make_unique<MemoryBlockManager>(start, end);
845
846 return RESULT_SUCCESS;
847}
848
849bool PageTable::IsRegionMapped(VAddr address, u64 size) {
850 return CheckMemoryState(address, size, MemoryState::All, MemoryState::Free,
851 MemoryPermission::Mask, MemoryPermission::None, MemoryAttribute::Mask,
852 MemoryAttribute::None, MemoryAttribute::IpcAndDeviceMapped)
853 .IsError();
854}
855
856bool PageTable::IsRegionContiguous(VAddr addr, u64 size) const {
857 auto start_ptr = system.Memory().GetPointer(addr);
858 for (u64 offset{}; offset < size; offset += PageSize) {
859 if (start_ptr != system.Memory().GetPointer(addr + offset)) {
860 return false;
861 }
862 start_ptr += PageSize;
863 }
864 return true;
865}
866
867void PageTable::AddRegionToPages(VAddr start, std::size_t num_pages,
868 PageLinkedList& page_linked_list) {
869 VAddr addr{start};
870 while (addr < start + (num_pages * PageSize)) {
871 const PAddr paddr{GetPhysicalAddr(addr)};
872 if (!paddr) {
873 UNREACHABLE();
874 }
875 page_linked_list.AddBlock(paddr, 1);
876 addr += PageSize;
877 }
878}
879
880VAddr PageTable::AllocateVirtualMemory(VAddr start, std::size_t region_num_pages,
881 u64 needed_num_pages, std::size_t align) {
882 if (is_aslr_enabled) {
883 UNIMPLEMENTED();
884 }
885 return block_manager->FindFreeArea(start, region_num_pages, needed_num_pages, align, 0,
886 IsKernel() ? 1 : 4);
887}
888
889ResultCode PageTable::Operate(VAddr addr, std::size_t num_pages, const PageLinkedList& page_group,
890 OperationType operation) {
891 std::lock_guard lock{page_table_lock};
892
893 ASSERT(Common::IsAligned(addr, PageSize));
894 ASSERT(num_pages > 0);
895 ASSERT(num_pages == page_group.GetNumPages());
896
897 for (const auto& node : page_group.Nodes()) {
898 const std::size_t size{node.GetNumPages() * PageSize};
899
900 switch (operation) {
901 case OperationType::MapGroup:
902 system.Memory().MapMemoryRegion(page_table_impl, addr, size, node.GetAddress());
903 break;
904 default:
905 UNREACHABLE();
906 }
907
908 addr += size;
909 }
910
911 return RESULT_SUCCESS;
912}
913
914ResultCode PageTable::Operate(VAddr addr, std::size_t num_pages, MemoryPermission perm,
915 OperationType operation, PAddr map_addr) {
916 std::lock_guard lock{page_table_lock};
917
918 ASSERT(num_pages > 0);
919 ASSERT(Common::IsAligned(addr, PageSize));
920 ASSERT(ContainsPages(addr, num_pages));
921
922 switch (operation) {
923 case OperationType::Unmap:
924 system.Memory().UnmapRegion(page_table_impl, addr, num_pages * PageSize);
925 break;
926 case OperationType::Map: {
927 ASSERT(map_addr);
928 ASSERT(Common::IsAligned(map_addr, PageSize));
929 system.Memory().MapMemoryRegion(page_table_impl, addr, num_pages * PageSize, map_addr);
930 break;
931 }
932 case OperationType::ChangePermissions:
933 case OperationType::ChangePermissionsAndRefresh:
934 break;
935 default:
936 UNREACHABLE();
937 }
938 return RESULT_SUCCESS;
939}
940
941constexpr VAddr PageTable::GetRegionAddress(MemoryState state) const {
942 switch (state) {
943 case MemoryState::Free:
944 case MemoryState::Kernel:
945 return address_space_start;
946 case MemoryState::Normal:
947 return heap_region_start;
948 case MemoryState::Ipc:
949 case MemoryState::NonSecureIpc:
950 case MemoryState::NonDeviceIpc:
951 return alias_region_start;
952 case MemoryState::Stack:
953 return stack_region_start;
954 case MemoryState::Io:
955 case MemoryState::Static:
956 case MemoryState::ThreadLocal:
957 return kernel_map_region_start;
958 case MemoryState::Shared:
959 case MemoryState::AliasCode:
960 case MemoryState::AliasCodeData:
961 case MemoryState::Transfered:
962 case MemoryState::SharedTransfered:
963 case MemoryState::SharedCode:
964 case MemoryState::GeneratedCode:
965 case MemoryState::CodeOut:
966 return alias_code_region_start;
967 case MemoryState::Code:
968 case MemoryState::CodeData:
969 return code_region_start;
970 default:
971 UNREACHABLE();
972 return {};
973 }
974}
975
976constexpr std::size_t PageTable::GetRegionSize(MemoryState state) const {
977 switch (state) {
978 case MemoryState::Free:
979 case MemoryState::Kernel:
980 return address_space_end - address_space_start;
981 case MemoryState::Normal:
982 return heap_region_end - heap_region_start;
983 case MemoryState::Ipc:
984 case MemoryState::NonSecureIpc:
985 case MemoryState::NonDeviceIpc:
986 return alias_region_end - alias_region_start;
987 case MemoryState::Stack:
988 return stack_region_end - stack_region_start;
989 case MemoryState::Io:
990 case MemoryState::Static:
991 case MemoryState::ThreadLocal:
992 return kernel_map_region_end - kernel_map_region_start;
993 case MemoryState::Shared:
994 case MemoryState::AliasCode:
995 case MemoryState::AliasCodeData:
996 case MemoryState::Transfered:
997 case MemoryState::SharedTransfered:
998 case MemoryState::SharedCode:
999 case MemoryState::GeneratedCode:
1000 case MemoryState::CodeOut:
1001 return alias_code_region_end - alias_code_region_start;
1002 case MemoryState::Code:
1003 case MemoryState::CodeData:
1004 return code_region_end - code_region_start;
1005 default:
1006 UNREACHABLE();
1007 return {};
1008 }
1009}
1010
1011constexpr bool PageTable::CanContain(VAddr addr, std::size_t size, MemoryState state) const {
1012 const VAddr end{addr + size};
1013 const VAddr last{end - 1};
1014 const VAddr region_start{GetRegionAddress(state)};
1015 const std::size_t region_size{GetRegionSize(state)};
1016 const bool is_in_region{region_start <= addr && addr < end &&
1017 last <= region_start + region_size - 1};
1018 const bool is_in_heap{!(end <= heap_region_start || heap_region_end <= addr)};
1019 const bool is_in_alias{!(end <= alias_region_start || alias_region_end <= addr)};
1020
1021 switch (state) {
1022 case MemoryState::Free:
1023 case MemoryState::Kernel:
1024 return is_in_region;
1025 case MemoryState::Io:
1026 case MemoryState::Static:
1027 case MemoryState::Code:
1028 case MemoryState::CodeData:
1029 case MemoryState::Shared:
1030 case MemoryState::AliasCode:
1031 case MemoryState::AliasCodeData:
1032 case MemoryState::Stack:
1033 case MemoryState::ThreadLocal:
1034 case MemoryState::Transfered:
1035 case MemoryState::SharedTransfered:
1036 case MemoryState::SharedCode:
1037 case MemoryState::GeneratedCode:
1038 case MemoryState::CodeOut:
1039 return is_in_region && !is_in_heap && !is_in_alias;
1040 case MemoryState::Normal:
1041 ASSERT(is_in_heap);
1042 return is_in_region && !is_in_alias;
1043 case MemoryState::Ipc:
1044 case MemoryState::NonSecureIpc:
1045 case MemoryState::NonDeviceIpc:
1046 ASSERT(is_in_alias);
1047 return is_in_region && !is_in_heap;
1048 default:
1049 return false;
1050 }
1051}
1052
1053constexpr ResultCode PageTable::CheckMemoryState(const MemoryInfo& info, MemoryState state_mask,
1054 MemoryState state, MemoryPermission perm_mask,
1055 MemoryPermission perm, MemoryAttribute attr_mask,
1056 MemoryAttribute attr) const {
1057 // Validate the states match expectation
1058 if ((info.state & state_mask) != state) {
1059 return ERR_INVALID_ADDRESS_STATE;
1060 }
1061 if ((info.perm & perm_mask) != perm) {
1062 return ERR_INVALID_ADDRESS_STATE;
1063 }
1064 if ((info.attribute & attr_mask) != attr) {
1065 return ERR_INVALID_ADDRESS_STATE;
1066 }
1067
1068 return RESULT_SUCCESS;
1069}
1070
1071ResultCode PageTable::CheckMemoryState(MemoryState* out_state, MemoryPermission* out_perm,
1072 MemoryAttribute* out_attr, VAddr addr, std::size_t size,
1073 MemoryState state_mask, MemoryState state,
1074 MemoryPermission perm_mask, MemoryPermission perm,
1075 MemoryAttribute attr_mask, MemoryAttribute attr,
1076 MemoryAttribute ignore_attr) {
1077 std::lock_guard lock{page_table_lock};
1078
1079 // Get information about the first block
1080 const VAddr last_addr{addr + size - 1};
1081 MemoryBlockManager::const_iterator it{block_manager->FindIterator(addr)};
1082 MemoryInfo info{it->GetMemoryInfo()};
1083
1084 // Validate all blocks in the range have correct state
1085 const MemoryState first_state{info.state};
1086 const MemoryPermission first_perm{info.perm};
1087 const MemoryAttribute first_attr{info.attribute};
1088
1089 while (true) {
1090 // Validate the current block
1091 if (!(info.state == first_state)) {
1092 return ERR_INVALID_ADDRESS_STATE;
1093 }
1094 if (!(info.perm == first_perm)) {
1095 return ERR_INVALID_ADDRESS_STATE;
1096 }
1097 if (!((info.attribute | static_cast<MemoryAttribute>(ignore_attr)) ==
1098 (first_attr | static_cast<MemoryAttribute>(ignore_attr)))) {
1099 return ERR_INVALID_ADDRESS_STATE;
1100 }
1101
1102 // Validate against the provided masks
1103 CASCADE_CODE(CheckMemoryState(info, state_mask, state, perm_mask, perm, attr_mask, attr));
1104
1105 // Break once we're done
1106 if (last_addr <= info.GetLastAddress()) {
1107 break;
1108 }
1109
1110 // Advance our iterator
1111 it++;
1112 ASSERT(it != block_manager->cend());
1113 info = it->GetMemoryInfo();
1114 }
1115
1116 // Write output state
1117 if (out_state) {
1118 *out_state = first_state;
1119 }
1120 if (out_perm) {
1121 *out_perm = first_perm;
1122 }
1123 if (out_attr) {
1124 *out_attr = first_attr & static_cast<MemoryAttribute>(~ignore_attr);
1125 }
1126
1127 return RESULT_SUCCESS;
1128}
1129
1130} // namespace Kernel::Memory
diff --git a/src/core/hle/kernel/memory/page_table.h b/src/core/hle/kernel/memory/page_table.h
new file mode 100644
index 000000000..80384ab0f
--- /dev/null
+++ b/src/core/hle/kernel/memory/page_table.h
@@ -0,0 +1,276 @@
1// Copyright 2020 yuzu Emulator Project
2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included.
4
5#pragma once
6
7#include <list>
8#include <memory>
9#include <mutex>
10
11#include "common/common_funcs.h"
12#include "common/common_types.h"
13#include "common/page_table.h"
14#include "core/file_sys/program_metadata.h"
15#include "core/hle/kernel/memory/memory_block.h"
16#include "core/hle/kernel/memory/memory_manager.h"
17
18namespace Core {
19class System;
20}
21
22namespace Kernel::Memory {
23
24class MemoryBlockManager;
25
26class PageTable final : NonCopyable {
27public:
28 explicit PageTable(Core::System& system);
29
30 ResultCode InitializeForProcess(FileSys::ProgramAddressSpaceType as_type, bool enable_aslr,
31 VAddr code_addr, std::size_t code_size,
32 Memory::MemoryManager::Pool pool);
33 ResultCode MapProcessCode(VAddr addr, std::size_t pages_count, MemoryState state,
34 MemoryPermission perm);
35 ResultCode MapProcessCodeMemory(VAddr dst_addr, VAddr src_addr, std::size_t size);
36 ResultCode UnmapProcessCodeMemory(VAddr dst_addr, VAddr src_addr, std::size_t size);
37 ResultCode MapPhysicalMemory(VAddr addr, std::size_t size);
38 ResultCode UnmapPhysicalMemory(VAddr addr, std::size_t size);
39 ResultCode UnmapMemory(VAddr addr, std::size_t size);
40 ResultCode Map(VAddr dst_addr, VAddr src_addr, std::size_t size);
41 ResultCode Unmap(VAddr dst_addr, VAddr src_addr, std::size_t size);
42 ResultCode MapPages(VAddr addr, PageLinkedList& page_linked_list, MemoryState state,
43 MemoryPermission perm);
44 ResultCode SetCodeMemoryPermission(VAddr addr, std::size_t size, MemoryPermission perm);
45 MemoryInfo QueryInfo(VAddr addr);
46 ResultCode ReserveTransferMemory(VAddr addr, std::size_t size, MemoryPermission perm);
47 ResultCode ResetTransferMemory(VAddr addr, std::size_t size);
48 ResultCode SetMemoryAttribute(VAddr addr, std::size_t size, MemoryAttribute mask,
49 MemoryAttribute value);
50 ResultCode SetHeapCapacity(std::size_t new_heap_capacity);
51 ResultVal<VAddr> SetHeapSize(std::size_t size);
52 ResultVal<VAddr> AllocateAndMapMemory(std::size_t needed_num_pages, std::size_t align,
53 bool is_map_only, VAddr region_start,
54 std::size_t region_num_pages, MemoryState state,
55 MemoryPermission perm, PAddr map_addr = 0);
56
57 Common::PageTable& PageTableImpl() {
58 return page_table_impl;
59 }
60
61 const Common::PageTable& PageTableImpl() const {
62 return page_table_impl;
63 }
64
65private:
66 enum class OperationType : u32 {
67 Map,
68 MapGroup,
69 Unmap,
70 ChangePermissions,
71 ChangePermissionsAndRefresh,
72 };
73
74 static constexpr MemoryAttribute DefaultMemoryIgnoreAttr =
75 MemoryAttribute::DontCareMask | MemoryAttribute::IpcLocked | MemoryAttribute::DeviceShared;
76
77 ResultCode InitializeMemoryLayout(VAddr start, VAddr end);
78 ResultCode MapPages(VAddr addr, const PageLinkedList& page_linked_list, MemoryPermission perm);
79 void MapPhysicalMemory(PageLinkedList& page_linked_list, VAddr start, VAddr end);
80 bool IsRegionMapped(VAddr address, u64 size);
81 bool IsRegionContiguous(VAddr addr, u64 size) const;
82 void AddRegionToPages(VAddr start, std::size_t num_pages, PageLinkedList& page_linked_list);
83 MemoryInfo QueryInfoImpl(VAddr addr);
84 VAddr AllocateVirtualMemory(VAddr start, std::size_t region_num_pages, u64 needed_num_pages,
85 std::size_t align);
86 ResultCode Operate(VAddr addr, std::size_t num_pages, const PageLinkedList& page_group,
87 OperationType operation);
88 ResultCode Operate(VAddr addr, std::size_t num_pages, MemoryPermission perm,
89 OperationType operation, PAddr map_addr = 0);
90 constexpr VAddr GetRegionAddress(MemoryState state) const;
91 constexpr std::size_t GetRegionSize(MemoryState state) const;
92 constexpr bool CanContain(VAddr addr, std::size_t size, MemoryState state) const;
93
94 constexpr ResultCode CheckMemoryState(const MemoryInfo& info, MemoryState state_mask,
95 MemoryState state, MemoryPermission perm_mask,
96 MemoryPermission perm, MemoryAttribute attr_mask,
97 MemoryAttribute attr) const;
98 ResultCode CheckMemoryState(MemoryState* out_state, MemoryPermission* out_perm,
99 MemoryAttribute* out_attr, VAddr addr, std::size_t size,
100 MemoryState state_mask, MemoryState state,
101 MemoryPermission perm_mask, MemoryPermission perm,
102 MemoryAttribute attr_mask, MemoryAttribute attr,
103 MemoryAttribute ignore_attr = DefaultMemoryIgnoreAttr);
104 ResultCode CheckMemoryState(VAddr addr, std::size_t size, MemoryState state_mask,
105 MemoryState state, MemoryPermission perm_mask,
106 MemoryPermission perm, MemoryAttribute attr_mask,
107 MemoryAttribute attr,
108 MemoryAttribute ignore_attr = DefaultMemoryIgnoreAttr) {
109 return CheckMemoryState(nullptr, nullptr, nullptr, addr, size, state_mask, state, perm_mask,
110 perm, attr_mask, attr, ignore_attr);
111 }
112
113 std::recursive_mutex page_table_lock;
114 std::unique_ptr<MemoryBlockManager> block_manager;
115
116public:
117 constexpr VAddr GetAddressSpaceStart() const {
118 return address_space_start;
119 }
120 constexpr VAddr GetAddressSpaceEnd() const {
121 return address_space_end;
122 }
123 constexpr std::size_t GetAddressSpaceSize() const {
124 return address_space_end - address_space_start;
125 }
126 constexpr VAddr GetHeapRegionStart() const {
127 return heap_region_start;
128 }
129 constexpr VAddr GetHeapRegionEnd() const {
130 return heap_region_end;
131 }
132 constexpr std::size_t GetHeapRegionSize() const {
133 return heap_region_end - heap_region_start;
134 }
135 constexpr VAddr GetAliasRegionStart() const {
136 return alias_region_start;
137 }
138 constexpr VAddr GetAliasRegionEnd() const {
139 return alias_region_end;
140 }
141 constexpr std::size_t GetAliasRegionSize() const {
142 return alias_region_end - alias_region_start;
143 }
144 constexpr VAddr GetStackRegionStart() const {
145 return stack_region_start;
146 }
147 constexpr VAddr GetStackRegionEnd() const {
148 return stack_region_end;
149 }
150 constexpr std::size_t GetStackRegionSize() const {
151 return stack_region_end - stack_region_start;
152 }
153 constexpr VAddr GetKernelMapRegionStart() const {
154 return kernel_map_region_start;
155 }
156 constexpr VAddr GetKernelMapRegionEnd() const {
157 return kernel_map_region_end;
158 }
159 constexpr VAddr GetCodeRegionStart() const {
160 return code_region_start;
161 }
162 constexpr VAddr GetCodeRegionEnd() const {
163 return code_region_end;
164 }
165 constexpr VAddr GetAliasCodeRegionStart() const {
166 return alias_code_region_start;
167 }
168 constexpr VAddr GetAliasCodeRegionSize() const {
169 return alias_code_region_end - alias_code_region_start;
170 }
171 constexpr std::size_t GetAddressSpaceWidth() const {
172 return address_space_width;
173 }
174 constexpr std::size_t GetHeapSize() {
175 return current_heap_addr - heap_region_start;
176 }
177 constexpr std::size_t GetTotalHeapSize() {
178 return GetHeapSize() + physical_memory_usage;
179 }
180 constexpr bool IsInsideAddressSpace(VAddr address, std::size_t size) const {
181 return address_space_start <= address && address + size - 1 <= address_space_end - 1;
182 }
183 constexpr bool IsOutsideAliasRegion(VAddr address, std::size_t size) const {
184 return alias_region_start > address || address + size - 1 > alias_region_end - 1;
185 }
186 constexpr bool IsOutsideStackRegion(VAddr address, std::size_t size) const {
187 return stack_region_start > address || address + size - 1 > stack_region_end - 1;
188 }
189 constexpr bool IsInvalidRegion(VAddr address, std::size_t size) const {
190 return address + size - 1 > GetAliasCodeRegionStart() + GetAliasCodeRegionSize() - 1;
191 }
192 constexpr bool IsInsideHeapRegion(VAddr address, std::size_t size) const {
193 return address + size > heap_region_start && heap_region_end > address;
194 }
195 constexpr bool IsInsideAliasRegion(VAddr address, std::size_t size) const {
196 return address + size > alias_region_start && alias_region_end > address;
197 }
198 constexpr bool IsOutsideASLRRegion(VAddr address, std::size_t size) const {
199 if (IsInvalidRegion(address, size)) {
200 return true;
201 }
202 if (IsInsideHeapRegion(address, size)) {
203 return true;
204 }
205 if (IsInsideAliasRegion(address, size)) {
206 return true;
207 }
208 return {};
209 }
210 constexpr bool IsInsideASLRRegion(VAddr address, std::size_t size) const {
211 return !IsOutsideASLRRegion(address, size);
212 }
213 constexpr PAddr GetPhysicalAddr(VAddr addr) {
214 return page_table_impl.backing_addr[addr >> Memory::PageBits] + addr;
215 }
216
217private:
218 constexpr bool Contains(VAddr addr) const {
219 return address_space_start <= addr && addr <= address_space_end - 1;
220 }
221 constexpr bool Contains(VAddr addr, std::size_t size) const {
222 return address_space_start <= addr && addr < addr + size &&
223 addr + size - 1 <= address_space_end - 1;
224 }
225 constexpr bool IsKernel() const {
226 return is_kernel;
227 }
228 constexpr bool IsAslrEnabled() const {
229 return is_aslr_enabled;
230 }
231
232 constexpr std::size_t GetNumGuardPages() const {
233 return IsKernel() ? 1 : 4;
234 }
235
236 constexpr bool ContainsPages(VAddr addr, std::size_t num_pages) const {
237 return (address_space_start <= addr) &&
238 (num_pages <= (address_space_end - address_space_start) / PageSize) &&
239 (addr + num_pages * PageSize - 1 <= address_space_end - 1);
240 }
241
242private:
243 VAddr address_space_start{};
244 VAddr address_space_end{};
245 VAddr heap_region_start{};
246 VAddr heap_region_end{};
247 VAddr current_heap_end{};
248 VAddr alias_region_start{};
249 VAddr alias_region_end{};
250 VAddr stack_region_start{};
251 VAddr stack_region_end{};
252 VAddr kernel_map_region_start{};
253 VAddr kernel_map_region_end{};
254 VAddr code_region_start{};
255 VAddr code_region_end{};
256 VAddr alias_code_region_start{};
257 VAddr alias_code_region_end{};
258 VAddr current_heap_addr{};
259
260 std::size_t heap_capacity{};
261 std::size_t physical_memory_usage{};
262 std::size_t max_heap_size{};
263 std::size_t max_physical_memory_size{};
264 std::size_t address_space_width{};
265
266 bool is_kernel{};
267 bool is_aslr_enabled{};
268
269 MemoryManager::Pool memory_pool{MemoryManager::Pool::Application};
270
271 Common::PageTable page_table_impl;
272
273 Core::System& system;
274};
275
276} // namespace Kernel::Memory
diff --git a/src/core/hle/kernel/memory/slab_heap.h b/src/core/hle/kernel/memory/slab_heap.h
new file mode 100644
index 000000000..049403e15
--- /dev/null
+++ b/src/core/hle/kernel/memory/slab_heap.h
@@ -0,0 +1,164 @@
1// Copyright 2020 yuzu Emulator Project
2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included.
4
5// This file references various implementation details from Atmosphère, an open-source firmware for
6// the Nintendo Switch. Copyright 2018-2020 Atmosphère-NX.
7
8#pragma once
9
10#include <atomic>
11
12#include "common/assert.h"
13#include "common/common_funcs.h"
14#include "common/common_types.h"
15
16namespace Kernel::Memory {
17
18namespace impl {
19
20class SlabHeapImpl final : NonCopyable {
21public:
22 struct Node {
23 Node* next{};
24 };
25
26 constexpr SlabHeapImpl() = default;
27
28 void Initialize(std::size_t size) {
29 ASSERT(head == nullptr);
30 obj_size = size;
31 }
32
33 constexpr std::size_t GetObjectSize() const {
34 return obj_size;
35 }
36
37 Node* GetHead() const {
38 return head;
39 }
40
41 void* Allocate() {
42 Node* ret = head.load();
43
44 do {
45 if (ret == nullptr) {
46 break;
47 }
48 } while (!head.compare_exchange_weak(ret, ret->next));
49
50 return ret;
51 }
52
53 void Free(void* obj) {
54 Node* node = reinterpret_cast<Node*>(obj);
55
56 Node* cur_head = head.load();
57 do {
58 node->next = cur_head;
59 } while (!head.compare_exchange_weak(cur_head, node));
60 }
61
62private:
63 std::atomic<Node*> head{};
64 std::size_t obj_size{};
65};
66
67} // namespace impl
68
69class SlabHeapBase : NonCopyable {
70public:
71 constexpr SlabHeapBase() = default;
72
73 constexpr bool Contains(uintptr_t addr) const {
74 return start <= addr && addr < end;
75 }
76
77 constexpr std::size_t GetSlabHeapSize() const {
78 return (end - start) / GetObjectSize();
79 }
80
81 constexpr std::size_t GetObjectSize() const {
82 return impl.GetObjectSize();
83 }
84
85 constexpr uintptr_t GetSlabHeapAddress() const {
86 return start;
87 }
88
89 std::size_t GetObjectIndexImpl(const void* obj) const {
90 return (reinterpret_cast<uintptr_t>(obj) - start) / GetObjectSize();
91 }
92
93 std::size_t GetPeakIndex() const {
94 return GetObjectIndexImpl(reinterpret_cast<const void*>(peak));
95 }
96
97 void* AllocateImpl() {
98 return impl.Allocate();
99 }
100
101 void FreeImpl(void* obj) {
102 // Don't allow freeing an object that wasn't allocated from this heap
103 ASSERT(Contains(reinterpret_cast<uintptr_t>(obj)));
104 impl.Free(obj);
105 }
106
107 void InitializeImpl(std::size_t obj_size, void* memory, std::size_t memory_size) {
108 // Ensure we don't initialize a slab using null memory
109 ASSERT(memory != nullptr);
110
111 // Initialize the base allocator
112 impl.Initialize(obj_size);
113
114 // Set our tracking variables
115 const std::size_t num_obj = (memory_size / obj_size);
116 start = reinterpret_cast<uintptr_t>(memory);
117 end = start + num_obj * obj_size;
118 peak = start;
119
120 // Free the objects
121 u8* cur = reinterpret_cast<u8*>(end);
122
123 for (std::size_t i{}; i < num_obj; i++) {
124 cur -= obj_size;
125 impl.Free(cur);
126 }
127 }
128
129private:
130 using Impl = impl::SlabHeapImpl;
131
132 Impl impl;
133 uintptr_t peak{};
134 uintptr_t start{};
135 uintptr_t end{};
136};
137
138template <typename T>
139class SlabHeap final : public SlabHeapBase {
140public:
141 constexpr SlabHeap() : SlabHeapBase() {}
142
143 void Initialize(void* memory, std::size_t memory_size) {
144 InitializeImpl(sizeof(T), memory, memory_size);
145 }
146
147 T* Allocate() {
148 T* obj = reinterpret_cast<T*>(AllocateImpl());
149 if (obj != nullptr) {
150 new (obj) T();
151 }
152 return obj;
153 }
154
155 void Free(T* obj) {
156 FreeImpl(obj);
157 }
158
159 constexpr std::size_t GetObjectIndex(const T* obj) const {
160 return GetObjectIndexImpl(obj);
161 }
162};
163
164} // namespace Kernel::Memory
diff --git a/src/core/hle/kernel/memory/system_control.cpp b/src/core/hle/kernel/memory/system_control.cpp
new file mode 100644
index 000000000..9cae3c6cb
--- /dev/null
+++ b/src/core/hle/kernel/memory/system_control.cpp
@@ -0,0 +1,41 @@
1// Copyright 2020 yuzu Emulator Project
2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included.
4
5#pragma once
6
7#include <random>
8
9#include "core/hle/kernel/memory/system_control.h"
10
11namespace Kernel::Memory::SystemControl {
12
13u64 GenerateRandomU64ForInit() {
14 static std::random_device device;
15 static std::mt19937 gen(device());
16 static std::uniform_int_distribution<u64> distribution(1, std::numeric_limits<u64>::max());
17 return distribution(gen);
18}
19
20template <typename F>
21u64 GenerateUniformRange(u64 min, u64 max, F f) {
22 /* Handle the case where the difference is too large to represent. */
23 if (max == std::numeric_limits<u64>::max() && min == std::numeric_limits<u64>::min()) {
24 return f();
25 }
26
27 /* Iterate until we get a value in range. */
28 const u64 range_size = ((max + 1) - min);
29 const u64 effective_max = (std::numeric_limits<u64>::max() / range_size) * range_size;
30 while (true) {
31 if (const u64 rnd = f(); rnd < effective_max) {
32 return min + (rnd % range_size);
33 }
34 }
35}
36
37u64 GenerateRandomRange(u64 min, u64 max) {
38 return GenerateUniformRange(min, max, GenerateRandomU64ForInit);
39}
40
41} // namespace Kernel::Memory::SystemControl
diff --git a/src/core/hle/kernel/memory/system_control.h b/src/core/hle/kernel/memory/system_control.h
new file mode 100644
index 000000000..3fa93111d
--- /dev/null
+++ b/src/core/hle/kernel/memory/system_control.h
@@ -0,0 +1,18 @@
1// Copyright 2020 yuzu Emulator Project
2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included.
4
5#pragma once
6
7#include "common/common_types.h"
8
9namespace Kernel::Memory::SystemControl {
10
11u64 GenerateRandomU64ForInit();
12
13template <typename F>
14u64 GenerateUniformRange(u64 min, u64 max, F f);
15
16u64 GenerateRandomRange(u64 min, u64 max);
17
18} // namespace Kernel::Memory::SystemControl
diff --git a/src/core/hle/kernel/physical_memory.h b/src/core/hle/kernel/physical_memory.h
index b689e8e8b..7a0266780 100644
--- a/src/core/hle/kernel/physical_memory.h
+++ b/src/core/hle/kernel/physical_memory.h
@@ -4,6 +4,8 @@
4 4
5#pragma once 5#pragma once
6 6
7#include <vector>
8
7#include "common/alignment.h" 9#include "common/alignment.h"
8 10
9namespace Kernel { 11namespace Kernel {
diff --git a/src/core/hle/kernel/process.cpp b/src/core/hle/kernel/process.cpp
index edc414d69..36724569f 100644
--- a/src/core/hle/kernel/process.cpp
+++ b/src/core/hle/kernel/process.cpp
@@ -10,15 +10,18 @@
10#include "common/assert.h" 10#include "common/assert.h"
11#include "common/logging/log.h" 11#include "common/logging/log.h"
12#include "core/core.h" 12#include "core/core.h"
13#include "core/device_memory.h"
13#include "core/file_sys/program_metadata.h" 14#include "core/file_sys/program_metadata.h"
14#include "core/hle/kernel/code_set.h" 15#include "core/hle/kernel/code_set.h"
15#include "core/hle/kernel/errors.h" 16#include "core/hle/kernel/errors.h"
16#include "core/hle/kernel/kernel.h" 17#include "core/hle/kernel/kernel.h"
18#include "core/hle/kernel/memory/memory_block_manager.h"
19#include "core/hle/kernel/memory/page_table.h"
20#include "core/hle/kernel/memory/slab_heap.h"
17#include "core/hle/kernel/process.h" 21#include "core/hle/kernel/process.h"
18#include "core/hle/kernel/resource_limit.h" 22#include "core/hle/kernel/resource_limit.h"
19#include "core/hle/kernel/scheduler.h" 23#include "core/hle/kernel/scheduler.h"
20#include "core/hle/kernel/thread.h" 24#include "core/hle/kernel/thread.h"
21#include "core/hle/kernel/vm_manager.h"
22#include "core/memory.h" 25#include "core/memory.h"
23#include "core/settings.h" 26#include "core/settings.h"
24 27
@@ -31,10 +34,8 @@ namespace {
31 * @param kernel The kernel instance to create the main thread under. 34 * @param kernel The kernel instance to create the main thread under.
32 * @param priority The priority to give the main thread 35 * @param priority The priority to give the main thread
33 */ 36 */
34void SetupMainThread(Process& owner_process, KernelCore& kernel, u32 priority) { 37void SetupMainThread(Process& owner_process, KernelCore& kernel, u32 priority, VAddr stack_top) {
35 const auto& vm_manager = owner_process.VMManager(); 38 const VAddr entry_point = owner_process.PageTable().GetCodeRegionStart();
36 const VAddr entry_point = vm_manager.GetCodeRegionBaseAddress();
37 const VAddr stack_top = vm_manager.GetTLSIORegionEndAddress();
38 auto thread_res = Thread::Create(kernel, "main", entry_point, priority, 0, 39 auto thread_res = Thread::Create(kernel, "main", entry_point, priority, 0,
39 owner_process.GetIdealCore(), stack_top, owner_process); 40 owner_process.GetIdealCore(), stack_top, owner_process);
40 41
@@ -42,6 +43,8 @@ void SetupMainThread(Process& owner_process, KernelCore& kernel, u32 priority) {
42 43
43 // Register 1 must be a handle to the main thread 44 // Register 1 must be a handle to the main thread
44 const Handle thread_handle = owner_process.GetHandleTable().Create(thread).Unwrap(); 45 const Handle thread_handle = owner_process.GetHandleTable().Create(thread).Unwrap();
46 thread->GetContext32().cpu_registers[0] = 0;
47 thread->GetContext64().cpu_registers[0] = 0;
45 thread->GetContext32().cpu_registers[1] = thread_handle; 48 thread->GetContext32().cpu_registers[1] = thread_handle;
46 thread->GetContext64().cpu_registers[1] = thread_handle; 49 thread->GetContext64().cpu_registers[1] = thread_handle;
47 50
@@ -57,7 +60,8 @@ void SetupMainThread(Process& owner_process, KernelCore& kernel, u32 priority) {
57// (whichever page happens to have an available slot). 60// (whichever page happens to have an available slot).
58class TLSPage { 61class TLSPage {
59public: 62public:
60 static constexpr std::size_t num_slot_entries = Memory::PAGE_SIZE / Memory::TLS_ENTRY_SIZE; 63 static constexpr std::size_t num_slot_entries =
64 Core::Memory::PAGE_SIZE / Core::Memory::TLS_ENTRY_SIZE;
61 65
62 explicit TLSPage(VAddr address) : base_address{address} {} 66 explicit TLSPage(VAddr address) : base_address{address} {}
63 67
@@ -76,7 +80,7 @@ public:
76 } 80 }
77 81
78 is_slot_used[i] = true; 82 is_slot_used[i] = true;
79 return base_address + (i * Memory::TLS_ENTRY_SIZE); 83 return base_address + (i * Core::Memory::TLS_ENTRY_SIZE);
80 } 84 }
81 85
82 return std::nullopt; 86 return std::nullopt;
@@ -86,15 +90,15 @@ public:
86 // Ensure that all given addresses are consistent with how TLS pages 90 // Ensure that all given addresses are consistent with how TLS pages
87 // are intended to be used when releasing slots. 91 // are intended to be used when releasing slots.
88 ASSERT(IsWithinPage(address)); 92 ASSERT(IsWithinPage(address));
89 ASSERT((address % Memory::TLS_ENTRY_SIZE) == 0); 93 ASSERT((address % Core::Memory::TLS_ENTRY_SIZE) == 0);
90 94
91 const std::size_t index = (address - base_address) / Memory::TLS_ENTRY_SIZE; 95 const std::size_t index = (address - base_address) / Core::Memory::TLS_ENTRY_SIZE;
92 is_slot_used[index] = false; 96 is_slot_used[index] = false;
93 } 97 }
94 98
95private: 99private:
96 bool IsWithinPage(VAddr address) const { 100 bool IsWithinPage(VAddr address) const {
97 return base_address <= address && address < base_address + Memory::PAGE_SIZE; 101 return base_address <= address && address < base_address + Core::Memory::PAGE_SIZE;
98 } 102 }
99 103
100 VAddr base_address; 104 VAddr base_address;
@@ -106,7 +110,7 @@ std::shared_ptr<Process> Process::Create(Core::System& system, std::string name,
106 110
107 std::shared_ptr<Process> process = std::make_shared<Process>(system); 111 std::shared_ptr<Process> process = std::make_shared<Process>(system);
108 process->name = std::move(name); 112 process->name = std::move(name);
109 process->resource_limit = kernel.GetSystemResourceLimit(); 113 process->resource_limit = ResourceLimit::Create(kernel);
110 process->status = ProcessStatus::Created; 114 process->status = ProcessStatus::Created;
111 process->program_id = 0; 115 process->program_id = 0;
112 process->process_id = type == ProcessType::KernelInternal ? kernel.CreateNewKernelProcessID() 116 process->process_id = type == ProcessType::KernelInternal ? kernel.CreateNewKernelProcessID()
@@ -127,7 +131,14 @@ std::shared_ptr<ResourceLimit> Process::GetResourceLimit() const {
127} 131}
128 132
129u64 Process::GetTotalPhysicalMemoryAvailable() const { 133u64 Process::GetTotalPhysicalMemoryAvailable() const {
130 return vm_manager.GetTotalPhysicalMemoryAvailable(); 134 const u64 capacity{resource_limit->GetCurrentResourceValue(ResourceType::PhysicalMemory) +
135 page_table->GetTotalHeapSize() + image_size + main_thread_stack_size};
136
137 if (capacity < memory_usage_capacity) {
138 return capacity;
139 }
140
141 return memory_usage_capacity;
131} 142}
132 143
133u64 Process::GetTotalPhysicalMemoryAvailableWithoutSystemResource() const { 144u64 Process::GetTotalPhysicalMemoryAvailableWithoutSystemResource() const {
@@ -135,8 +146,7 @@ u64 Process::GetTotalPhysicalMemoryAvailableWithoutSystemResource() const {
135} 146}
136 147
137u64 Process::GetTotalPhysicalMemoryUsed() const { 148u64 Process::GetTotalPhysicalMemoryUsed() const {
138 return vm_manager.GetCurrentHeapSize() + main_thread_stack_size + code_memory_size + 149 return image_size + main_thread_stack_size + page_table->GetTotalHeapSize();
139 GetSystemResourceUsage();
140} 150}
141 151
142u64 Process::GetTotalPhysicalMemoryUsedWithoutSystemResource() const { 152u64 Process::GetTotalPhysicalMemoryUsedWithoutSystemResource() const {
@@ -209,33 +219,82 @@ ResultCode Process::ClearSignalState() {
209 return RESULT_SUCCESS; 219 return RESULT_SUCCESS;
210} 220}
211 221
212ResultCode Process::LoadFromMetadata(const FileSys::ProgramMetadata& metadata) { 222ResultCode Process::LoadFromMetadata(const FileSys::ProgramMetadata& metadata,
223 std::size_t code_size) {
213 program_id = metadata.GetTitleID(); 224 program_id = metadata.GetTitleID();
214 ideal_core = metadata.GetMainThreadCore(); 225 ideal_core = metadata.GetMainThreadCore();
215 is_64bit_process = metadata.Is64BitProgram(); 226 is_64bit_process = metadata.Is64BitProgram();
216 system_resource_size = metadata.GetSystemResourceSize(); 227 system_resource_size = metadata.GetSystemResourceSize();
228 image_size = code_size;
229
230 // Initialize proces address space
231 if (const ResultCode result{
232 page_table->InitializeForProcess(metadata.GetAddressSpaceType(), false, 0x8000000,
233 code_size, Memory::MemoryManager::Pool::Application)};
234 result.IsError()) {
235 return result;
236 }
217 237
218 vm_manager.Reset(metadata.GetAddressSpaceType()); 238 // Map process code region
239 if (const ResultCode result{page_table->MapProcessCode(
240 page_table->GetCodeRegionStart(), code_size / Memory::PageSize,
241 Memory::MemoryState::Code, Memory::MemoryPermission::None)};
242 result.IsError()) {
243 return result;
244 }
219 245
220 const auto& caps = metadata.GetKernelCapabilities(); 246 // Initialize process capabilities
221 const auto capability_init_result = 247 const auto& caps{metadata.GetKernelCapabilities()};
222 capabilities.InitializeForUserProcess(caps.data(), caps.size(), vm_manager); 248 if (const ResultCode result{
223 if (capability_init_result.IsError()) { 249 capabilities.InitializeForUserProcess(caps.data(), caps.size(), *page_table)};
224 return capability_init_result; 250 result.IsError()) {
251 return result;
225 } 252 }
226 253
254 // Set memory usage capacity
255 switch (metadata.GetAddressSpaceType()) {
256 case FileSys::ProgramAddressSpaceType::Is32Bit:
257 case FileSys::ProgramAddressSpaceType::Is36Bit:
258 case FileSys::ProgramAddressSpaceType::Is39Bit:
259 memory_usage_capacity = page_table->GetHeapRegionEnd() - page_table->GetHeapRegionStart();
260 break;
261
262 case FileSys::ProgramAddressSpaceType::Is32BitNoMap:
263 memory_usage_capacity = page_table->GetHeapRegionEnd() - page_table->GetHeapRegionStart() +
264 page_table->GetAliasRegionEnd() - page_table->GetAliasRegionStart();
265 break;
266
267 default:
268 UNREACHABLE();
269 }
270
271 // Set initial resource limits
272 resource_limit->SetLimitValue(
273 ResourceType::PhysicalMemory,
274 kernel.MemoryManager().GetSize(Memory::MemoryManager::Pool::Application));
275 resource_limit->SetLimitValue(ResourceType::Threads, 608);
276 resource_limit->SetLimitValue(ResourceType::Events, 700);
277 resource_limit->SetLimitValue(ResourceType::TransferMemory, 128);
278 resource_limit->SetLimitValue(ResourceType::Sessions, 894);
279 ASSERT(resource_limit->Reserve(ResourceType::PhysicalMemory, code_size));
280
281 // Create TLS region
282 tls_region_address = CreateTLSRegion();
283
227 return handle_table.SetSize(capabilities.GetHandleTableSize()); 284 return handle_table.SetSize(capabilities.GetHandleTableSize());
228} 285}
229 286
230void Process::Run(s32 main_thread_priority, u64 stack_size) { 287void Process::Run(s32 main_thread_priority, u64 stack_size) {
231 AllocateMainThreadStack(stack_size); 288 AllocateMainThreadStack(stack_size);
232 tls_region_address = CreateTLSRegion();
233 289
234 vm_manager.LogLayout(); 290 const std::size_t heap_capacity{memory_usage_capacity - main_thread_stack_size - image_size};
291 ASSERT(!page_table->SetHeapCapacity(heap_capacity).IsError());
235 292
236 ChangeStatus(ProcessStatus::Running); 293 ChangeStatus(ProcessStatus::Running);
237 294
238 SetupMainThread(*this, kernel, main_thread_priority); 295 SetupMainThread(*this, kernel, main_thread_priority, main_thread_stack_top);
296 resource_limit->Reserve(ResourceType::Threads, 1);
297 resource_limit->Reserve(ResourceType::PhysicalMemory, main_thread_stack_size);
239} 298}
240 299
241void Process::PrepareForTermination() { 300void Process::PrepareForTermination() {
@@ -279,32 +338,37 @@ static auto FindTLSPageWithAvailableSlots(std::vector<TLSPage>& tls_pages) {
279} 338}
280 339
281VAddr Process::CreateTLSRegion() { 340VAddr Process::CreateTLSRegion() {
282 auto tls_page_iter = FindTLSPageWithAvailableSlots(tls_pages); 341 if (auto tls_page_iter{FindTLSPageWithAvailableSlots(tls_pages)};
342 tls_page_iter != tls_pages.cend()) {
343 return *tls_page_iter->ReserveSlot();
344 }
283 345
284 if (tls_page_iter == tls_pages.cend()) { 346 Memory::Page* const tls_page_ptr{kernel.GetUserSlabHeapPages().Allocate()};
285 const auto region_address = 347 ASSERT(tls_page_ptr);
286 vm_manager.FindFreeRegion(vm_manager.GetTLSIORegionBaseAddress(),
287 vm_manager.GetTLSIORegionEndAddress(), Memory::PAGE_SIZE);
288 ASSERT(region_address.Succeeded());
289 348
290 const auto map_result = vm_manager.MapMemoryBlock( 349 const VAddr start{page_table->GetKernelMapRegionStart()};
291 *region_address, std::make_shared<PhysicalMemory>(Memory::PAGE_SIZE), 0, 350 const VAddr size{page_table->GetKernelMapRegionEnd() - start};
292 Memory::PAGE_SIZE, MemoryState::ThreadLocal); 351 const PAddr tls_map_addr{system.DeviceMemory().GetPhysicalAddr(tls_page_ptr)};
293 ASSERT(map_result.Succeeded()); 352 const VAddr tls_page_addr{
353 page_table
354 ->AllocateAndMapMemory(1, Memory::PageSize, true, start, size / Memory::PageSize,
355 Memory::MemoryState::ThreadLocal,
356 Memory::MemoryPermission::ReadAndWrite, tls_map_addr)
357 .ValueOr(0)};
294 358
295 tls_pages.emplace_back(*region_address); 359 ASSERT(tls_page_addr);
296 360
297 const auto reserve_result = tls_pages.back().ReserveSlot(); 361 std::memset(tls_page_ptr, 0, Memory::PageSize);
298 ASSERT(reserve_result.has_value()); 362 tls_pages.emplace_back(tls_page_addr);
299 363
300 return *reserve_result; 364 const auto reserve_result{tls_pages.back().ReserveSlot()};
301 } 365 ASSERT(reserve_result.has_value());
302 366
303 return *tls_page_iter->ReserveSlot(); 367 return *reserve_result;
304} 368}
305 369
306void Process::FreeTLSRegion(VAddr tls_address) { 370void Process::FreeTLSRegion(VAddr tls_address) {
307 const VAddr aligned_address = Common::AlignDown(tls_address, Memory::PAGE_SIZE); 371 const VAddr aligned_address = Common::AlignDown(tls_address, Core::Memory::PAGE_SIZE);
308 auto iter = 372 auto iter =
309 std::find_if(tls_pages.begin(), tls_pages.end(), [aligned_address](const auto& page) { 373 std::find_if(tls_pages.begin(), tls_pages.end(), [aligned_address](const auto& page) {
310 return page.GetBaseAddress() == aligned_address; 374 return page.GetBaseAddress() == aligned_address;
@@ -317,28 +381,22 @@ void Process::FreeTLSRegion(VAddr tls_address) {
317 iter->ReleaseSlot(tls_address); 381 iter->ReleaseSlot(tls_address);
318} 382}
319 383
320void Process::LoadModule(CodeSet module_, VAddr base_addr) { 384void Process::LoadModule(CodeSet code_set, VAddr base_addr) {
321 code_memory_size += module_.memory.size(); 385 const auto ReprotectSegment = [&](const CodeSet::Segment& segment,
322 386 Memory::MemoryPermission permission) {
323 const auto memory = std::make_shared<PhysicalMemory>(std::move(module_.memory)); 387 page_table->SetCodeMemoryPermission(segment.addr + base_addr, segment.size, permission);
324
325 const auto MapSegment = [&](const CodeSet::Segment& segment, VMAPermission permissions,
326 MemoryState memory_state) {
327 const auto vma = vm_manager
328 .MapMemoryBlock(segment.addr + base_addr, memory, segment.offset,
329 segment.size, memory_state)
330 .Unwrap();
331 vm_manager.Reprotect(vma, permissions);
332 }; 388 };
333 389
334 // Map CodeSet segments 390 system.Memory().WriteBlock(*this, base_addr, code_set.memory.data(), code_set.memory.size());
335 MapSegment(module_.CodeSegment(), VMAPermission::ReadExecute, MemoryState::Code); 391
336 MapSegment(module_.RODataSegment(), VMAPermission::Read, MemoryState::CodeData); 392 ReprotectSegment(code_set.CodeSegment(), Memory::MemoryPermission::ReadAndExecute);
337 MapSegment(module_.DataSegment(), VMAPermission::ReadWrite, MemoryState::CodeData); 393 ReprotectSegment(code_set.RODataSegment(), Memory::MemoryPermission::Read);
394 ReprotectSegment(code_set.DataSegment(), Memory::MemoryPermission::ReadAndWrite);
338} 395}
339 396
340Process::Process(Core::System& system) 397Process::Process(Core::System& system)
341 : SynchronizationObject{system.Kernel()}, vm_manager{system}, 398 : SynchronizationObject{system.Kernel()}, page_table{std::make_unique<Memory::PageTable>(
399 system)},
342 address_arbiter{system}, mutex{system}, system{system} {} 400 address_arbiter{system}, mutex{system}, system{system} {}
343 401
344Process::~Process() = default; 402Process::~Process() = default;
@@ -361,16 +419,24 @@ void Process::ChangeStatus(ProcessStatus new_status) {
361 Signal(); 419 Signal();
362} 420}
363 421
364void Process::AllocateMainThreadStack(u64 stack_size) { 422ResultCode Process::AllocateMainThreadStack(std::size_t stack_size) {
423 ASSERT(stack_size);
424
365 // The kernel always ensures that the given stack size is page aligned. 425 // The kernel always ensures that the given stack size is page aligned.
366 main_thread_stack_size = Common::AlignUp(stack_size, Memory::PAGE_SIZE); 426 main_thread_stack_size = Common::AlignUp(stack_size, Memory::PageSize);
367 427
368 // Allocate and map the main thread stack 428 const VAddr start{page_table->GetStackRegionStart()};
369 const VAddr mapping_address = vm_manager.GetTLSIORegionEndAddress() - main_thread_stack_size; 429 const std::size_t size{page_table->GetStackRegionEnd() - start};
370 vm_manager 430
371 .MapMemoryBlock(mapping_address, std::make_shared<PhysicalMemory>(main_thread_stack_size), 431 CASCADE_RESULT(main_thread_stack_top,
372 0, main_thread_stack_size, MemoryState::Stack) 432 page_table->AllocateAndMapMemory(
373 .Unwrap(); 433 main_thread_stack_size / Memory::PageSize, Memory::PageSize, false, start,
434 size / Memory::PageSize, Memory::MemoryState::Stack,
435 Memory::MemoryPermission::ReadAndWrite));
436
437 main_thread_stack_top += main_thread_stack_size;
438
439 return RESULT_SUCCESS;
374} 440}
375 441
376} // namespace Kernel 442} // namespace Kernel
diff --git a/src/core/hle/kernel/process.h b/src/core/hle/kernel/process.h
index 4887132a7..9dabe3568 100644
--- a/src/core/hle/kernel/process.h
+++ b/src/core/hle/kernel/process.h
@@ -16,7 +16,6 @@
16#include "core/hle/kernel/mutex.h" 16#include "core/hle/kernel/mutex.h"
17#include "core/hle/kernel/process_capability.h" 17#include "core/hle/kernel/process_capability.h"
18#include "core/hle/kernel/synchronization_object.h" 18#include "core/hle/kernel/synchronization_object.h"
19#include "core/hle/kernel/vm_manager.h"
20#include "core/hle/result.h" 19#include "core/hle/result.h"
21 20
22namespace Core { 21namespace Core {
@@ -36,6 +35,10 @@ class TLSPage;
36 35
37struct CodeSet; 36struct CodeSet;
38 37
38namespace Memory {
39class PageTable;
40}
41
39enum class MemoryRegion : u16 { 42enum class MemoryRegion : u16 {
40 APPLICATION = 1, 43 APPLICATION = 1,
41 SYSTEM = 2, 44 SYSTEM = 2,
@@ -100,14 +103,14 @@ public:
100 return HANDLE_TYPE; 103 return HANDLE_TYPE;
101 } 104 }
102 105
103 /// Gets a reference to the process' memory manager. 106 /// Gets a reference to the process' page table.
104 Kernel::VMManager& VMManager() { 107 Memory::PageTable& PageTable() {
105 return vm_manager; 108 return *page_table;
106 } 109 }
107 110
108 /// Gets a const reference to the process' memory manager. 111 /// Gets const a reference to the process' page table.
109 const Kernel::VMManager& VMManager() const { 112 const Memory::PageTable& PageTable() const {
110 return vm_manager; 113 return *page_table;
111 } 114 }
112 115
113 /// Gets a reference to the process' handle table. 116 /// Gets a reference to the process' handle table.
@@ -273,7 +276,7 @@ public:
273 * @returns RESULT_SUCCESS if all relevant metadata was able to be 276 * @returns RESULT_SUCCESS if all relevant metadata was able to be
274 * loaded and parsed. Otherwise, an error code is returned. 277 * loaded and parsed. Otherwise, an error code is returned.
275 */ 278 */
276 ResultCode LoadFromMetadata(const FileSys::ProgramMetadata& metadata); 279 ResultCode LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std::size_t code_size);
277 280
278 /** 281 /**
279 * Starts the main application thread for this process. 282 * Starts the main application thread for this process.
@@ -289,7 +292,7 @@ public:
289 */ 292 */
290 void PrepareForTermination(); 293 void PrepareForTermination();
291 294
292 void LoadModule(CodeSet module_, VAddr base_addr); 295 void LoadModule(CodeSet code_set, VAddr base_addr);
293 296
294 /////////////////////////////////////////////////////////////////////////////////////////////// 297 ///////////////////////////////////////////////////////////////////////////////////////////////
295 // Thread-local storage management 298 // Thread-local storage management
@@ -313,16 +316,10 @@ private:
313 void ChangeStatus(ProcessStatus new_status); 316 void ChangeStatus(ProcessStatus new_status);
314 317
315 /// Allocates the main thread stack for the process, given the stack size in bytes. 318 /// Allocates the main thread stack for the process, given the stack size in bytes.
316 void AllocateMainThreadStack(u64 stack_size); 319 ResultCode AllocateMainThreadStack(std::size_t stack_size);
317
318 /// Memory manager for this process.
319 Kernel::VMManager vm_manager;
320
321 /// Size of the main thread's stack in bytes.
322 u64 main_thread_stack_size = 0;
323 320
324 /// Size of the loaded code memory in bytes. 321 /// Memory manager for this process
325 u64 code_memory_size = 0; 322 std::unique_ptr<Memory::PageTable> page_table;
326 323
327 /// Current status of the process 324 /// Current status of the process
328 ProcessStatus status{}; 325 ProcessStatus status{};
@@ -390,6 +387,18 @@ private:
390 387
391 /// Name of this process 388 /// Name of this process
392 std::string name; 389 std::string name;
390
391 /// Address of the top of the main thread's stack
392 VAddr main_thread_stack_top{};
393
394 /// Size of the main thread's stack
395 std::size_t main_thread_stack_size{};
396
397 /// Memory usage capacity for the process
398 std::size_t memory_usage_capacity{};
399
400 /// Process total image size
401 std::size_t image_size{};
393}; 402};
394 403
395} // namespace Kernel 404} // namespace Kernel
diff --git a/src/core/hle/kernel/process_capability.cpp b/src/core/hle/kernel/process_capability.cpp
index 583e35b79..48e5ae682 100644
--- a/src/core/hle/kernel/process_capability.cpp
+++ b/src/core/hle/kernel/process_capability.cpp
@@ -5,8 +5,8 @@
5#include "common/bit_util.h" 5#include "common/bit_util.h"
6#include "core/hle/kernel/errors.h" 6#include "core/hle/kernel/errors.h"
7#include "core/hle/kernel/handle_table.h" 7#include "core/hle/kernel/handle_table.h"
8#include "core/hle/kernel/memory/page_table.h"
8#include "core/hle/kernel/process_capability.h" 9#include "core/hle/kernel/process_capability.h"
9#include "core/hle/kernel/vm_manager.h"
10 10
11namespace Kernel { 11namespace Kernel {
12namespace { 12namespace {
@@ -66,7 +66,7 @@ u32 GetFlagBitOffset(CapabilityType type) {
66 66
67ResultCode ProcessCapabilities::InitializeForKernelProcess(const u32* capabilities, 67ResultCode ProcessCapabilities::InitializeForKernelProcess(const u32* capabilities,
68 std::size_t num_capabilities, 68 std::size_t num_capabilities,
69 VMManager& vm_manager) { 69 Memory::PageTable& page_table) {
70 Clear(); 70 Clear();
71 71
72 // Allow all cores and priorities. 72 // Allow all cores and priorities.
@@ -74,15 +74,15 @@ ResultCode ProcessCapabilities::InitializeForKernelProcess(const u32* capabiliti
74 priority_mask = 0xFFFFFFFFFFFFFFFF; 74 priority_mask = 0xFFFFFFFFFFFFFFFF;
75 kernel_version = PackedKernelVersion; 75 kernel_version = PackedKernelVersion;
76 76
77 return ParseCapabilities(capabilities, num_capabilities, vm_manager); 77 return ParseCapabilities(capabilities, num_capabilities, page_table);
78} 78}
79 79
80ResultCode ProcessCapabilities::InitializeForUserProcess(const u32* capabilities, 80ResultCode ProcessCapabilities::InitializeForUserProcess(const u32* capabilities,
81 std::size_t num_capabilities, 81 std::size_t num_capabilities,
82 VMManager& vm_manager) { 82 Memory::PageTable& page_table) {
83 Clear(); 83 Clear();
84 84
85 return ParseCapabilities(capabilities, num_capabilities, vm_manager); 85 return ParseCapabilities(capabilities, num_capabilities, page_table);
86} 86}
87 87
88void ProcessCapabilities::InitializeForMetadatalessProcess() { 88void ProcessCapabilities::InitializeForMetadatalessProcess() {
@@ -105,7 +105,7 @@ void ProcessCapabilities::InitializeForMetadatalessProcess() {
105 105
106ResultCode ProcessCapabilities::ParseCapabilities(const u32* capabilities, 106ResultCode ProcessCapabilities::ParseCapabilities(const u32* capabilities,
107 std::size_t num_capabilities, 107 std::size_t num_capabilities,
108 VMManager& vm_manager) { 108 Memory::PageTable& page_table) {
109 u32 set_flags = 0; 109 u32 set_flags = 0;
110 u32 set_svc_bits = 0; 110 u32 set_svc_bits = 0;
111 111
@@ -127,13 +127,13 @@ ResultCode ProcessCapabilities::ParseCapabilities(const u32* capabilities,
127 return ERR_INVALID_COMBINATION; 127 return ERR_INVALID_COMBINATION;
128 } 128 }
129 129
130 const auto result = HandleMapPhysicalFlags(descriptor, size_flags, vm_manager); 130 const auto result = HandleMapPhysicalFlags(descriptor, size_flags, page_table);
131 if (result.IsError()) { 131 if (result.IsError()) {
132 return result; 132 return result;
133 } 133 }
134 } else { 134 } else {
135 const auto result = 135 const auto result =
136 ParseSingleFlagCapability(set_flags, set_svc_bits, descriptor, vm_manager); 136 ParseSingleFlagCapability(set_flags, set_svc_bits, descriptor, page_table);
137 if (result.IsError()) { 137 if (result.IsError()) {
138 return result; 138 return result;
139 } 139 }
@@ -144,7 +144,7 @@ ResultCode ProcessCapabilities::ParseCapabilities(const u32* capabilities,
144} 144}
145 145
146ResultCode ProcessCapabilities::ParseSingleFlagCapability(u32& set_flags, u32& set_svc_bits, 146ResultCode ProcessCapabilities::ParseSingleFlagCapability(u32& set_flags, u32& set_svc_bits,
147 u32 flag, VMManager& vm_manager) { 147 u32 flag, Memory::PageTable& page_table) {
148 const auto type = GetCapabilityType(flag); 148 const auto type = GetCapabilityType(flag);
149 149
150 if (type == CapabilityType::Unset) { 150 if (type == CapabilityType::Unset) {
@@ -172,7 +172,7 @@ ResultCode ProcessCapabilities::ParseSingleFlagCapability(u32& set_flags, u32& s
172 case CapabilityType::Syscall: 172 case CapabilityType::Syscall:
173 return HandleSyscallFlags(set_svc_bits, flag); 173 return HandleSyscallFlags(set_svc_bits, flag);
174 case CapabilityType::MapIO: 174 case CapabilityType::MapIO:
175 return HandleMapIOFlags(flag, vm_manager); 175 return HandleMapIOFlags(flag, page_table);
176 case CapabilityType::Interrupt: 176 case CapabilityType::Interrupt:
177 return HandleInterruptFlags(flag); 177 return HandleInterruptFlags(flag);
178 case CapabilityType::ProgramType: 178 case CapabilityType::ProgramType:
@@ -269,12 +269,12 @@ ResultCode ProcessCapabilities::HandleSyscallFlags(u32& set_svc_bits, u32 flags)
269} 269}
270 270
271ResultCode ProcessCapabilities::HandleMapPhysicalFlags(u32 flags, u32 size_flags, 271ResultCode ProcessCapabilities::HandleMapPhysicalFlags(u32 flags, u32 size_flags,
272 VMManager& vm_manager) { 272 Memory::PageTable& page_table) {
273 // TODO(Lioncache): Implement once the memory manager can handle this. 273 // TODO(Lioncache): Implement once the memory manager can handle this.
274 return RESULT_SUCCESS; 274 return RESULT_SUCCESS;
275} 275}
276 276
277ResultCode ProcessCapabilities::HandleMapIOFlags(u32 flags, VMManager& vm_manager) { 277ResultCode ProcessCapabilities::HandleMapIOFlags(u32 flags, Memory::PageTable& page_table) {
278 // TODO(Lioncache): Implement once the memory manager can handle this. 278 // TODO(Lioncache): Implement once the memory manager can handle this.
279 return RESULT_SUCCESS; 279 return RESULT_SUCCESS;
280} 280}
diff --git a/src/core/hle/kernel/process_capability.h b/src/core/hle/kernel/process_capability.h
index 5cdd80747..ea9d12c16 100644
--- a/src/core/hle/kernel/process_capability.h
+++ b/src/core/hle/kernel/process_capability.h
@@ -12,7 +12,9 @@ union ResultCode;
12 12
13namespace Kernel { 13namespace Kernel {
14 14
15class VMManager; 15namespace Memory {
16class PageTable;
17}
16 18
17/// The possible types of programs that may be indicated 19/// The possible types of programs that may be indicated
18/// by the program type capability descriptor. 20/// by the program type capability descriptor.
@@ -81,27 +83,27 @@ public:
81 /// 83 ///
82 /// @param capabilities The capabilities to parse 84 /// @param capabilities The capabilities to parse
83 /// @param num_capabilities The number of capabilities to parse. 85 /// @param num_capabilities The number of capabilities to parse.
84 /// @param vm_manager The memory manager to use for handling any mapping-related 86 /// @param page_table The memory manager to use for handling any mapping-related
85 /// operations (such as mapping IO memory, etc). 87 /// operations (such as mapping IO memory, etc).
86 /// 88 ///
87 /// @returns RESULT_SUCCESS if this capabilities instance was able to be initialized, 89 /// @returns RESULT_SUCCESS if this capabilities instance was able to be initialized,
88 /// otherwise, an error code upon failure. 90 /// otherwise, an error code upon failure.
89 /// 91 ///
90 ResultCode InitializeForKernelProcess(const u32* capabilities, std::size_t num_capabilities, 92 ResultCode InitializeForKernelProcess(const u32* capabilities, std::size_t num_capabilities,
91 VMManager& vm_manager); 93 Memory::PageTable& page_table);
92 94
93 /// Initializes this process capabilities instance for a userland process. 95 /// Initializes this process capabilities instance for a userland process.
94 /// 96 ///
95 /// @param capabilities The capabilities to parse. 97 /// @param capabilities The capabilities to parse.
96 /// @param num_capabilities The total number of capabilities to parse. 98 /// @param num_capabilities The total number of capabilities to parse.
97 /// @param vm_manager The memory manager to use for handling any mapping-related 99 /// @param page_table The memory manager to use for handling any mapping-related
98 /// operations (such as mapping IO memory, etc). 100 /// operations (such as mapping IO memory, etc).
99 /// 101 ///
100 /// @returns RESULT_SUCCESS if this capabilities instance was able to be initialized, 102 /// @returns RESULT_SUCCESS if this capabilities instance was able to be initialized,
101 /// otherwise, an error code upon failure. 103 /// otherwise, an error code upon failure.
102 /// 104 ///
103 ResultCode InitializeForUserProcess(const u32* capabilities, std::size_t num_capabilities, 105 ResultCode InitializeForUserProcess(const u32* capabilities, std::size_t num_capabilities,
104 VMManager& vm_manager); 106 Memory::PageTable& page_table);
105 107
106 /// Initializes this process capabilities instance for a process that does not 108 /// Initializes this process capabilities instance for a process that does not
107 /// have any metadata to parse. 109 /// have any metadata to parse.
@@ -181,13 +183,13 @@ private:
181 /// 183 ///
182 /// @param capabilities The sequence of capability descriptors to parse. 184 /// @param capabilities The sequence of capability descriptors to parse.
183 /// @param num_capabilities The number of descriptors within the given sequence. 185 /// @param num_capabilities The number of descriptors within the given sequence.
184 /// @param vm_manager The memory manager that will perform any memory 186 /// @param page_table The memory manager that will perform any memory
185 /// mapping if necessary. 187 /// mapping if necessary.
186 /// 188 ///
187 /// @return RESULT_SUCCESS if no errors occur, otherwise an error code. 189 /// @return RESULT_SUCCESS if no errors occur, otherwise an error code.
188 /// 190 ///
189 ResultCode ParseCapabilities(const u32* capabilities, std::size_t num_capabilities, 191 ResultCode ParseCapabilities(const u32* capabilities, std::size_t num_capabilities,
190 VMManager& vm_manager); 192 Memory::PageTable& page_table);
191 193
192 /// Attempts to parse a capability descriptor that is only represented by a 194 /// Attempts to parse a capability descriptor that is only represented by a
193 /// single flag set. 195 /// single flag set.
@@ -196,13 +198,13 @@ private:
196 /// flags being initialized more than once when they shouldn't be. 198 /// flags being initialized more than once when they shouldn't be.
197 /// @param set_svc_bits Running set of bits representing the allowed supervisor calls mask. 199 /// @param set_svc_bits Running set of bits representing the allowed supervisor calls mask.
198 /// @param flag The flag to attempt to parse. 200 /// @param flag The flag to attempt to parse.
199 /// @param vm_manager The memory manager that will perform any memory 201 /// @param page_table The memory manager that will perform any memory
200 /// mapping if necessary. 202 /// mapping if necessary.
201 /// 203 ///
202 /// @return RESULT_SUCCESS if no errors occurred, otherwise an error code. 204 /// @return RESULT_SUCCESS if no errors occurred, otherwise an error code.
203 /// 205 ///
204 ResultCode ParseSingleFlagCapability(u32& set_flags, u32& set_svc_bits, u32 flag, 206 ResultCode ParseSingleFlagCapability(u32& set_flags, u32& set_svc_bits, u32 flag,
205 VMManager& vm_manager); 207 Memory::PageTable& page_table);
206 208
207 /// Clears the internal state of this process capability instance. Necessary, 209 /// Clears the internal state of this process capability instance. Necessary,
208 /// to have a sane starting point due to us allowing running executables without 210 /// to have a sane starting point due to us allowing running executables without
@@ -226,10 +228,10 @@ private:
226 ResultCode HandleSyscallFlags(u32& set_svc_bits, u32 flags); 228 ResultCode HandleSyscallFlags(u32& set_svc_bits, u32 flags);
227 229
228 /// Handles flags related to mapping physical memory pages. 230 /// Handles flags related to mapping physical memory pages.
229 ResultCode HandleMapPhysicalFlags(u32 flags, u32 size_flags, VMManager& vm_manager); 231 ResultCode HandleMapPhysicalFlags(u32 flags, u32 size_flags, Memory::PageTable& page_table);
230 232
231 /// Handles flags related to mapping IO pages. 233 /// Handles flags related to mapping IO pages.
232 ResultCode HandleMapIOFlags(u32 flags, VMManager& vm_manager); 234 ResultCode HandleMapIOFlags(u32 flags, Memory::PageTable& page_table);
233 235
234 /// Handles flags related to the interrupt capability flags. 236 /// Handles flags related to the interrupt capability flags.
235 ResultCode HandleInterruptFlags(u32 flags); 237 ResultCode HandleInterruptFlags(u32 flags);
diff --git a/src/core/hle/kernel/resource_limit.cpp b/src/core/hle/kernel/resource_limit.cpp
index b53423462..96e5b9892 100644
--- a/src/core/hle/kernel/resource_limit.cpp
+++ b/src/core/hle/kernel/resource_limit.cpp
@@ -16,26 +16,60 @@ constexpr std::size_t ResourceTypeToIndex(ResourceType type) {
16ResourceLimit::ResourceLimit(KernelCore& kernel) : Object{kernel} {} 16ResourceLimit::ResourceLimit(KernelCore& kernel) : Object{kernel} {}
17ResourceLimit::~ResourceLimit() = default; 17ResourceLimit::~ResourceLimit() = default;
18 18
19bool ResourceLimit::Reserve(ResourceType resource, s64 amount) {
20 return Reserve(resource, amount, 10000000000);
21}
22
23bool ResourceLimit::Reserve(ResourceType resource, s64 amount, u64 timeout) {
24 const std::size_t index{ResourceTypeToIndex(resource)};
25
26 s64 new_value = current[index] + amount;
27 while (new_value > limit[index] && available[index] + amount <= limit[index]) {
28 // TODO(bunnei): This is wrong for multicore, we should wait the calling thread for timeout
29 new_value = current[index] + amount;
30
31 if (timeout >= 0) {
32 break;
33 }
34 }
35
36 if (new_value <= limit[index]) {
37 current[index] = new_value;
38 return true;
39 }
40 return false;
41}
42
43void ResourceLimit::Release(ResourceType resource, u64 amount) {
44 Release(resource, amount, amount);
45}
46
47void ResourceLimit::Release(ResourceType resource, u64 used_amount, u64 available_amount) {
48 const std::size_t index{ResourceTypeToIndex(resource)};
49
50 current[index] -= used_amount;
51 available[index] -= available_amount;
52}
53
19std::shared_ptr<ResourceLimit> ResourceLimit::Create(KernelCore& kernel) { 54std::shared_ptr<ResourceLimit> ResourceLimit::Create(KernelCore& kernel) {
20 return std::make_shared<ResourceLimit>(kernel); 55 return std::make_shared<ResourceLimit>(kernel);
21} 56}
22 57
23s64 ResourceLimit::GetCurrentResourceValue(ResourceType resource) const { 58s64 ResourceLimit::GetCurrentResourceValue(ResourceType resource) const {
24 return values.at(ResourceTypeToIndex(resource)); 59 return limit.at(ResourceTypeToIndex(resource)) - current.at(ResourceTypeToIndex(resource));
25} 60}
26 61
27s64 ResourceLimit::GetMaxResourceValue(ResourceType resource) const { 62s64 ResourceLimit::GetMaxResourceValue(ResourceType resource) const {
28 return limits.at(ResourceTypeToIndex(resource)); 63 return limit.at(ResourceTypeToIndex(resource));
29} 64}
30 65
31ResultCode ResourceLimit::SetLimitValue(ResourceType resource, s64 value) { 66ResultCode ResourceLimit::SetLimitValue(ResourceType resource, s64 value) {
32 const auto index = ResourceTypeToIndex(resource); 67 const std::size_t index{ResourceTypeToIndex(resource)};
33 68 if (current[index] <= value) {
34 if (value < values[index]) { 69 limit[index] = value;
70 return RESULT_SUCCESS;
71 } else {
35 return ERR_INVALID_STATE; 72 return ERR_INVALID_STATE;
36 } 73 }
37
38 values[index] = value;
39 return RESULT_SUCCESS;
40} 74}
41} // namespace Kernel 75} // namespace Kernel
diff --git a/src/core/hle/kernel/resource_limit.h b/src/core/hle/kernel/resource_limit.h
index 53b89e621..936cc4d0f 100644
--- a/src/core/hle/kernel/resource_limit.h
+++ b/src/core/hle/kernel/resource_limit.h
@@ -51,6 +51,11 @@ public:
51 return HANDLE_TYPE; 51 return HANDLE_TYPE;
52 } 52 }
53 53
54 bool Reserve(ResourceType resource, s64 amount);
55 bool Reserve(ResourceType resource, s64 amount, u64 timeout);
56 void Release(ResourceType resource, u64 amount);
57 void Release(ResourceType resource, u64 used_amount, u64 available_amount);
58
54 /** 59 /**
55 * Gets the current value for the specified resource. 60 * Gets the current value for the specified resource.
56 * @param resource Requested resource type 61 * @param resource Requested resource type
@@ -91,10 +96,9 @@ private:
91 using ResourceArray = 96 using ResourceArray =
92 std::array<s64, static_cast<std::size_t>(ResourceType::ResourceTypeCount)>; 97 std::array<s64, static_cast<std::size_t>(ResourceType::ResourceTypeCount)>;
93 98
94 /// Maximum values a resource type may reach. 99 ResourceArray limit{};
95 ResourceArray limits{}; 100 ResourceArray current{};
96 /// Current resource limit values. 101 ResourceArray available{};
97 ResourceArray values{};
98}; 102};
99 103
100} // namespace Kernel 104} // namespace Kernel
diff --git a/src/core/hle/kernel/server_session.cpp b/src/core/hle/kernel/server_session.cpp
index 4604e35c5..0f102ca44 100644
--- a/src/core/hle/kernel/server_session.cpp
+++ b/src/core/hle/kernel/server_session.cpp
@@ -134,7 +134,8 @@ ResultCode ServerSession::HandleDomainSyncRequest(Kernel::HLERequestContext& con
134 return RESULT_SUCCESS; 134 return RESULT_SUCCESS;
135} 135}
136 136
137ResultCode ServerSession::QueueSyncRequest(std::shared_ptr<Thread> thread, Memory::Memory& memory) { 137ResultCode ServerSession::QueueSyncRequest(std::shared_ptr<Thread> thread,
138 Core::Memory::Memory& memory) {
138 u32* cmd_buf{reinterpret_cast<u32*>(memory.GetPointer(thread->GetTLSAddress()))}; 139 u32* cmd_buf{reinterpret_cast<u32*>(memory.GetPointer(thread->GetTLSAddress()))};
139 std::shared_ptr<Kernel::HLERequestContext> context{ 140 std::shared_ptr<Kernel::HLERequestContext> context{
140 std::make_shared<Kernel::HLERequestContext>(SharedFrom(this), std::move(thread))}; 141 std::make_shared<Kernel::HLERequestContext>(SharedFrom(this), std::move(thread))};
@@ -178,7 +179,7 @@ ResultCode ServerSession::CompleteSyncRequest() {
178} 179}
179 180
180ResultCode ServerSession::HandleSyncRequest(std::shared_ptr<Thread> thread, 181ResultCode ServerSession::HandleSyncRequest(std::shared_ptr<Thread> thread,
181 Memory::Memory& memory) { 182 Core::Memory::Memory& memory) {
182 Core::System::GetInstance().CoreTiming().ScheduleEvent(20000, request_event, {}); 183 Core::System::GetInstance().CoreTiming().ScheduleEvent(20000, request_event, {});
183 return QueueSyncRequest(std::move(thread), memory); 184 return QueueSyncRequest(std::move(thread), memory);
184} 185}
diff --git a/src/core/hle/kernel/server_session.h b/src/core/hle/kernel/server_session.h
index 77e4f6721..403aaf10b 100644
--- a/src/core/hle/kernel/server_session.h
+++ b/src/core/hle/kernel/server_session.h
@@ -13,7 +13,7 @@
13#include "core/hle/kernel/synchronization_object.h" 13#include "core/hle/kernel/synchronization_object.h"
14#include "core/hle/result.h" 14#include "core/hle/result.h"
15 15
16namespace Memory { 16namespace Core::Memory {
17class Memory; 17class Memory;
18} 18}
19 19
@@ -92,7 +92,7 @@ public:
92 * 92 *
93 * @returns ResultCode from the operation. 93 * @returns ResultCode from the operation.
94 */ 94 */
95 ResultCode HandleSyncRequest(std::shared_ptr<Thread> thread, Memory::Memory& memory); 95 ResultCode HandleSyncRequest(std::shared_ptr<Thread> thread, Core::Memory::Memory& memory);
96 96
97 bool ShouldWait(const Thread* thread) const override; 97 bool ShouldWait(const Thread* thread) const override;
98 98
@@ -126,7 +126,7 @@ public:
126 126
127private: 127private:
128 /// Queues a sync request from the emulated application. 128 /// Queues a sync request from the emulated application.
129 ResultCode QueueSyncRequest(std::shared_ptr<Thread> thread, Memory::Memory& memory); 129 ResultCode QueueSyncRequest(std::shared_ptr<Thread> thread, Core::Memory::Memory& memory);
130 130
131 /// Completes a sync request from the emulated application. 131 /// Completes a sync request from the emulated application.
132 ResultCode CompleteSyncRequest(); 132 ResultCode CompleteSyncRequest();
diff --git a/src/core/hle/kernel/shared_memory.cpp b/src/core/hle/kernel/shared_memory.cpp
index afb2e3fc2..c67696757 100644
--- a/src/core/hle/kernel/shared_memory.cpp
+++ b/src/core/hle/kernel/shared_memory.cpp
@@ -2,149 +2,56 @@
2// Licensed under GPLv2 or any later version 2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included. 3// Refer to the license.txt file included.
4 4
5#include <utility>
6
7#include "common/assert.h" 5#include "common/assert.h"
8#include "common/logging/log.h" 6#include "core/core.h"
9#include "core/hle/kernel/errors.h"
10#include "core/hle/kernel/kernel.h" 7#include "core/hle/kernel/kernel.h"
8#include "core/hle/kernel/memory/page_table.h"
11#include "core/hle/kernel/shared_memory.h" 9#include "core/hle/kernel/shared_memory.h"
12 10
13namespace Kernel { 11namespace Kernel {
14 12
15SharedMemory::SharedMemory(KernelCore& kernel) : Object{kernel} {} 13SharedMemory::SharedMemory(KernelCore& kernel, Core::DeviceMemory& device_memory)
16SharedMemory::~SharedMemory() = default; 14 : Object{kernel}, device_memory{device_memory} {}
17
18std::shared_ptr<SharedMemory> SharedMemory::Create(KernelCore& kernel, Process* owner_process,
19 u64 size, MemoryPermission permissions,
20 MemoryPermission other_permissions,
21 VAddr address, MemoryRegion region,
22 std::string name) {
23 std::shared_ptr<SharedMemory> shared_memory = std::make_shared<SharedMemory>(kernel);
24
25 shared_memory->owner_process = owner_process;
26 shared_memory->name = std::move(name);
27 shared_memory->size = size;
28 shared_memory->permissions = permissions;
29 shared_memory->other_permissions = other_permissions;
30
31 if (address == 0) {
32 shared_memory->backing_block = std::make_shared<Kernel::PhysicalMemory>(size);
33 shared_memory->backing_block_offset = 0;
34
35 // Refresh the address mappings for the current process.
36 if (kernel.CurrentProcess() != nullptr) {
37 kernel.CurrentProcess()->VMManager().RefreshMemoryBlockMappings(
38 shared_memory->backing_block.get());
39 }
40 } else {
41 const auto& vm_manager = shared_memory->owner_process->VMManager();
42 15
43 // The memory is already available and mapped in the owner process. 16SharedMemory::~SharedMemory() = default;
44 const auto vma = vm_manager.FindVMA(address);
45 ASSERT_MSG(vm_manager.IsValidHandle(vma), "Invalid memory address");
46 ASSERT_MSG(vma->second.backing_block, "Backing block doesn't exist for address");
47
48 // The returned VMA might be a bigger one encompassing the desired address.
49 const auto vma_offset = address - vma->first;
50 ASSERT_MSG(vma_offset + size <= vma->second.size,
51 "Shared memory exceeds bounds of mapped block");
52
53 shared_memory->backing_block = vma->second.backing_block;
54 shared_memory->backing_block_offset = vma->second.offset + vma_offset;
55 }
56
57 shared_memory->base_address = address;
58 17
59 return shared_memory; 18std::shared_ptr<SharedMemory> SharedMemory::Create(
60} 19 KernelCore& kernel, Core::DeviceMemory& device_memory, Process* owner_process,
20 Memory::PageLinkedList&& page_list, Memory::MemoryPermission owner_permission,
21 Memory::MemoryPermission user_permission, PAddr physical_address, std::size_t size,
22 std::string name) {
61 23
62std::shared_ptr<SharedMemory> SharedMemory::CreateForApplet( 24 std::shared_ptr<SharedMemory> shared_memory{
63 KernelCore& kernel, std::shared_ptr<Kernel::PhysicalMemory> heap_block, std::size_t offset, 25 std::make_shared<SharedMemory>(kernel, device_memory)};
64 u64 size, MemoryPermission permissions, MemoryPermission other_permissions, std::string name) {
65 std::shared_ptr<SharedMemory> shared_memory = std::make_shared<SharedMemory>(kernel);
66 26
67 shared_memory->owner_process = nullptr; 27 shared_memory->owner_process = owner_process;
68 shared_memory->name = std::move(name); 28 shared_memory->page_list = std::move(page_list);
29 shared_memory->owner_permission = owner_permission;
30 shared_memory->user_permission = user_permission;
31 shared_memory->physical_address = physical_address;
69 shared_memory->size = size; 32 shared_memory->size = size;
70 shared_memory->permissions = permissions; 33 shared_memory->name = name;
71 shared_memory->other_permissions = other_permissions;
72 shared_memory->backing_block = std::move(heap_block);
73 shared_memory->backing_block_offset = offset;
74 shared_memory->base_address =
75 kernel.CurrentProcess()->VMManager().GetHeapRegionBaseAddress() + offset;
76 34
77 return shared_memory; 35 return shared_memory;
78} 36}
79 37
80ResultCode SharedMemory::Map(Process& target_process, VAddr address, MemoryPermission permissions, 38ResultCode SharedMemory::Map(Process& target_process, VAddr address, std::size_t size,
81 MemoryPermission other_permissions) { 39 Memory::MemoryPermission permission) {
82 const MemoryPermission own_other_permissions = 40 const u64 page_count{(size + Memory::PageSize - 1) / Memory::PageSize};
83 &target_process == owner_process ? this->permissions : this->other_permissions;
84
85 // Automatically allocated memory blocks can only be mapped with other_permissions = DontCare
86 if (base_address == 0 && other_permissions != MemoryPermission::DontCare) {
87 return ERR_INVALID_MEMORY_PERMISSIONS;
88 }
89
90 // Error out if the requested permissions don't match what the creator process allows.
91 if (static_cast<u32>(permissions) & ~static_cast<u32>(own_other_permissions)) {
92 LOG_ERROR(Kernel, "cannot map id={}, address=0x{:X} name={}, permissions don't match",
93 GetObjectId(), address, name);
94 return ERR_INVALID_MEMORY_PERMISSIONS;
95 }
96 41
97 // Error out if the provided permissions are not compatible with what the creator process needs. 42 if (page_list.GetNumPages() != page_count) {
98 if (other_permissions != MemoryPermission::DontCare && 43 UNIMPLEMENTED_MSG("Page count does not match");
99 static_cast<u32>(this->permissions) & ~static_cast<u32>(other_permissions)) {
100 LOG_ERROR(Kernel, "cannot map id={}, address=0x{:X} name={}, permissions don't match",
101 GetObjectId(), address, name);
102 return ERR_INVALID_MEMORY_PERMISSIONS;
103 } 44 }
104 45
105 VAddr target_address = address; 46 Memory::MemoryPermission expected =
47 &target_process == owner_process ? owner_permission : user_permission;
106 48
107 // Map the memory block into the target process 49 if (permission != expected) {
108 auto result = target_process.VMManager().MapMemoryBlock( 50 UNIMPLEMENTED_MSG("Permission does not match");
109 target_address, backing_block, backing_block_offset, size, MemoryState::Shared);
110 if (result.Failed()) {
111 LOG_ERROR(
112 Kernel,
113 "cannot map id={}, target_address=0x{:X} name={}, error mapping to virtual memory",
114 GetObjectId(), target_address, name);
115 return result.Code();
116 } 51 }
117 52
118 return target_process.VMManager().ReprotectRange(target_address, size, 53 return target_process.PageTable().MapPages(address, page_list, Memory::MemoryState::Shared,
119 ConvertPermissions(permissions)); 54 permission);
120}
121
122ResultCode SharedMemory::Unmap(Process& target_process, VAddr address, u64 unmap_size) {
123 if (unmap_size != size) {
124 LOG_ERROR(Kernel,
125 "Invalid size passed to Unmap. Size must be equal to the size of the "
126 "memory managed. Shared memory size=0x{:016X}, Unmap size=0x{:016X}",
127 size, unmap_size);
128 return ERR_INVALID_SIZE;
129 }
130
131 // TODO(Subv): Verify what happens if the application tries to unmap an address that is not
132 // mapped to a SharedMemory.
133 return target_process.VMManager().UnmapRange(address, size);
134}
135
136VMAPermission SharedMemory::ConvertPermissions(MemoryPermission permission) {
137 u32 masked_permissions =
138 static_cast<u32>(permission) & static_cast<u32>(MemoryPermission::ReadWriteExecute);
139 return static_cast<VMAPermission>(masked_permissions);
140}
141
142u8* SharedMemory::GetPointer(std::size_t offset) {
143 return backing_block->data() + backing_block_offset + offset;
144}
145
146const u8* SharedMemory::GetPointer(std::size_t offset) const {
147 return backing_block->data() + backing_block_offset + offset;
148} 55}
149 56
150} // namespace Kernel 57} // namespace Kernel
diff --git a/src/core/hle/kernel/shared_memory.h b/src/core/hle/kernel/shared_memory.h
index 014951d82..cd16d6412 100644
--- a/src/core/hle/kernel/shared_memory.h
+++ b/src/core/hle/kernel/shared_memory.h
@@ -8,8 +8,10 @@
8#include <string> 8#include <string>
9 9
10#include "common/common_types.h" 10#include "common/common_types.h"
11#include "core/device_memory.h"
12#include "core/hle/kernel/memory/memory_block.h"
13#include "core/hle/kernel/memory/page_linked_list.h"
11#include "core/hle/kernel/object.h" 14#include "core/hle/kernel/object.h"
12#include "core/hle/kernel/physical_memory.h"
13#include "core/hle/kernel/process.h" 15#include "core/hle/kernel/process.h"
14#include "core/hle/result.h" 16#include "core/hle/result.h"
15 17
@@ -17,63 +19,21 @@ namespace Kernel {
17 19
18class KernelCore; 20class KernelCore;
19 21
20/// Permissions for mapped shared memory blocks
21enum class MemoryPermission : u32 {
22 None = 0,
23 Read = (1u << 0),
24 Write = (1u << 1),
25 ReadWrite = (Read | Write),
26 Execute = (1u << 2),
27 ReadExecute = (Read | Execute),
28 WriteExecute = (Write | Execute),
29 ReadWriteExecute = (Read | Write | Execute),
30 DontCare = (1u << 28)
31};
32
33class SharedMemory final : public Object { 22class SharedMemory final : public Object {
34public: 23public:
35 explicit SharedMemory(KernelCore& kernel); 24 explicit SharedMemory(KernelCore& kernel, Core::DeviceMemory& device_memory);
36 ~SharedMemory() override; 25 ~SharedMemory() override;
37 26
38 /** 27 static std::shared_ptr<SharedMemory> Create(
39 * Creates a shared memory object. 28 KernelCore& kernel, Core::DeviceMemory& device_memory, Process* owner_process,
40 * @param kernel The kernel instance to create a shared memory instance under. 29 Memory::PageLinkedList&& page_list, Memory::MemoryPermission owner_permission,
41 * @param owner_process Process that created this shared memory object. 30 Memory::MemoryPermission user_permission, PAddr physical_address, std::size_t size,
42 * @param size Size of the memory block. Must be page-aligned. 31 std::string name);
43 * @param permissions Permission restrictions applied to the process which created the block.
44 * @param other_permissions Permission restrictions applied to other processes mapping the
45 * block.
46 * @param address The address from which to map the Shared Memory.
47 * @param region If the address is 0, the shared memory will be allocated in this region of the
48 * linear heap.
49 * @param name Optional object name, used for debugging purposes.
50 */
51 static std::shared_ptr<SharedMemory> Create(KernelCore& kernel, Process* owner_process,
52 u64 size, MemoryPermission permissions,
53 MemoryPermission other_permissions,
54 VAddr address = 0,
55 MemoryRegion region = MemoryRegion::BASE,
56 std::string name = "Unknown");
57
58 /**
59 * Creates a shared memory object from a block of memory managed by an HLE applet.
60 * @param kernel The kernel instance to create a shared memory instance under.
61 * @param heap_block Heap block of the HLE applet.
62 * @param offset The offset into the heap block that the SharedMemory will map.
63 * @param size Size of the memory block. Must be page-aligned.
64 * @param permissions Permission restrictions applied to the process which created the block.
65 * @param other_permissions Permission restrictions applied to other processes mapping the
66 * block.
67 * @param name Optional object name, used for debugging purposes.
68 */
69 static std::shared_ptr<SharedMemory> CreateForApplet(
70 KernelCore& kernel, std::shared_ptr<Kernel::PhysicalMemory> heap_block, std::size_t offset,
71 u64 size, MemoryPermission permissions, MemoryPermission other_permissions,
72 std::string name = "Unknown Applet");
73 32
74 std::string GetTypeName() const override { 33 std::string GetTypeName() const override {
75 return "SharedMemory"; 34 return "SharedMemory";
76 } 35 }
36
77 std::string GetName() const override { 37 std::string GetName() const override {
78 return name; 38 return name;
79 } 39 }
@@ -83,71 +43,42 @@ public:
83 return HANDLE_TYPE; 43 return HANDLE_TYPE;
84 } 44 }
85 45
86 /// Gets the size of the underlying memory block in bytes.
87 u64 GetSize() const {
88 return size;
89 }
90
91 /**
92 * Converts the specified MemoryPermission into the equivalent VMAPermission.
93 * @param permission The MemoryPermission to convert.
94 */
95 static VMAPermission ConvertPermissions(MemoryPermission permission);
96
97 /** 46 /**
98 * Maps a shared memory block to an address in the target process' address space 47 * Maps a shared memory block to an address in the target process' address space
99 * @param target_process Process on which to map the memory block. 48 * @param target_process Process on which to map the memory block
100 * @param address Address in system memory to map shared memory block to 49 * @param address Address in system memory to map shared memory block to
50 * @param size Size of the shared memory block to map
101 * @param permissions Memory block map permissions (specified by SVC field) 51 * @param permissions Memory block map permissions (specified by SVC field)
102 * @param other_permissions Memory block map other permissions (specified by SVC field)
103 */
104 ResultCode Map(Process& target_process, VAddr address, MemoryPermission permissions,
105 MemoryPermission other_permissions);
106
107 /**
108 * Unmaps a shared memory block from the specified address in system memory
109 *
110 * @param target_process Process from which to unmap the memory block.
111 * @param address Address in system memory where the shared memory block is mapped.
112 * @param unmap_size The amount of bytes to unmap from this shared memory instance.
113 *
114 * @return Result code of the unmap operation
115 *
116 * @pre The given size to unmap must be the same size as the amount of memory managed by
117 * the SharedMemory instance itself, otherwise ERR_INVALID_SIZE will be returned.
118 */ 52 */
119 ResultCode Unmap(Process& target_process, VAddr address, u64 unmap_size); 53 ResultCode Map(Process& target_process, VAddr address, std::size_t size,
54 Memory::MemoryPermission permission);
120 55
121 /** 56 /**
122 * Gets a pointer to the shared memory block 57 * Gets a pointer to the shared memory block
123 * @param offset Offset from the start of the shared memory block to get pointer 58 * @param offset Offset from the start of the shared memory block to get pointer
124 * @return A pointer to the shared memory block from the specified offset 59 * @return A pointer to the shared memory block from the specified offset
125 */ 60 */
126 u8* GetPointer(std::size_t offset = 0); 61 u8* GetPointer(std::size_t offset = 0) {
62 return device_memory.GetPointer(physical_address + offset);
63 }
127 64
128 /** 65 /**
129 * Gets a constant pointer to the shared memory block 66 * Gets a pointer to the shared memory block
130 * @param offset Offset from the start of the shared memory block to get pointer 67 * @param offset Offset from the start of the shared memory block to get pointer
131 * @return A constant pointer to the shared memory block from the specified offset 68 * @return A pointer to the shared memory block from the specified offset
132 */ 69 */
133 const u8* GetPointer(std::size_t offset = 0) const; 70 const u8* GetPointer(std::size_t offset = 0) const {
71 return device_memory.GetPointer(physical_address + offset);
72 }
134 73
135private: 74private:
136 /// Backing memory for this shared memory block. 75 Core::DeviceMemory& device_memory;
137 std::shared_ptr<PhysicalMemory> backing_block; 76 Process* owner_process{};
138 /// Offset into the backing block for this shared memory. 77 Memory::PageLinkedList page_list;
139 std::size_t backing_block_offset = 0; 78 Memory::MemoryPermission owner_permission{};
140 /// Size of the memory block. Page-aligned. 79 Memory::MemoryPermission user_permission{};
141 u64 size = 0; 80 PAddr physical_address{};
142 /// Permission restrictions applied to the process which created the block. 81 std::size_t size{};
143 MemoryPermission permissions{};
144 /// Permission restrictions applied to other processes mapping the block.
145 MemoryPermission other_permissions{};
146 /// Process that created this shared memory block.
147 Process* owner_process;
148 /// Address of shared memory block in the owner process if specified.
149 VAddr base_address = 0;
150 /// Name of shared memory object.
151 std::string name; 82 std::string name;
152}; 83};
153 84
diff --git a/src/core/hle/kernel/svc.cpp b/src/core/hle/kernel/svc.cpp
index 4ffc113c2..4134acf65 100644
--- a/src/core/hle/kernel/svc.cpp
+++ b/src/core/hle/kernel/svc.cpp
@@ -24,6 +24,8 @@
24#include "core/hle/kernel/errors.h" 24#include "core/hle/kernel/errors.h"
25#include "core/hle/kernel/handle_table.h" 25#include "core/hle/kernel/handle_table.h"
26#include "core/hle/kernel/kernel.h" 26#include "core/hle/kernel/kernel.h"
27#include "core/hle/kernel/memory/memory_block.h"
28#include "core/hle/kernel/memory/page_table.h"
27#include "core/hle/kernel/mutex.h" 29#include "core/hle/kernel/mutex.h"
28#include "core/hle/kernel/process.h" 30#include "core/hle/kernel/process.h"
29#include "core/hle/kernel/readable_event.h" 31#include "core/hle/kernel/readable_event.h"
@@ -31,6 +33,7 @@
31#include "core/hle/kernel/scheduler.h" 33#include "core/hle/kernel/scheduler.h"
32#include "core/hle/kernel/shared_memory.h" 34#include "core/hle/kernel/shared_memory.h"
33#include "core/hle/kernel/svc.h" 35#include "core/hle/kernel/svc.h"
36#include "core/hle/kernel/svc_types.h"
34#include "core/hle/kernel/svc_wrap.h" 37#include "core/hle/kernel/svc_wrap.h"
35#include "core/hle/kernel/synchronization.h" 38#include "core/hle/kernel/synchronization.h"
36#include "core/hle/kernel/thread.h" 39#include "core/hle/kernel/thread.h"
@@ -42,7 +45,7 @@
42#include "core/memory.h" 45#include "core/memory.h"
43#include "core/reporter.h" 46#include "core/reporter.h"
44 47
45namespace Kernel { 48namespace Kernel::Svc {
46namespace { 49namespace {
47 50
48// Checks if address + size is greater than the given address 51// Checks if address + size is greater than the given address
@@ -58,8 +61,8 @@ constexpr u64 MAIN_MEMORY_SIZE = 0x200000000;
58// Helper function that performs the common sanity checks for svcMapMemory 61// Helper function that performs the common sanity checks for svcMapMemory
59// and svcUnmapMemory. This is doable, as both functions perform their sanitizing 62// and svcUnmapMemory. This is doable, as both functions perform their sanitizing
60// in the same order. 63// in the same order.
61ResultCode MapUnmapMemorySanityChecks(const VMManager& vm_manager, VAddr dst_addr, VAddr src_addr, 64ResultCode MapUnmapMemorySanityChecks(const Memory::PageTable& manager, VAddr dst_addr,
62 u64 size) { 65 VAddr src_addr, u64 size) {
63 if (!Common::Is4KBAligned(dst_addr)) { 66 if (!Common::Is4KBAligned(dst_addr)) {
64 LOG_ERROR(Kernel_SVC, "Destination address is not aligned to 4KB, 0x{:016X}", dst_addr); 67 LOG_ERROR(Kernel_SVC, "Destination address is not aligned to 4KB, 0x{:016X}", dst_addr);
65 return ERR_INVALID_ADDRESS; 68 return ERR_INVALID_ADDRESS;
@@ -93,36 +96,33 @@ ResultCode MapUnmapMemorySanityChecks(const VMManager& vm_manager, VAddr dst_add
93 return ERR_INVALID_ADDRESS_STATE; 96 return ERR_INVALID_ADDRESS_STATE;
94 } 97 }
95 98
96 if (!vm_manager.IsWithinAddressSpace(src_addr, size)) { 99 if (!manager.IsInsideAddressSpace(src_addr, size)) {
97 LOG_ERROR(Kernel_SVC, 100 LOG_ERROR(Kernel_SVC,
98 "Source is not within the address space, addr=0x{:016X}, size=0x{:016X}", 101 "Source is not within the address space, addr=0x{:016X}, size=0x{:016X}",
99 src_addr, size); 102 src_addr, size);
100 return ERR_INVALID_ADDRESS_STATE; 103 return ERR_INVALID_ADDRESS_STATE;
101 } 104 }
102 105
103 if (!vm_manager.IsWithinStackRegion(dst_addr, size)) { 106 if (manager.IsOutsideStackRegion(dst_addr, size)) {
104 LOG_ERROR(Kernel_SVC, 107 LOG_ERROR(Kernel_SVC,
105 "Destination is not within the stack region, addr=0x{:016X}, size=0x{:016X}", 108 "Destination is not within the stack region, addr=0x{:016X}, size=0x{:016X}",
106 dst_addr, size); 109 dst_addr, size);
107 return ERR_INVALID_MEMORY_RANGE; 110 return ERR_INVALID_MEMORY_RANGE;
108 } 111 }
109 112
110 const VAddr dst_end_address = dst_addr + size; 113 if (manager.IsInsideHeapRegion(dst_addr, size)) {
111 if (dst_end_address > vm_manager.GetHeapRegionBaseAddress() &&
112 vm_manager.GetHeapRegionEndAddress() > dst_addr) {
113 LOG_ERROR(Kernel_SVC, 114 LOG_ERROR(Kernel_SVC,
114 "Destination does not fit within the heap region, addr=0x{:016X}, " 115 "Destination does not fit within the heap region, addr=0x{:016X}, "
115 "size=0x{:016X}, end_addr=0x{:016X}", 116 "size=0x{:016X}",
116 dst_addr, size, dst_end_address); 117 dst_addr, size);
117 return ERR_INVALID_MEMORY_RANGE; 118 return ERR_INVALID_MEMORY_RANGE;
118 } 119 }
119 120
120 if (dst_end_address > vm_manager.GetMapRegionBaseAddress() && 121 if (manager.IsInsideAliasRegion(dst_addr, size)) {
121 vm_manager.GetMapRegionEndAddress() > dst_addr) {
122 LOG_ERROR(Kernel_SVC, 122 LOG_ERROR(Kernel_SVC,
123 "Destination does not fit within the map region, addr=0x{:016X}, " 123 "Destination does not fit within the map region, addr=0x{:016X}, "
124 "size=0x{:016X}, end_addr=0x{:016X}", 124 "size=0x{:016X}",
125 dst_addr, size, dst_end_address); 125 dst_addr, size);
126 return ERR_INVALID_MEMORY_RANGE; 126 return ERR_INVALID_MEMORY_RANGE;
127 } 127 }
128 128
@@ -177,13 +177,10 @@ static ResultCode SetHeapSize(Core::System& system, VAddr* heap_addr, u64 heap_s
177 return ERR_INVALID_SIZE; 177 return ERR_INVALID_SIZE;
178 } 178 }
179 179
180 auto& vm_manager = system.Kernel().CurrentProcess()->VMManager(); 180 auto& page_table{system.Kernel().CurrentProcess()->PageTable()};
181 const auto alloc_result = vm_manager.SetHeapSize(heap_size); 181
182 if (alloc_result.Failed()) { 182 CASCADE_RESULT(*heap_addr, page_table.SetHeapSize(heap_size));
183 return alloc_result.Code();
184 }
185 183
186 *heap_addr = *alloc_result;
187 return RESULT_SUCCESS; 184 return RESULT_SUCCESS;
188} 185}
189 186
@@ -194,63 +191,6 @@ static ResultCode SetHeapSize32(Core::System& system, u32* heap_addr, u32 heap_s
194 return result; 191 return result;
195} 192}
196 193
197static ResultCode SetMemoryPermission(Core::System& system, VAddr addr, u64 size, u32 prot) {
198 LOG_TRACE(Kernel_SVC, "called, addr=0x{:X}, size=0x{:X}, prot=0x{:X}", addr, size, prot);
199
200 if (!Common::Is4KBAligned(addr)) {
201 LOG_ERROR(Kernel_SVC, "Address is not aligned to 4KB, addr=0x{:016X}", addr);
202 return ERR_INVALID_ADDRESS;
203 }
204
205 if (size == 0) {
206 LOG_ERROR(Kernel_SVC, "Size is 0");
207 return ERR_INVALID_SIZE;
208 }
209
210 if (!Common::Is4KBAligned(size)) {
211 LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, size=0x{:016X}", size);
212 return ERR_INVALID_SIZE;
213 }
214
215 if (!IsValidAddressRange(addr, size)) {
216 LOG_ERROR(Kernel_SVC, "Region is not a valid address range, addr=0x{:016X}, size=0x{:016X}",
217 addr, size);
218 return ERR_INVALID_ADDRESS_STATE;
219 }
220
221 const auto permission = static_cast<MemoryPermission>(prot);
222 if (permission != MemoryPermission::None && permission != MemoryPermission::Read &&
223 permission != MemoryPermission::ReadWrite) {
224 LOG_ERROR(Kernel_SVC, "Invalid memory permission specified, Got memory permission=0x{:08X}",
225 static_cast<u32>(permission));
226 return ERR_INVALID_MEMORY_PERMISSIONS;
227 }
228
229 auto* const current_process = system.Kernel().CurrentProcess();
230 auto& vm_manager = current_process->VMManager();
231
232 if (!vm_manager.IsWithinAddressSpace(addr, size)) {
233 LOG_ERROR(Kernel_SVC,
234 "Source is not within the address space, addr=0x{:016X}, size=0x{:016X}", addr,
235 size);
236 return ERR_INVALID_ADDRESS_STATE;
237 }
238
239 const VMManager::VMAHandle iter = vm_manager.FindVMA(addr);
240 if (!vm_manager.IsValidHandle(iter)) {
241 LOG_ERROR(Kernel_SVC, "Unable to find VMA for address=0x{:016X}", addr);
242 return ERR_INVALID_ADDRESS_STATE;
243 }
244
245 LOG_WARNING(Kernel_SVC, "Uniformity check on protected memory is not implemented.");
246 // TODO: Performs a uniformity check to make sure only protected memory is changed (it doesn't
247 // make sense to allow changing permissions on kernel memory itself, etc).
248
249 const auto converted_permissions = SharedMemory::ConvertPermissions(permission);
250
251 return vm_manager.ReprotectRange(addr, size, converted_permissions);
252}
253
254static ResultCode SetMemoryAttribute(Core::System& system, VAddr address, u64 size, u32 mask, 194static ResultCode SetMemoryAttribute(Core::System& system, VAddr address, u64 size, u32 mask,
255 u32 attribute) { 195 u32 attribute) {
256 LOG_DEBUG(Kernel_SVC, 196 LOG_DEBUG(Kernel_SVC,
@@ -274,30 +214,19 @@ static ResultCode SetMemoryAttribute(Core::System& system, VAddr address, u64 si
274 return ERR_INVALID_ADDRESS_STATE; 214 return ERR_INVALID_ADDRESS_STATE;
275 } 215 }
276 216
277 const auto mem_attribute = static_cast<MemoryAttribute>(attribute); 217 const auto attributes{static_cast<Memory::MemoryAttribute>(mask | attribute)};
278 const auto mem_mask = static_cast<MemoryAttribute>(mask); 218 if (attributes != static_cast<Memory::MemoryAttribute>(mask) ||
279 const auto attribute_with_mask = mem_attribute | mem_mask; 219 (attributes | Memory::MemoryAttribute::Uncached) != Memory::MemoryAttribute::Uncached) {
280
281 if (attribute_with_mask != mem_mask) {
282 LOG_ERROR(Kernel_SVC, 220 LOG_ERROR(Kernel_SVC,
283 "Memory attribute doesn't match the given mask (Attribute: 0x{:X}, Mask: {:X}", 221 "Memory attribute doesn't match the given mask (Attribute: 0x{:X}, Mask: {:X}",
284 attribute, mask); 222 attribute, mask);
285 return ERR_INVALID_COMBINATION; 223 return ERR_INVALID_COMBINATION;
286 } 224 }
287 225
288 if ((attribute_with_mask | MemoryAttribute::Uncached) != MemoryAttribute::Uncached) { 226 auto& page_table{system.Kernel().CurrentProcess()->PageTable()};
289 LOG_ERROR(Kernel_SVC, "Specified attribute isn't equal to MemoryAttributeUncached (8).");
290 return ERR_INVALID_COMBINATION;
291 }
292
293 auto& vm_manager = system.Kernel().CurrentProcess()->VMManager();
294 if (!vm_manager.IsWithinAddressSpace(address, size)) {
295 LOG_ERROR(Kernel_SVC,
296 "Given address (0x{:016X}) is outside the bounds of the address space.", address);
297 return ERR_INVALID_ADDRESS_STATE;
298 }
299 227
300 return vm_manager.SetMemoryAttribute(address, size, mem_mask, mem_attribute); 228 return page_table.SetMemoryAttribute(address, size, static_cast<Memory::MemoryAttribute>(mask),
229 static_cast<Memory::MemoryAttribute>(attribute));
301} 230}
302 231
303/// Maps a memory range into a different range. 232/// Maps a memory range into a different range.
@@ -305,14 +234,14 @@ static ResultCode MapMemory(Core::System& system, VAddr dst_addr, VAddr src_addr
305 LOG_TRACE(Kernel_SVC, "called, dst_addr=0x{:X}, src_addr=0x{:X}, size=0x{:X}", dst_addr, 234 LOG_TRACE(Kernel_SVC, "called, dst_addr=0x{:X}, src_addr=0x{:X}, size=0x{:X}", dst_addr,
306 src_addr, size); 235 src_addr, size);
307 236
308 auto& vm_manager = system.Kernel().CurrentProcess()->VMManager(); 237 auto& page_table{system.Kernel().CurrentProcess()->PageTable()};
309 const auto result = MapUnmapMemorySanityChecks(vm_manager, dst_addr, src_addr, size);
310 238
311 if (result.IsError()) { 239 if (const ResultCode result{MapUnmapMemorySanityChecks(page_table, dst_addr, src_addr, size)};
240 result.IsError()) {
312 return result; 241 return result;
313 } 242 }
314 243
315 return vm_manager.MirrorMemory(dst_addr, src_addr, size, MemoryState::Stack); 244 return page_table.Map(dst_addr, src_addr, size);
316} 245}
317 246
318/// Unmaps a region that was previously mapped with svcMapMemory 247/// Unmaps a region that was previously mapped with svcMapMemory
@@ -320,21 +249,14 @@ static ResultCode UnmapMemory(Core::System& system, VAddr dst_addr, VAddr src_ad
320 LOG_TRACE(Kernel_SVC, "called, dst_addr=0x{:X}, src_addr=0x{:X}, size=0x{:X}", dst_addr, 249 LOG_TRACE(Kernel_SVC, "called, dst_addr=0x{:X}, src_addr=0x{:X}, size=0x{:X}", dst_addr,
321 src_addr, size); 250 src_addr, size);
322 251
323 auto& vm_manager = system.Kernel().CurrentProcess()->VMManager(); 252 auto& page_table{system.Kernel().CurrentProcess()->PageTable()};
324 const auto result = MapUnmapMemorySanityChecks(vm_manager, dst_addr, src_addr, size);
325 253
326 if (result.IsError()) { 254 if (const ResultCode result{MapUnmapMemorySanityChecks(page_table, dst_addr, src_addr, size)};
255 result.IsError()) {
327 return result; 256 return result;
328 } 257 }
329 258
330 const auto unmap_res = vm_manager.UnmapRange(dst_addr, size); 259 return page_table.Unmap(dst_addr, src_addr, size);
331
332 // Reprotect the source mapping on success
333 if (unmap_res.IsSuccess()) {
334 ASSERT(vm_manager.ReprotectRange(src_addr, size, VMAPermission::ReadWrite).IsSuccess());
335 }
336
337 return unmap_res;
338} 260}
339 261
340/// Connect to an OS service given the port name, returns the handle to the port to out 262/// Connect to an OS service given the port name, returns the handle to the port to out
@@ -367,6 +289,8 @@ static ResultCode ConnectToNamedPort(Core::System& system, Handle* out_handle,
367 return ERR_NOT_FOUND; 289 return ERR_NOT_FOUND;
368 } 290 }
369 291
292 ASSERT(kernel.CurrentProcess()->GetResourceLimit()->Reserve(ResourceType::Sessions, 1));
293
370 auto client_port = it->second; 294 auto client_port = it->second;
371 295
372 std::shared_ptr<ClientSession> client_session; 296 std::shared_ptr<ClientSession> client_session;
@@ -538,7 +462,7 @@ static ResultCode ArbitrateLock(Core::System& system, Handle holding_thread_hand
538 "requesting_current_thread_handle=0x{:08X}", 462 "requesting_current_thread_handle=0x{:08X}",
539 holding_thread_handle, mutex_addr, requesting_thread_handle); 463 holding_thread_handle, mutex_addr, requesting_thread_handle);
540 464
541 if (Memory::IsKernelVirtualAddress(mutex_addr)) { 465 if (Core::Memory::IsKernelVirtualAddress(mutex_addr)) {
542 LOG_ERROR(Kernel_SVC, "Mutex Address is a kernel virtual address, mutex_addr={:016X}", 466 LOG_ERROR(Kernel_SVC, "Mutex Address is a kernel virtual address, mutex_addr={:016X}",
543 mutex_addr); 467 mutex_addr);
544 return ERR_INVALID_ADDRESS_STATE; 468 return ERR_INVALID_ADDRESS_STATE;
@@ -558,7 +482,7 @@ static ResultCode ArbitrateLock(Core::System& system, Handle holding_thread_hand
558static ResultCode ArbitrateUnlock(Core::System& system, VAddr mutex_addr) { 482static ResultCode ArbitrateUnlock(Core::System& system, VAddr mutex_addr) {
559 LOG_TRACE(Kernel_SVC, "called mutex_addr=0x{:X}", mutex_addr); 483 LOG_TRACE(Kernel_SVC, "called mutex_addr=0x{:X}", mutex_addr);
560 484
561 if (Memory::IsKernelVirtualAddress(mutex_addr)) { 485 if (Core::Memory::IsKernelVirtualAddress(mutex_addr)) {
562 LOG_ERROR(Kernel_SVC, "Mutex Address is a kernel virtual address, mutex_addr={:016X}", 486 LOG_ERROR(Kernel_SVC, "Mutex Address is a kernel virtual address, mutex_addr={:016X}",
563 mutex_addr); 487 mutex_addr);
564 return ERR_INVALID_ADDRESS_STATE; 488 return ERR_INVALID_ADDRESS_STATE;
@@ -683,7 +607,6 @@ static void Break(Core::System& system, u32 reason, u64 info1, u64 info2) {
683 auto* const current_thread = system.CurrentScheduler().GetCurrentThread(); 607 auto* const current_thread = system.CurrentScheduler().GetCurrentThread();
684 const auto thread_processor_id = current_thread->GetProcessorID(); 608 const auto thread_processor_id = current_thread->GetProcessorID();
685 system.ArmInterface(static_cast<std::size_t>(thread_processor_id)).LogBacktrace(); 609 system.ArmInterface(static_cast<std::size_t>(thread_processor_id)).LogBacktrace();
686 ASSERT(false);
687 610
688 system.Kernel().CurrentProcess()->PrepareForTermination(); 611 system.Kernel().CurrentProcess()->PrepareForTermination();
689 612
@@ -785,35 +708,35 @@ static ResultCode GetInfo(Core::System& system, u64* result, u64 info_id, u64 ha
785 return RESULT_SUCCESS; 708 return RESULT_SUCCESS;
786 709
787 case GetInfoType::MapRegionBaseAddr: 710 case GetInfoType::MapRegionBaseAddr:
788 *result = process->VMManager().GetMapRegionBaseAddress(); 711 *result = process->PageTable().GetAliasRegionStart();
789 return RESULT_SUCCESS; 712 return RESULT_SUCCESS;
790 713
791 case GetInfoType::MapRegionSize: 714 case GetInfoType::MapRegionSize:
792 *result = process->VMManager().GetMapRegionSize(); 715 *result = process->PageTable().GetAliasRegionSize();
793 return RESULT_SUCCESS; 716 return RESULT_SUCCESS;
794 717
795 case GetInfoType::HeapRegionBaseAddr: 718 case GetInfoType::HeapRegionBaseAddr:
796 *result = process->VMManager().GetHeapRegionBaseAddress(); 719 *result = process->PageTable().GetHeapRegionStart();
797 return RESULT_SUCCESS; 720 return RESULT_SUCCESS;
798 721
799 case GetInfoType::HeapRegionSize: 722 case GetInfoType::HeapRegionSize:
800 *result = process->VMManager().GetHeapRegionSize(); 723 *result = process->PageTable().GetHeapRegionSize();
801 return RESULT_SUCCESS; 724 return RESULT_SUCCESS;
802 725
803 case GetInfoType::ASLRRegionBaseAddr: 726 case GetInfoType::ASLRRegionBaseAddr:
804 *result = process->VMManager().GetASLRRegionBaseAddress(); 727 *result = process->PageTable().GetAliasCodeRegionStart();
805 return RESULT_SUCCESS; 728 return RESULT_SUCCESS;
806 729
807 case GetInfoType::ASLRRegionSize: 730 case GetInfoType::ASLRRegionSize:
808 *result = process->VMManager().GetASLRRegionSize(); 731 *result = process->PageTable().GetAliasCodeRegionSize();
809 return RESULT_SUCCESS; 732 return RESULT_SUCCESS;
810 733
811 case GetInfoType::StackRegionBaseAddr: 734 case GetInfoType::StackRegionBaseAddr:
812 *result = process->VMManager().GetStackRegionBaseAddress(); 735 *result = process->PageTable().GetStackRegionStart();
813 return RESULT_SUCCESS; 736 return RESULT_SUCCESS;
814 737
815 case GetInfoType::StackRegionSize: 738 case GetInfoType::StackRegionSize:
816 *result = process->VMManager().GetStackRegionSize(); 739 *result = process->PageTable().GetStackRegionSize();
817 return RESULT_SUCCESS; 740 return RESULT_SUCCESS;
818 741
819 case GetInfoType::TotalPhysicalMemoryAvailable: 742 case GetInfoType::TotalPhysicalMemoryAvailable:
@@ -987,20 +910,29 @@ static ResultCode MapPhysicalMemory(Core::System& system, VAddr addr, u64 size)
987 return ERR_INVALID_MEMORY_RANGE; 910 return ERR_INVALID_MEMORY_RANGE;
988 } 911 }
989 912
990 Process* const current_process = system.Kernel().CurrentProcess(); 913 Process* const current_process{system.Kernel().CurrentProcess()};
991 auto& vm_manager = current_process->VMManager(); 914 auto& page_table{current_process->PageTable()};
992 915
993 if (current_process->GetSystemResourceSize() == 0) { 916 if (current_process->GetSystemResourceSize() == 0) {
994 LOG_ERROR(Kernel_SVC, "System Resource Size is zero"); 917 LOG_ERROR(Kernel_SVC, "System Resource Size is zero");
995 return ERR_INVALID_STATE; 918 return ERR_INVALID_STATE;
996 } 919 }
997 920
998 if (!vm_manager.IsWithinMapRegion(addr, size)) { 921 if (!page_table.IsInsideAddressSpace(addr, size)) {
999 LOG_ERROR(Kernel_SVC, "Range not within map region"); 922 LOG_ERROR(Kernel_SVC,
923 "Address is not within the address space, addr=0x{:016X}, size=0x{:016X}", addr,
924 size);
925 return ERR_INVALID_MEMORY_RANGE;
926 }
927
928 if (page_table.IsOutsideAliasRegion(addr, size)) {
929 LOG_ERROR(Kernel_SVC,
930 "Address is not within the alias region, addr=0x{:016X}, size=0x{:016X}", addr,
931 size);
1000 return ERR_INVALID_MEMORY_RANGE; 932 return ERR_INVALID_MEMORY_RANGE;
1001 } 933 }
1002 934
1003 return vm_manager.MapPhysicalMemory(addr, size); 935 return page_table.MapPhysicalMemory(addr, size);
1004} 936}
1005 937
1006/// Unmaps memory previously mapped via MapPhysicalMemory 938/// Unmaps memory previously mapped via MapPhysicalMemory
@@ -1027,20 +959,29 @@ static ResultCode UnmapPhysicalMemory(Core::System& system, VAddr addr, u64 size
1027 return ERR_INVALID_MEMORY_RANGE; 959 return ERR_INVALID_MEMORY_RANGE;
1028 } 960 }
1029 961
1030 Process* const current_process = system.Kernel().CurrentProcess(); 962 Process* const current_process{system.Kernel().CurrentProcess()};
1031 auto& vm_manager = current_process->VMManager(); 963 auto& page_table{current_process->PageTable()};
1032 964
1033 if (current_process->GetSystemResourceSize() == 0) { 965 if (current_process->GetSystemResourceSize() == 0) {
1034 LOG_ERROR(Kernel_SVC, "System Resource Size is zero"); 966 LOG_ERROR(Kernel_SVC, "System Resource Size is zero");
1035 return ERR_INVALID_STATE; 967 return ERR_INVALID_STATE;
1036 } 968 }
1037 969
1038 if (!vm_manager.IsWithinMapRegion(addr, size)) { 970 if (!page_table.IsInsideAddressSpace(addr, size)) {
1039 LOG_ERROR(Kernel_SVC, "Range not within map region"); 971 LOG_ERROR(Kernel_SVC,
972 "Address is not within the address space, addr=0x{:016X}, size=0x{:016X}", addr,
973 size);
974 return ERR_INVALID_MEMORY_RANGE;
975 }
976
977 if (page_table.IsOutsideAliasRegion(addr, size)) {
978 LOG_ERROR(Kernel_SVC,
979 "Address is not within the alias region, addr=0x{:016X}, size=0x{:016X}", addr,
980 size);
1040 return ERR_INVALID_MEMORY_RANGE; 981 return ERR_INVALID_MEMORY_RANGE;
1041 } 982 }
1042 983
1043 return vm_manager.UnmapPhysicalMemory(addr, size); 984 return page_table.UnmapPhysicalMemory(addr, size);
1044} 985}
1045 986
1046/// Sets the thread activity 987/// Sets the thread activity
@@ -1197,74 +1138,49 @@ static ResultCode MapSharedMemory(Core::System& system, Handle shared_memory_han
1197 return ERR_INVALID_ADDRESS_STATE; 1138 return ERR_INVALID_ADDRESS_STATE;
1198 } 1139 }
1199 1140
1200 const auto permissions_type = static_cast<MemoryPermission>(permissions); 1141 const auto permission_type = static_cast<Memory::MemoryPermission>(permissions);
1201 if (permissions_type != MemoryPermission::Read && 1142 if ((permission_type | Memory::MemoryPermission::Write) !=
1202 permissions_type != MemoryPermission::ReadWrite) { 1143 Memory::MemoryPermission::ReadAndWrite) {
1203 LOG_ERROR(Kernel_SVC, "Expected Read or ReadWrite permission but got permissions=0x{:08X}", 1144 LOG_ERROR(Kernel_SVC, "Expected Read or ReadWrite permission but got permissions=0x{:08X}",
1204 permissions); 1145 permissions);
1205 return ERR_INVALID_MEMORY_PERMISSIONS; 1146 return ERR_INVALID_MEMORY_PERMISSIONS;
1206 } 1147 }
1207 1148
1208 auto* const current_process = system.Kernel().CurrentProcess(); 1149 auto* const current_process{system.Kernel().CurrentProcess()};
1209 auto shared_memory = current_process->GetHandleTable().Get<SharedMemory>(shared_memory_handle); 1150 auto& page_table{current_process->PageTable()};
1210 if (!shared_memory) {
1211 LOG_ERROR(Kernel_SVC, "Shared memory does not exist, shared_memory_handle=0x{:08X}",
1212 shared_memory_handle);
1213 return ERR_INVALID_HANDLE;
1214 }
1215 1151
1216 const auto& vm_manager = current_process->VMManager(); 1152 if (page_table.IsInvalidRegion(addr, size)) {
1217 if (!vm_manager.IsWithinASLRRegion(addr, size)) { 1153 LOG_ERROR(Kernel_SVC,
1218 LOG_ERROR(Kernel_SVC, "Region is not within the ASLR region. addr=0x{:016X}, size={:016X}", 1154 "Addr does not fit within the valid region, addr=0x{:016X}, "
1155 "size=0x{:016X}",
1219 addr, size); 1156 addr, size);
1220 return ERR_INVALID_MEMORY_RANGE; 1157 return ERR_INVALID_MEMORY_RANGE;
1221 } 1158 }
1222 1159
1223 return shared_memory->Map(*current_process, addr, permissions_type, MemoryPermission::DontCare); 1160 if (page_table.IsInsideHeapRegion(addr, size)) {
1224} 1161 LOG_ERROR(Kernel_SVC,
1225 1162 "Addr does not fit within the heap region, addr=0x{:016X}, "
1226static ResultCode UnmapSharedMemory(Core::System& system, Handle shared_memory_handle, VAddr addr, 1163 "size=0x{:016X}",
1227 u64 size) { 1164 addr, size);
1228 LOG_WARNING(Kernel_SVC, "called, shared_memory_handle=0x{:08X}, addr=0x{:X}, size=0x{:X}", 1165 return ERR_INVALID_MEMORY_RANGE;
1229 shared_memory_handle, addr, size);
1230
1231 if (!Common::Is4KBAligned(addr)) {
1232 LOG_ERROR(Kernel_SVC, "Address is not aligned to 4KB, addr=0x{:016X}", addr);
1233 return ERR_INVALID_ADDRESS;
1234 }
1235
1236 if (size == 0) {
1237 LOG_ERROR(Kernel_SVC, "Size is 0");
1238 return ERR_INVALID_SIZE;
1239 }
1240
1241 if (!Common::Is4KBAligned(size)) {
1242 LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, size=0x{:016X}", size);
1243 return ERR_INVALID_SIZE;
1244 } 1166 }
1245 1167
1246 if (!IsValidAddressRange(addr, size)) { 1168 if (page_table.IsInsideAliasRegion(addr, size)) {
1247 LOG_ERROR(Kernel_SVC, "Region is not a valid address range, addr=0x{:016X}, size=0x{:016X}", 1169 LOG_ERROR(Kernel_SVC,
1170 "Address does not fit within the map region, addr=0x{:016X}, "
1171 "size=0x{:016X}",
1248 addr, size); 1172 addr, size);
1249 return ERR_INVALID_ADDRESS_STATE; 1173 return ERR_INVALID_MEMORY_RANGE;
1250 } 1174 }
1251 1175
1252 auto* const current_process = system.Kernel().CurrentProcess(); 1176 auto shared_memory{current_process->GetHandleTable().Get<SharedMemory>(shared_memory_handle)};
1253 auto shared_memory = current_process->GetHandleTable().Get<SharedMemory>(shared_memory_handle);
1254 if (!shared_memory) { 1177 if (!shared_memory) {
1255 LOG_ERROR(Kernel_SVC, "Shared memory does not exist, shared_memory_handle=0x{:08X}", 1178 LOG_ERROR(Kernel_SVC, "Shared memory does not exist, shared_memory_handle=0x{:08X}",
1256 shared_memory_handle); 1179 shared_memory_handle);
1257 return ERR_INVALID_HANDLE; 1180 return ERR_INVALID_HANDLE;
1258 } 1181 }
1259 1182
1260 const auto& vm_manager = current_process->VMManager(); 1183 return shared_memory->Map(*current_process, addr, size, permission_type);
1261 if (!vm_manager.IsWithinASLRRegion(addr, size)) {
1262 LOG_ERROR(Kernel_SVC, "Region is not within the ASLR region. addr=0x{:016X}, size={:016X}",
1263 addr, size);
1264 return ERR_INVALID_MEMORY_RANGE;
1265 }
1266
1267 return shared_memory->Unmap(*current_process, addr, size);
1268} 1184}
1269 1185
1270static ResultCode QueryProcessMemory(Core::System& system, VAddr memory_info_address, 1186static ResultCode QueryProcessMemory(Core::System& system, VAddr memory_info_address,
@@ -1279,18 +1195,17 @@ static ResultCode QueryProcessMemory(Core::System& system, VAddr memory_info_add
1279 return ERR_INVALID_HANDLE; 1195 return ERR_INVALID_HANDLE;
1280 } 1196 }
1281 1197
1282 auto& memory = system.Memory(); 1198 auto& memory{system.Memory()};
1283 const auto& vm_manager = process->VMManager(); 1199 const auto memory_info{process->PageTable().QueryInfo(address).GetSvcMemoryInfo()};
1284 const MemoryInfo memory_info = vm_manager.QueryMemory(address); 1200
1285 1201 memory.Write64(memory_info_address + 0x00, memory_info.addr);
1286 memory.Write64(memory_info_address, memory_info.base_address); 1202 memory.Write64(memory_info_address + 0x08, memory_info.size);
1287 memory.Write64(memory_info_address + 8, memory_info.size); 1203 memory.Write32(memory_info_address + 0x10, static_cast<u32>(memory_info.state) & 0xff);
1288 memory.Write32(memory_info_address + 16, memory_info.state); 1204 memory.Write32(memory_info_address + 0x14, static_cast<u32>(memory_info.attr));
1289 memory.Write32(memory_info_address + 20, memory_info.attributes); 1205 memory.Write32(memory_info_address + 0x18, static_cast<u32>(memory_info.perm));
1290 memory.Write32(memory_info_address + 24, memory_info.permission); 1206 memory.Write32(memory_info_address + 0x1c, memory_info.ipc_refcount);
1291 memory.Write32(memory_info_address + 32, memory_info.ipc_ref_count); 1207 memory.Write32(memory_info_address + 0x20, memory_info.device_refcount);
1292 memory.Write32(memory_info_address + 28, memory_info.device_ref_count); 1208 memory.Write32(memory_info_address + 0x24, 0);
1293 memory.Write32(memory_info_address + 36, 0);
1294 1209
1295 // Page info appears to be currently unused by the kernel and is always set to zero. 1210 // Page info appears to be currently unused by the kernel and is always set to zero.
1296 memory.Write32(page_info_address, 0); 1211 memory.Write32(page_info_address, 0);
@@ -1314,142 +1229,6 @@ static ResultCode QueryMemory32(Core::System& system, u32 memory_info_address,
1314 return QueryMemory(system, memory_info_address, page_info_address, query_address); 1229 return QueryMemory(system, memory_info_address, page_info_address, query_address);
1315} 1230}
1316 1231
1317static ResultCode MapProcessCodeMemory(Core::System& system, Handle process_handle, u64 dst_address,
1318 u64 src_address, u64 size) {
1319 LOG_DEBUG(Kernel_SVC,
1320 "called. process_handle=0x{:08X}, dst_address=0x{:016X}, "
1321 "src_address=0x{:016X}, size=0x{:016X}",
1322 process_handle, dst_address, src_address, size);
1323
1324 if (!Common::Is4KBAligned(src_address)) {
1325 LOG_ERROR(Kernel_SVC, "src_address is not page-aligned (src_address=0x{:016X}).",
1326 src_address);
1327 return ERR_INVALID_ADDRESS;
1328 }
1329
1330 if (!Common::Is4KBAligned(dst_address)) {
1331 LOG_ERROR(Kernel_SVC, "dst_address is not page-aligned (dst_address=0x{:016X}).",
1332 dst_address);
1333 return ERR_INVALID_ADDRESS;
1334 }
1335
1336 if (size == 0 || !Common::Is4KBAligned(size)) {
1337 LOG_ERROR(Kernel_SVC, "Size is zero or not page-aligned (size=0x{:016X})", size);
1338 return ERR_INVALID_SIZE;
1339 }
1340
1341 if (!IsValidAddressRange(dst_address, size)) {
1342 LOG_ERROR(Kernel_SVC,
1343 "Destination address range overflows the address space (dst_address=0x{:016X}, "
1344 "size=0x{:016X}).",
1345 dst_address, size);
1346 return ERR_INVALID_ADDRESS_STATE;
1347 }
1348
1349 if (!IsValidAddressRange(src_address, size)) {
1350 LOG_ERROR(Kernel_SVC,
1351 "Source address range overflows the address space (src_address=0x{:016X}, "
1352 "size=0x{:016X}).",
1353 src_address, size);
1354 return ERR_INVALID_ADDRESS_STATE;
1355 }
1356
1357 const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
1358 auto process = handle_table.Get<Process>(process_handle);
1359 if (!process) {
1360 LOG_ERROR(Kernel_SVC, "Invalid process handle specified (handle=0x{:08X}).",
1361 process_handle);
1362 return ERR_INVALID_HANDLE;
1363 }
1364
1365 auto& vm_manager = process->VMManager();
1366 if (!vm_manager.IsWithinAddressSpace(src_address, size)) {
1367 LOG_ERROR(Kernel_SVC,
1368 "Source address range is not within the address space (src_address=0x{:016X}, "
1369 "size=0x{:016X}).",
1370 src_address, size);
1371 return ERR_INVALID_ADDRESS_STATE;
1372 }
1373
1374 if (!vm_manager.IsWithinASLRRegion(dst_address, size)) {
1375 LOG_ERROR(Kernel_SVC,
1376 "Destination address range is not within the ASLR region (dst_address=0x{:016X}, "
1377 "size=0x{:016X}).",
1378 dst_address, size);
1379 return ERR_INVALID_MEMORY_RANGE;
1380 }
1381
1382 return vm_manager.MapCodeMemory(dst_address, src_address, size);
1383}
1384
1385static ResultCode UnmapProcessCodeMemory(Core::System& system, Handle process_handle,
1386 u64 dst_address, u64 src_address, u64 size) {
1387 LOG_DEBUG(Kernel_SVC,
1388 "called. process_handle=0x{:08X}, dst_address=0x{:016X}, src_address=0x{:016X}, "
1389 "size=0x{:016X}",
1390 process_handle, dst_address, src_address, size);
1391
1392 if (!Common::Is4KBAligned(dst_address)) {
1393 LOG_ERROR(Kernel_SVC, "dst_address is not page-aligned (dst_address=0x{:016X}).",
1394 dst_address);
1395 return ERR_INVALID_ADDRESS;
1396 }
1397
1398 if (!Common::Is4KBAligned(src_address)) {
1399 LOG_ERROR(Kernel_SVC, "src_address is not page-aligned (src_address=0x{:016X}).",
1400 src_address);
1401 return ERR_INVALID_ADDRESS;
1402 }
1403
1404 if (size == 0 || Common::Is4KBAligned(size)) {
1405 LOG_ERROR(Kernel_SVC, "Size is zero or not page-aligned (size=0x{:016X}).", size);
1406 return ERR_INVALID_SIZE;
1407 }
1408
1409 if (!IsValidAddressRange(dst_address, size)) {
1410 LOG_ERROR(Kernel_SVC,
1411 "Destination address range overflows the address space (dst_address=0x{:016X}, "
1412 "size=0x{:016X}).",
1413 dst_address, size);
1414 return ERR_INVALID_ADDRESS_STATE;
1415 }
1416
1417 if (!IsValidAddressRange(src_address, size)) {
1418 LOG_ERROR(Kernel_SVC,
1419 "Source address range overflows the address space (src_address=0x{:016X}, "
1420 "size=0x{:016X}).",
1421 src_address, size);
1422 return ERR_INVALID_ADDRESS_STATE;
1423 }
1424
1425 const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
1426 auto process = handle_table.Get<Process>(process_handle);
1427 if (!process) {
1428 LOG_ERROR(Kernel_SVC, "Invalid process handle specified (handle=0x{:08X}).",
1429 process_handle);
1430 return ERR_INVALID_HANDLE;
1431 }
1432
1433 auto& vm_manager = process->VMManager();
1434 if (!vm_manager.IsWithinAddressSpace(src_address, size)) {
1435 LOG_ERROR(Kernel_SVC,
1436 "Source address range is not within the address space (src_address=0x{:016X}, "
1437 "size=0x{:016X}).",
1438 src_address, size);
1439 return ERR_INVALID_ADDRESS_STATE;
1440 }
1441
1442 if (!vm_manager.IsWithinASLRRegion(dst_address, size)) {
1443 LOG_ERROR(Kernel_SVC,
1444 "Destination address range is not within the ASLR region (dst_address=0x{:016X}, "
1445 "size=0x{:016X}).",
1446 dst_address, size);
1447 return ERR_INVALID_MEMORY_RANGE;
1448 }
1449
1450 return vm_manager.UnmapCodeMemory(dst_address, src_address, size);
1451}
1452
1453/// Exits the current process 1232/// Exits the current process
1454static void ExitProcess(Core::System& system) { 1233static void ExitProcess(Core::System& system) {
1455 auto* current_process = system.Kernel().CurrentProcess(); 1234 auto* current_process = system.Kernel().CurrentProcess();
@@ -1506,6 +1285,9 @@ static ResultCode CreateThread(Core::System& system, Handle* out_handle, VAddr e
1506 } 1285 }
1507 1286
1508 auto& kernel = system.Kernel(); 1287 auto& kernel = system.Kernel();
1288
1289 ASSERT(kernel.CurrentProcess()->GetResourceLimit()->Reserve(ResourceType::Threads, 1));
1290
1509 CASCADE_RESULT(std::shared_ptr<Thread> thread, 1291 CASCADE_RESULT(std::shared_ptr<Thread> thread,
1510 Thread::Create(kernel, "", entry_point, priority, arg, processor_id, stack_top, 1292 Thread::Create(kernel, "", entry_point, priority, arg, processor_id, stack_top,
1511 *current_process)); 1293 *current_process));
@@ -1610,7 +1392,7 @@ static ResultCode WaitProcessWideKeyAtomic(Core::System& system, VAddr mutex_add
1610 "called mutex_addr={:X}, condition_variable_addr={:X}, thread_handle=0x{:08X}, timeout={}", 1392 "called mutex_addr={:X}, condition_variable_addr={:X}, thread_handle=0x{:08X}, timeout={}",
1611 mutex_addr, condition_variable_addr, thread_handle, nano_seconds); 1393 mutex_addr, condition_variable_addr, thread_handle, nano_seconds);
1612 1394
1613 if (Memory::IsKernelVirtualAddress(mutex_addr)) { 1395 if (Core::Memory::IsKernelVirtualAddress(mutex_addr)) {
1614 LOG_ERROR( 1396 LOG_ERROR(
1615 Kernel_SVC, 1397 Kernel_SVC,
1616 "Given mutex address must not be within the kernel address space. address=0x{:016X}", 1398 "Given mutex address must not be within the kernel address space. address=0x{:016X}",
@@ -1741,7 +1523,7 @@ static ResultCode WaitForAddress(Core::System& system, VAddr address, u32 type,
1741 type, value, timeout); 1523 type, value, timeout);
1742 1524
1743 // If the passed address is a kernel virtual address, return invalid memory state. 1525 // If the passed address is a kernel virtual address, return invalid memory state.
1744 if (Memory::IsKernelVirtualAddress(address)) { 1526 if (Core::Memory::IsKernelVirtualAddress(address)) {
1745 LOG_ERROR(Kernel_SVC, "Address is a kernel virtual address, address={:016X}", address); 1527 LOG_ERROR(Kernel_SVC, "Address is a kernel virtual address, address={:016X}", address);
1746 return ERR_INVALID_ADDRESS_STATE; 1528 return ERR_INVALID_ADDRESS_STATE;
1747 } 1529 }
@@ -1769,7 +1551,7 @@ static ResultCode SignalToAddress(Core::System& system, VAddr address, u32 type,
1769 address, type, value, num_to_wake); 1551 address, type, value, num_to_wake);
1770 1552
1771 // If the passed address is a kernel virtual address, return invalid memory state. 1553 // If the passed address is a kernel virtual address, return invalid memory state.
1772 if (Memory::IsKernelVirtualAddress(address)) { 1554 if (Core::Memory::IsKernelVirtualAddress(address)) {
1773 LOG_ERROR(Kernel_SVC, "Address is a kernel virtual address, address={:016X}", address); 1555 LOG_ERROR(Kernel_SVC, "Address is a kernel virtual address, address={:016X}", address);
1774 return ERR_INVALID_ADDRESS_STATE; 1556 return ERR_INVALID_ADDRESS_STATE;
1775 } 1557 }
@@ -1865,9 +1647,9 @@ static ResultCode CreateTransferMemory(Core::System& system, Handle* handle, VAd
1865 return ERR_INVALID_ADDRESS_STATE; 1647 return ERR_INVALID_ADDRESS_STATE;
1866 } 1648 }
1867 1649
1868 const auto perms = static_cast<MemoryPermission>(permissions); 1650 const auto perms{static_cast<Memory::MemoryPermission>(permissions)};
1869 if (perms != MemoryPermission::None && perms != MemoryPermission::Read && 1651 if (perms > Memory::MemoryPermission::ReadAndWrite ||
1870 perms != MemoryPermission::ReadWrite) { 1652 perms == Memory::MemoryPermission::Write) {
1871 LOG_ERROR(Kernel_SVC, "Invalid memory permissions for transfer memory! (perms={:08X})", 1653 LOG_ERROR(Kernel_SVC, "Invalid memory permissions for transfer memory! (perms={:08X})",
1872 permissions); 1654 permissions);
1873 return ERR_INVALID_MEMORY_PERMISSIONS; 1655 return ERR_INVALID_MEMORY_PERMISSIONS;
@@ -1890,111 +1672,6 @@ static ResultCode CreateTransferMemory(Core::System& system, Handle* handle, VAd
1890 return RESULT_SUCCESS; 1672 return RESULT_SUCCESS;
1891} 1673}
1892 1674
1893static ResultCode MapTransferMemory(Core::System& system, Handle handle, VAddr address, u64 size,
1894 u32 permission_raw) {
1895 LOG_DEBUG(Kernel_SVC,
1896 "called. handle=0x{:08X}, address=0x{:016X}, size=0x{:016X}, permissions=0x{:08X}",
1897 handle, address, size, permission_raw);
1898
1899 if (!Common::Is4KBAligned(address)) {
1900 LOG_ERROR(Kernel_SVC, "Transfer memory addresses must be 4KB aligned (size=0x{:016X}).",
1901 address);
1902 return ERR_INVALID_ADDRESS;
1903 }
1904
1905 if (size == 0 || !Common::Is4KBAligned(size)) {
1906 LOG_ERROR(Kernel_SVC,
1907 "Transfer memory sizes must be 4KB aligned and not be zero (size=0x{:016X}).",
1908 size);
1909 return ERR_INVALID_SIZE;
1910 }
1911
1912 if (!IsValidAddressRange(address, size)) {
1913 LOG_ERROR(Kernel_SVC,
1914 "Given address and size overflows the 64-bit range (address=0x{:016X}, "
1915 "size=0x{:016X}).",
1916 address, size);
1917 return ERR_INVALID_ADDRESS_STATE;
1918 }
1919
1920 const auto permissions = static_cast<MemoryPermission>(permission_raw);
1921 if (permissions != MemoryPermission::None && permissions != MemoryPermission::Read &&
1922 permissions != MemoryPermission::ReadWrite) {
1923 LOG_ERROR(Kernel_SVC, "Invalid transfer memory permissions given (permissions=0x{:08X}).",
1924 permission_raw);
1925 return ERR_INVALID_STATE;
1926 }
1927
1928 const auto& kernel = system.Kernel();
1929 const auto* const current_process = kernel.CurrentProcess();
1930 const auto& handle_table = current_process->GetHandleTable();
1931
1932 auto transfer_memory = handle_table.Get<TransferMemory>(handle);
1933 if (!transfer_memory) {
1934 LOG_ERROR(Kernel_SVC, "Nonexistent transfer memory handle given (handle=0x{:08X}).",
1935 handle);
1936 return ERR_INVALID_HANDLE;
1937 }
1938
1939 if (!current_process->VMManager().IsWithinASLRRegion(address, size)) {
1940 LOG_ERROR(Kernel_SVC,
1941 "Given address and size don't fully fit within the ASLR region "
1942 "(address=0x{:016X}, size=0x{:016X}).",
1943 address, size);
1944 return ERR_INVALID_MEMORY_RANGE;
1945 }
1946
1947 return transfer_memory->MapMemory(address, size, permissions);
1948}
1949
1950static ResultCode UnmapTransferMemory(Core::System& system, Handle handle, VAddr address,
1951 u64 size) {
1952 LOG_DEBUG(Kernel_SVC, "called. handle=0x{:08X}, address=0x{:016X}, size=0x{:016X}", handle,
1953 address, size);
1954
1955 if (!Common::Is4KBAligned(address)) {
1956 LOG_ERROR(Kernel_SVC, "Transfer memory addresses must be 4KB aligned (size=0x{:016X}).",
1957 address);
1958 return ERR_INVALID_ADDRESS;
1959 }
1960
1961 if (size == 0 || !Common::Is4KBAligned(size)) {
1962 LOG_ERROR(Kernel_SVC,
1963 "Transfer memory sizes must be 4KB aligned and not be zero (size=0x{:016X}).",
1964 size);
1965 return ERR_INVALID_SIZE;
1966 }
1967
1968 if (!IsValidAddressRange(address, size)) {
1969 LOG_ERROR(Kernel_SVC,
1970 "Given address and size overflows the 64-bit range (address=0x{:016X}, "
1971 "size=0x{:016X}).",
1972 address, size);
1973 return ERR_INVALID_ADDRESS_STATE;
1974 }
1975
1976 const auto& kernel = system.Kernel();
1977 const auto* const current_process = kernel.CurrentProcess();
1978 const auto& handle_table = current_process->GetHandleTable();
1979
1980 auto transfer_memory = handle_table.Get<TransferMemory>(handle);
1981 if (!transfer_memory) {
1982 LOG_ERROR(Kernel_SVC, "Nonexistent transfer memory handle given (handle=0x{:08X}).",
1983 handle);
1984 return ERR_INVALID_HANDLE;
1985 }
1986
1987 if (!current_process->VMManager().IsWithinASLRRegion(address, size)) {
1988 LOG_ERROR(Kernel_SVC,
1989 "Given address and size don't fully fit within the ASLR region "
1990 "(address=0x{:016X}, size=0x{:016X}).",
1991 address, size);
1992 return ERR_INVALID_MEMORY_RANGE;
1993 }
1994
1995 return transfer_memory->UnmapMemory(address, size);
1996}
1997
1998static ResultCode GetThreadCoreMask(Core::System& system, Handle thread_handle, u32* core, 1675static ResultCode GetThreadCoreMask(Core::System& system, Handle thread_handle, u32* core,
1999 u64* mask) { 1676 u64* mask) {
2000 LOG_TRACE(Kernel_SVC, "called, handle=0x{:08X}", thread_handle); 1677 LOG_TRACE(Kernel_SVC, "called, handle=0x{:08X}", thread_handle);
@@ -2073,52 +1750,6 @@ static ResultCode SetThreadCoreMask(Core::System& system, Handle thread_handle,
2073 return RESULT_SUCCESS; 1750 return RESULT_SUCCESS;
2074} 1751}
2075 1752
2076static ResultCode CreateSharedMemory(Core::System& system, Handle* handle, u64 size,
2077 u32 local_permissions, u32 remote_permissions) {
2078 LOG_TRACE(Kernel_SVC, "called, size=0x{:X}, localPerms=0x{:08X}, remotePerms=0x{:08X}", size,
2079 local_permissions, remote_permissions);
2080 if (size == 0) {
2081 LOG_ERROR(Kernel_SVC, "Size is 0");
2082 return ERR_INVALID_SIZE;
2083 }
2084 if (!Common::Is4KBAligned(size)) {
2085 LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, 0x{:016X}", size);
2086 return ERR_INVALID_SIZE;
2087 }
2088
2089 if (size >= MAIN_MEMORY_SIZE) {
2090 LOG_ERROR(Kernel_SVC, "Size is not less than 8GB, 0x{:016X}", size);
2091 return ERR_INVALID_SIZE;
2092 }
2093
2094 const auto local_perms = static_cast<MemoryPermission>(local_permissions);
2095 if (local_perms != MemoryPermission::Read && local_perms != MemoryPermission::ReadWrite) {
2096 LOG_ERROR(Kernel_SVC,
2097 "Invalid local memory permissions, expected Read or ReadWrite but got "
2098 "local_permissions={}",
2099 static_cast<u32>(local_permissions));
2100 return ERR_INVALID_MEMORY_PERMISSIONS;
2101 }
2102
2103 const auto remote_perms = static_cast<MemoryPermission>(remote_permissions);
2104 if (remote_perms != MemoryPermission::Read && remote_perms != MemoryPermission::ReadWrite &&
2105 remote_perms != MemoryPermission::DontCare) {
2106 LOG_ERROR(Kernel_SVC,
2107 "Invalid remote memory permissions, expected Read, ReadWrite or DontCare but got "
2108 "remote_permissions={}",
2109 static_cast<u32>(remote_permissions));
2110 return ERR_INVALID_MEMORY_PERMISSIONS;
2111 }
2112
2113 auto& kernel = system.Kernel();
2114 auto process = kernel.CurrentProcess();
2115 auto& handle_table = process->GetHandleTable();
2116 auto shared_mem_handle = SharedMemory::Create(kernel, process, size, local_perms, remote_perms);
2117
2118 CASCADE_RESULT(*handle, handle_table.Create(shared_mem_handle));
2119 return RESULT_SUCCESS;
2120}
2121
2122static ResultCode CreateEvent(Core::System& system, Handle* write_handle, Handle* read_handle) { 1753static ResultCode CreateEvent(Core::System& system, Handle* write_handle, Handle* read_handle) {
2123 LOG_DEBUG(Kernel_SVC, "called"); 1754 LOG_DEBUG(Kernel_SVC, "called");
2124 1755
@@ -2305,11 +1936,10 @@ static ResultCode GetProcessList(Core::System& system, u32* out_num_processes,
2305 } 1936 }
2306 1937
2307 const auto& kernel = system.Kernel(); 1938 const auto& kernel = system.Kernel();
2308 const auto& vm_manager = kernel.CurrentProcess()->VMManager();
2309 const auto total_copy_size = out_process_ids_size * sizeof(u64); 1939 const auto total_copy_size = out_process_ids_size * sizeof(u64);
2310 1940
2311 if (out_process_ids_size > 0 && 1941 if (out_process_ids_size > 0 && !kernel.CurrentProcess()->PageTable().IsInsideAddressSpace(
2312 !vm_manager.IsWithinAddressSpace(out_process_ids, total_copy_size)) { 1942 out_process_ids, total_copy_size)) {
2313 LOG_ERROR(Kernel_SVC, "Address range outside address space. begin=0x{:016X}, end=0x{:016X}", 1943 LOG_ERROR(Kernel_SVC, "Address range outside address space. begin=0x{:016X}, end=0x{:016X}",
2314 out_process_ids, out_process_ids + total_copy_size); 1944 out_process_ids, out_process_ids + total_copy_size);
2315 return ERR_INVALID_ADDRESS_STATE; 1945 return ERR_INVALID_ADDRESS_STATE;
@@ -2345,11 +1975,10 @@ static ResultCode GetThreadList(Core::System& system, u32* out_num_threads, VAdd
2345 } 1975 }
2346 1976
2347 const auto* const current_process = system.Kernel().CurrentProcess(); 1977 const auto* const current_process = system.Kernel().CurrentProcess();
2348 const auto& vm_manager = current_process->VMManager();
2349 const auto total_copy_size = out_thread_ids_size * sizeof(u64); 1978 const auto total_copy_size = out_thread_ids_size * sizeof(u64);
2350 1979
2351 if (out_thread_ids_size > 0 && 1980 if (out_thread_ids_size > 0 &&
2352 !vm_manager.IsWithinAddressSpace(out_thread_ids, total_copy_size)) { 1981 !current_process->PageTable().IsInsideAddressSpace(out_thread_ids, total_copy_size)) {
2353 LOG_ERROR(Kernel_SVC, "Address range outside address space. begin=0x{:016X}, end=0x{:016X}", 1982 LOG_ERROR(Kernel_SVC, "Address range outside address space. begin=0x{:016X}, end=0x{:016X}",
2354 out_thread_ids, out_thread_ids + total_copy_size); 1983 out_thread_ids, out_thread_ids + total_copy_size);
2355 return ERR_INVALID_ADDRESS_STATE; 1984 return ERR_INVALID_ADDRESS_STATE;
@@ -2510,7 +2139,7 @@ static const FunctionDef SVC_Table_32[] = {
2510static const FunctionDef SVC_Table_64[] = { 2139static const FunctionDef SVC_Table_64[] = {
2511 {0x00, nullptr, "Unknown"}, 2140 {0x00, nullptr, "Unknown"},
2512 {0x01, SvcWrap64<SetHeapSize>, "SetHeapSize"}, 2141 {0x01, SvcWrap64<SetHeapSize>, "SetHeapSize"},
2513 {0x02, SvcWrap64<SetMemoryPermission>, "SetMemoryPermission"}, 2142 {0x02, nullptr, "SetMemoryPermission"},
2514 {0x03, SvcWrap64<SetMemoryAttribute>, "SetMemoryAttribute"}, 2143 {0x03, SvcWrap64<SetMemoryAttribute>, "SetMemoryAttribute"},
2515 {0x04, SvcWrap64<MapMemory>, "MapMemory"}, 2144 {0x04, SvcWrap64<MapMemory>, "MapMemory"},
2516 {0x05, SvcWrap64<UnmapMemory>, "UnmapMemory"}, 2145 {0x05, SvcWrap64<UnmapMemory>, "UnmapMemory"},
@@ -2528,7 +2157,7 @@ static const FunctionDef SVC_Table_64[] = {
2528 {0x11, SvcWrap64<SignalEvent>, "SignalEvent"}, 2157 {0x11, SvcWrap64<SignalEvent>, "SignalEvent"},
2529 {0x12, SvcWrap64<ClearEvent>, "ClearEvent"}, 2158 {0x12, SvcWrap64<ClearEvent>, "ClearEvent"},
2530 {0x13, SvcWrap64<MapSharedMemory>, "MapSharedMemory"}, 2159 {0x13, SvcWrap64<MapSharedMemory>, "MapSharedMemory"},
2531 {0x14, SvcWrap64<UnmapSharedMemory>, "UnmapSharedMemory"}, 2160 {0x14, nullptr, "UnmapSharedMemory"},
2532 {0x15, SvcWrap64<CreateTransferMemory>, "CreateTransferMemory"}, 2161 {0x15, SvcWrap64<CreateTransferMemory>, "CreateTransferMemory"},
2533 {0x16, SvcWrap64<CloseHandle>, "CloseHandle"}, 2162 {0x16, SvcWrap64<CloseHandle>, "CloseHandle"},
2534 {0x17, SvcWrap64<ResetSignal>, "ResetSignal"}, 2163 {0x17, SvcWrap64<ResetSignal>, "ResetSignal"},
@@ -2588,9 +2217,9 @@ static const FunctionDef SVC_Table_64[] = {
2588 {0x4D, nullptr, "SleepSystem"}, 2217 {0x4D, nullptr, "SleepSystem"},
2589 {0x4E, nullptr, "ReadWriteRegister"}, 2218 {0x4E, nullptr, "ReadWriteRegister"},
2590 {0x4F, nullptr, "SetProcessActivity"}, 2219 {0x4F, nullptr, "SetProcessActivity"},
2591 {0x50, SvcWrap64<CreateSharedMemory>, "CreateSharedMemory"}, 2220 {0x50, nullptr, "CreateSharedMemory"},
2592 {0x51, SvcWrap64<MapTransferMemory>, "MapTransferMemory"}, 2221 {0x51, nullptr, "MapTransferMemory"},
2593 {0x52, SvcWrap64<UnmapTransferMemory>, "UnmapTransferMemory"}, 2222 {0x52, nullptr, "UnmapTransferMemory"},
2594 {0x53, nullptr, "CreateInterruptEvent"}, 2223 {0x53, nullptr, "CreateInterruptEvent"},
2595 {0x54, nullptr, "QueryPhysicalAddress"}, 2224 {0x54, nullptr, "QueryPhysicalAddress"},
2596 {0x55, nullptr, "QueryIoMapping"}, 2225 {0x55, nullptr, "QueryIoMapping"},
@@ -2627,8 +2256,8 @@ static const FunctionDef SVC_Table_64[] = {
2627 {0x74, nullptr, "MapProcessMemory"}, 2256 {0x74, nullptr, "MapProcessMemory"},
2628 {0x75, nullptr, "UnmapProcessMemory"}, 2257 {0x75, nullptr, "UnmapProcessMemory"},
2629 {0x76, SvcWrap64<QueryProcessMemory>, "QueryProcessMemory"}, 2258 {0x76, SvcWrap64<QueryProcessMemory>, "QueryProcessMemory"},
2630 {0x77, SvcWrap64<MapProcessCodeMemory>, "MapProcessCodeMemory"}, 2259 {0x77, nullptr, "MapProcessCodeMemory"},
2631 {0x78, SvcWrap64<UnmapProcessCodeMemory>, "UnmapProcessCodeMemory"}, 2260 {0x78, nullptr, "UnmapProcessCodeMemory"},
2632 {0x79, nullptr, "CreateProcess"}, 2261 {0x79, nullptr, "CreateProcess"},
2633 {0x7A, nullptr, "StartProcess"}, 2262 {0x7A, nullptr, "StartProcess"},
2634 {0x7B, nullptr, "TerminateProcess"}, 2263 {0x7B, nullptr, "TerminateProcess"},
@@ -2656,7 +2285,7 @@ static const FunctionDef* GetSVCInfo64(u32 func_num) {
2656 2285
2657MICROPROFILE_DEFINE(Kernel_SVC, "Kernel", "SVC", MP_RGB(70, 200, 70)); 2286MICROPROFILE_DEFINE(Kernel_SVC, "Kernel", "SVC", MP_RGB(70, 200, 70));
2658 2287
2659void CallSVC(Core::System& system, u32 immediate) { 2288void Call(Core::System& system, u32 immediate) {
2660 MICROPROFILE_SCOPE(Kernel_SVC); 2289 MICROPROFILE_SCOPE(Kernel_SVC);
2661 2290
2662 // Lock the global kernel mutex when we enter the kernel HLE. 2291 // Lock the global kernel mutex when we enter the kernel HLE.
@@ -2675,4 +2304,4 @@ void CallSVC(Core::System& system, u32 immediate) {
2675 } 2304 }
2676} 2305}
2677 2306
2678} // namespace Kernel 2307} // namespace Kernel::Svc
diff --git a/src/core/hle/kernel/svc.h b/src/core/hle/kernel/svc.h
index c5539ac1c..46e64277e 100644
--- a/src/core/hle/kernel/svc.h
+++ b/src/core/hle/kernel/svc.h
@@ -10,8 +10,8 @@ namespace Core {
10class System; 10class System;
11} 11}
12 12
13namespace Kernel { 13namespace Kernel::Svc {
14 14
15void CallSVC(Core::System& system, u32 immediate); 15void Call(Core::System& system, u32 immediate);
16 16
17} // namespace Kernel 17} // namespace Kernel::Svc
diff --git a/src/core/hle/kernel/svc_types.h b/src/core/hle/kernel/svc_types.h
new file mode 100644
index 000000000..986724beb
--- /dev/null
+++ b/src/core/hle/kernel/svc_types.h
@@ -0,0 +1,68 @@
1// Copyright 2020 yuzu emulator team
2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included.
4
5#pragma once
6
7#include "common/common_funcs.h"
8#include "common/common_types.h"
9
10namespace Kernel::Svc {
11
12enum class MemoryState : u32 {
13 Free = 0x00,
14 Io = 0x01,
15 Static = 0x02,
16 Code = 0x03,
17 CodeData = 0x04,
18 Normal = 0x05,
19 Shared = 0x06,
20 Alias = 0x07,
21 AliasCode = 0x08,
22 AliasCodeData = 0x09,
23 Ipc = 0x0A,
24 Stack = 0x0B,
25 ThreadLocal = 0x0C,
26 Transfered = 0x0D,
27 SharedTransfered = 0x0E,
28 SharedCode = 0x0F,
29 Inaccessible = 0x10,
30 NonSecureIpc = 0x11,
31 NonDeviceIpc = 0x12,
32 Kernel = 0x13,
33 GeneratedCode = 0x14,
34 CodeOut = 0x15,
35};
36DECLARE_ENUM_FLAG_OPERATORS(MemoryState);
37
38enum class MemoryAttribute : u32 {
39 Locked = (1 << 0),
40 IpcLocked = (1 << 1),
41 DeviceShared = (1 << 2),
42 Uncached = (1 << 3),
43};
44DECLARE_ENUM_FLAG_OPERATORS(MemoryAttribute);
45
46enum class MemoryPermission : u32 {
47 None = (0 << 0),
48 Read = (1 << 0),
49 Write = (1 << 1),
50 Execute = (1 << 2),
51 ReadWrite = Read | Write,
52 ReadExecute = Read | Execute,
53 DontCare = (1 << 28),
54};
55DECLARE_ENUM_FLAG_OPERATORS(MemoryPermission);
56
57struct MemoryInfo {
58 u64 addr{};
59 u64 size{};
60 MemoryState state{};
61 MemoryAttribute attr{};
62 MemoryPermission perm{};
63 u32 ipc_refcount{};
64 u32 device_refcount{};
65 u32 padding{};
66};
67
68} // namespace Kernel::Svc
diff --git a/src/core/hle/kernel/transfer_memory.cpp b/src/core/hle/kernel/transfer_memory.cpp
index f2d3f8b49..765f408c3 100644
--- a/src/core/hle/kernel/transfer_memory.cpp
+++ b/src/core/hle/kernel/transfer_memory.cpp
@@ -2,17 +2,16 @@
2// Licensed under GPLv2 or any later version 2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included. 3// Refer to the license.txt file included.
4 4
5#include "core/hle/kernel/errors.h"
6#include "core/hle/kernel/kernel.h" 5#include "core/hle/kernel/kernel.h"
6#include "core/hle/kernel/memory/page_table.h"
7#include "core/hle/kernel/process.h" 7#include "core/hle/kernel/process.h"
8#include "core/hle/kernel/shared_memory.h"
9#include "core/hle/kernel/transfer_memory.h" 8#include "core/hle/kernel/transfer_memory.h"
10#include "core/hle/result.h" 9#include "core/hle/result.h"
11#include "core/memory.h" 10#include "core/memory.h"
12 11
13namespace Kernel { 12namespace Kernel {
14 13
15TransferMemory::TransferMemory(KernelCore& kernel, Memory::Memory& memory) 14TransferMemory::TransferMemory(KernelCore& kernel, Core::Memory::Memory& memory)
16 : Object{kernel}, memory{memory} {} 15 : Object{kernel}, memory{memory} {}
17 16
18TransferMemory::~TransferMemory() { 17TransferMemory::~TransferMemory() {
@@ -20,14 +19,15 @@ TransferMemory::~TransferMemory() {
20 Reset(); 19 Reset();
21} 20}
22 21
23std::shared_ptr<TransferMemory> TransferMemory::Create(KernelCore& kernel, Memory::Memory& memory, 22std::shared_ptr<TransferMemory> TransferMemory::Create(KernelCore& kernel,
24 VAddr base_address, u64 size, 23 Core::Memory::Memory& memory,
25 MemoryPermission permissions) { 24 VAddr base_address, std::size_t size,
25 Memory::MemoryPermission permissions) {
26 std::shared_ptr<TransferMemory> transfer_memory{ 26 std::shared_ptr<TransferMemory> transfer_memory{
27 std::make_shared<TransferMemory>(kernel, memory)}; 27 std::make_shared<TransferMemory>(kernel, memory)};
28 28
29 transfer_memory->base_address = base_address; 29 transfer_memory->base_address = base_address;
30 transfer_memory->memory_size = size; 30 transfer_memory->size = size;
31 transfer_memory->owner_permissions = permissions; 31 transfer_memory->owner_permissions = permissions;
32 transfer_memory->owner_process = kernel.CurrentProcess(); 32 transfer_memory->owner_process = kernel.CurrentProcess();
33 33
@@ -38,98 +38,12 @@ const u8* TransferMemory::GetPointer() const {
38 return memory.GetPointer(base_address); 38 return memory.GetPointer(base_address);
39} 39}
40 40
41u64 TransferMemory::GetSize() const {
42 return memory_size;
43}
44
45ResultCode TransferMemory::MapMemory(VAddr address, u64 size, MemoryPermission permissions) {
46 if (memory_size != size) {
47 return ERR_INVALID_SIZE;
48 }
49
50 if (owner_permissions != permissions) {
51 return ERR_INVALID_STATE;
52 }
53
54 if (is_mapped) {
55 return ERR_INVALID_STATE;
56 }
57
58 backing_block = std::make_shared<PhysicalMemory>(size);
59
60 const auto map_state = owner_permissions == MemoryPermission::None
61 ? MemoryState::TransferMemoryIsolated
62 : MemoryState::TransferMemory;
63 auto& vm_manager = owner_process->VMManager();
64 const auto map_result = vm_manager.MapMemoryBlock(address, backing_block, 0, size, map_state);
65 if (map_result.Failed()) {
66 return map_result.Code();
67 }
68
69 is_mapped = true;
70 return RESULT_SUCCESS;
71}
72
73ResultCode TransferMemory::Reserve() { 41ResultCode TransferMemory::Reserve() {
74 auto& vm_manager{owner_process->VMManager()}; 42 return owner_process->PageTable().ReserveTransferMemory(base_address, size, owner_permissions);
75 const auto check_range_result{vm_manager.CheckRangeState(
76 base_address, memory_size, MemoryState::FlagTransfer | MemoryState::FlagMemoryPoolAllocated,
77 MemoryState::FlagTransfer | MemoryState::FlagMemoryPoolAllocated, VMAPermission::All,
78 VMAPermission::ReadWrite, MemoryAttribute::Mask, MemoryAttribute::None,
79 MemoryAttribute::IpcAndDeviceMapped)};
80
81 if (check_range_result.Failed()) {
82 return check_range_result.Code();
83 }
84
85 auto [state_, permissions_, attribute] = *check_range_result;
86
87 if (const auto result{vm_manager.ReprotectRange(
88 base_address, memory_size, SharedMemory::ConvertPermissions(owner_permissions))};
89 result.IsError()) {
90 return result;
91 }
92
93 return vm_manager.SetMemoryAttribute(base_address, memory_size, MemoryAttribute::Mask,
94 attribute | MemoryAttribute::Locked);
95} 43}
96 44
97ResultCode TransferMemory::Reset() { 45ResultCode TransferMemory::Reset() {
98 auto& vm_manager{owner_process->VMManager()}; 46 return owner_process->PageTable().ResetTransferMemory(base_address, size);
99 if (const auto result{vm_manager.CheckRangeState(
100 base_address, memory_size,
101 MemoryState::FlagTransfer | MemoryState::FlagMemoryPoolAllocated,
102 MemoryState::FlagTransfer | MemoryState::FlagMemoryPoolAllocated, VMAPermission::None,
103 VMAPermission::None, MemoryAttribute::Mask, MemoryAttribute::Locked,
104 MemoryAttribute::IpcAndDeviceMapped)};
105 result.Failed()) {
106 return result.Code();
107 }
108
109 if (const auto result{
110 vm_manager.ReprotectRange(base_address, memory_size, VMAPermission::ReadWrite)};
111 result.IsError()) {
112 return result;
113 }
114
115 return vm_manager.SetMemoryAttribute(base_address, memory_size, MemoryAttribute::Mask,
116 MemoryAttribute::None);
117}
118
119ResultCode TransferMemory::UnmapMemory(VAddr address, u64 size) {
120 if (memory_size != size) {
121 return ERR_INVALID_SIZE;
122 }
123
124 auto& vm_manager = owner_process->VMManager();
125 const auto result = vm_manager.UnmapRange(address, size);
126
127 if (result.IsError()) {
128 return result;
129 }
130
131 is_mapped = false;
132 return RESULT_SUCCESS;
133} 47}
134 48
135} // namespace Kernel 49} // namespace Kernel
diff --git a/src/core/hle/kernel/transfer_memory.h b/src/core/hle/kernel/transfer_memory.h
index 6e388536a..05e9f7464 100644
--- a/src/core/hle/kernel/transfer_memory.h
+++ b/src/core/hle/kernel/transfer_memory.h
@@ -6,12 +6,13 @@
6 6
7#include <memory> 7#include <memory>
8 8
9#include "core/hle/kernel/memory/memory_block.h"
9#include "core/hle/kernel/object.h" 10#include "core/hle/kernel/object.h"
10#include "core/hle/kernel/physical_memory.h" 11#include "core/hle/kernel/physical_memory.h"
11 12
12union ResultCode; 13union ResultCode;
13 14
14namespace Memory { 15namespace Core::Memory {
15class Memory; 16class Memory;
16} 17}
17 18
@@ -20,8 +21,6 @@ namespace Kernel {
20class KernelCore; 21class KernelCore;
21class Process; 22class Process;
22 23
23enum class MemoryPermission : u32;
24
25/// Defines the interface for transfer memory objects. 24/// Defines the interface for transfer memory objects.
26/// 25///
27/// Transfer memory is typically used for the purpose of 26/// Transfer memory is typically used for the purpose of
@@ -30,14 +29,14 @@ enum class MemoryPermission : u32;
30/// 29///
31class TransferMemory final : public Object { 30class TransferMemory final : public Object {
32public: 31public:
33 explicit TransferMemory(KernelCore& kernel, Memory::Memory& memory); 32 explicit TransferMemory(KernelCore& kernel, Core::Memory::Memory& memory);
34 ~TransferMemory() override; 33 ~TransferMemory() override;
35 34
36 static constexpr HandleType HANDLE_TYPE = HandleType::TransferMemory; 35 static constexpr HandleType HANDLE_TYPE = HandleType::TransferMemory;
37 36
38 static std::shared_ptr<TransferMemory> Create(KernelCore& kernel, Memory::Memory& memory, 37 static std::shared_ptr<TransferMemory> Create(KernelCore& kernel, Core::Memory::Memory& memory,
39 VAddr base_address, u64 size, 38 VAddr base_address, std::size_t size,
40 MemoryPermission permissions); 39 Memory::MemoryPermission permissions);
41 40
42 TransferMemory(const TransferMemory&) = delete; 41 TransferMemory(const TransferMemory&) = delete;
43 TransferMemory& operator=(const TransferMemory&) = delete; 42 TransferMemory& operator=(const TransferMemory&) = delete;
@@ -61,29 +60,9 @@ public:
61 const u8* GetPointer() const; 60 const u8* GetPointer() const;
62 61
63 /// Gets the size of the memory backing this instance in bytes. 62 /// Gets the size of the memory backing this instance in bytes.
64 u64 GetSize() const; 63 constexpr std::size_t GetSize() const {
65 64 return size;
66 /// Attempts to map transfer memory with the given range and memory permissions. 65 }
67 ///
68 /// @param address The base address to being mapping memory at.
69 /// @param size The size of the memory to map, in bytes.
70 /// @param permissions The memory permissions to check against when mapping memory.
71 ///
72 /// @pre The given address, size, and memory permissions must all match
73 /// the same values that were given when creating the transfer memory
74 /// instance.
75 ///
76 ResultCode MapMemory(VAddr address, u64 size, MemoryPermission permissions);
77
78 /// Unmaps the transfer memory with the given range
79 ///
80 /// @param address The base address to begin unmapping memory at.
81 /// @param size The size of the memory to unmap, in bytes.
82 ///
83 /// @pre The given address and size must be the same as the ones used
84 /// to create the transfer memory instance.
85 ///
86 ResultCode UnmapMemory(VAddr address, u64 size);
87 66
88 /// Reserves the region to be used for the transfer memory, called after the transfer memory is 67 /// Reserves the region to be used for the transfer memory, called after the transfer memory is
89 /// created. 68 /// created.
@@ -94,25 +73,19 @@ public:
94 ResultCode Reset(); 73 ResultCode Reset();
95 74
96private: 75private:
97 /// Memory block backing this instance.
98 std::shared_ptr<PhysicalMemory> backing_block;
99
100 /// The base address for the memory managed by this instance. 76 /// The base address for the memory managed by this instance.
101 VAddr base_address = 0; 77 VAddr base_address{};
102 78
103 /// Size of the memory, in bytes, that this instance manages. 79 /// Size of the memory, in bytes, that this instance manages.
104 u64 memory_size = 0; 80 std::size_t size{};
105 81
106 /// The memory permissions that are applied to this instance. 82 /// The memory permissions that are applied to this instance.
107 MemoryPermission owner_permissions{}; 83 Memory::MemoryPermission owner_permissions{};
108 84
109 /// The process that this transfer memory instance was created under. 85 /// The process that this transfer memory instance was created under.
110 Process* owner_process = nullptr; 86 Process* owner_process{};
111
112 /// Whether or not this transfer memory instance has mapped memory.
113 bool is_mapped = false;
114 87
115 Memory::Memory& memory; 88 Core::Memory::Memory& memory;
116}; 89};
117 90
118} // namespace Kernel 91} // namespace Kernel
diff --git a/src/core/hle/kernel/vm_manager.cpp b/src/core/hle/kernel/vm_manager.cpp
deleted file mode 100644
index 024c22901..000000000
--- a/src/core/hle/kernel/vm_manager.cpp
+++ /dev/null
@@ -1,1175 +0,0 @@
1// Copyright 2015 Citra Emulator Project
2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included.
4
5#include <algorithm>
6#include <cstring>
7#include <iterator>
8#include <utility>
9#include "common/alignment.h"
10#include "common/assert.h"
11#include "common/logging/log.h"
12#include "common/memory_hook.h"
13#include "core/core.h"
14#include "core/file_sys/program_metadata.h"
15#include "core/hle/kernel/errors.h"
16#include "core/hle/kernel/process.h"
17#include "core/hle/kernel/resource_limit.h"
18#include "core/hle/kernel/vm_manager.h"
19#include "core/memory.h"
20
21namespace Kernel {
22namespace {
23const char* GetMemoryStateName(MemoryState state) {
24 static constexpr const char* names[] = {
25 "Unmapped", "Io",
26 "Normal", "Code",
27 "CodeData", "Heap",
28 "Shared", "Unknown1",
29 "ModuleCode", "ModuleCodeData",
30 "IpcBuffer0", "Stack",
31 "ThreadLocal", "TransferMemoryIsolated",
32 "TransferMemory", "ProcessMemory",
33 "Inaccessible", "IpcBuffer1",
34 "IpcBuffer3", "KernelStack",
35 };
36
37 return names[ToSvcMemoryState(state)];
38}
39
40// Checks if a given address range lies within a larger address range.
41constexpr bool IsInsideAddressRange(VAddr address, u64 size, VAddr address_range_begin,
42 VAddr address_range_end) {
43 const VAddr end_address = address + size - 1;
44 return address_range_begin <= address && end_address <= address_range_end - 1;
45}
46} // Anonymous namespace
47
48bool VirtualMemoryArea::CanBeMergedWith(const VirtualMemoryArea& next) const {
49 ASSERT(base + size == next.base);
50 if (permissions != next.permissions || state != next.state || attribute != next.attribute ||
51 type != next.type) {
52 return false;
53 }
54 if ((attribute & MemoryAttribute::DeviceMapped) == MemoryAttribute::DeviceMapped) {
55 // TODO: Can device mapped memory be merged sanely?
56 // Not merging it may cause inaccuracies versus hardware when memory layout is queried.
57 return false;
58 }
59 if (type == VMAType::AllocatedMemoryBlock) {
60 return true;
61 }
62 if (type == VMAType::BackingMemory && backing_memory + size != next.backing_memory) {
63 return false;
64 }
65 if (type == VMAType::MMIO && paddr + size != next.paddr) {
66 return false;
67 }
68 return true;
69}
70
71VMManager::VMManager(Core::System& system) : system{system} {
72 // Default to assuming a 39-bit address space. This way we have a sane
73 // starting point with executables that don't provide metadata.
74 Reset(FileSys::ProgramAddressSpaceType::Is39Bit);
75}
76
77VMManager::~VMManager() = default;
78
79void VMManager::Reset(FileSys::ProgramAddressSpaceType type) {
80 Clear();
81
82 InitializeMemoryRegionRanges(type);
83
84 page_table.Resize(address_space_width);
85
86 // Initialize the map with a single free region covering the entire managed space.
87 VirtualMemoryArea initial_vma;
88 initial_vma.size = address_space_end;
89 vma_map.emplace(initial_vma.base, initial_vma);
90
91 UpdatePageTableForVMA(initial_vma);
92}
93
94VMManager::VMAHandle VMManager::FindVMA(VAddr target) const {
95 if (target >= address_space_end) {
96 return vma_map.end();
97 } else {
98 return std::prev(vma_map.upper_bound(target));
99 }
100}
101
102bool VMManager::IsValidHandle(VMAHandle handle) const {
103 return handle != vma_map.cend();
104}
105
106ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target,
107 std::shared_ptr<PhysicalMemory> block,
108 std::size_t offset, u64 size,
109 MemoryState state, VMAPermission perm) {
110 ASSERT(block != nullptr);
111 ASSERT(offset + size <= block->size());
112
113 // This is the appropriately sized VMA that will turn into our allocation.
114 CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
115 VirtualMemoryArea& final_vma = vma_handle->second;
116 ASSERT(final_vma.size == size);
117
118 final_vma.type = VMAType::AllocatedMemoryBlock;
119 final_vma.permissions = perm;
120 final_vma.state = state;
121 final_vma.backing_block = std::move(block);
122 final_vma.offset = offset;
123 UpdatePageTableForVMA(final_vma);
124
125 return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
126}
127
128ResultVal<VMManager::VMAHandle> VMManager::MapBackingMemory(VAddr target, u8* memory, u64 size,
129 MemoryState state) {
130 ASSERT(memory != nullptr);
131
132 // This is the appropriately sized VMA that will turn into our allocation.
133 CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
134 VirtualMemoryArea& final_vma = vma_handle->second;
135 ASSERT(final_vma.size == size);
136
137 final_vma.type = VMAType::BackingMemory;
138 final_vma.permissions = VMAPermission::ReadWrite;
139 final_vma.state = state;
140 final_vma.backing_memory = memory;
141 UpdatePageTableForVMA(final_vma);
142
143 return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
144}
145
146ResultVal<VAddr> VMManager::FindFreeRegion(u64 size) const {
147 return FindFreeRegion(GetASLRRegionBaseAddress(), GetASLRRegionEndAddress(), size);
148}
149
150ResultVal<VAddr> VMManager::FindFreeRegion(VAddr begin, VAddr end, u64 size) const {
151 ASSERT(begin < end);
152 ASSERT(size <= end - begin);
153
154 const VMAHandle vma_handle =
155 std::find_if(vma_map.begin(), vma_map.end(), [begin, end, size](const auto& vma) {
156 if (vma.second.type != VMAType::Free) {
157 return false;
158 }
159 const VAddr vma_base = vma.second.base;
160 const VAddr vma_end = vma_base + vma.second.size;
161 const VAddr assumed_base = (begin < vma_base) ? vma_base : begin;
162 const VAddr used_range = assumed_base + size;
163
164 return vma_base <= assumed_base && assumed_base < used_range && used_range < end &&
165 used_range <= vma_end;
166 });
167
168 if (vma_handle == vma_map.cend()) {
169 // TODO(Subv): Find the correct error code here.
170 return RESULT_UNKNOWN;
171 }
172
173 const VAddr target = std::max(begin, vma_handle->second.base);
174 return MakeResult<VAddr>(target);
175}
176
177ResultVal<VMManager::VMAHandle> VMManager::MapMMIO(VAddr target, PAddr paddr, u64 size,
178 MemoryState state,
179 Common::MemoryHookPointer mmio_handler) {
180 // This is the appropriately sized VMA that will turn into our allocation.
181 CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
182 VirtualMemoryArea& final_vma = vma_handle->second;
183 ASSERT(final_vma.size == size);
184
185 final_vma.type = VMAType::MMIO;
186 final_vma.permissions = VMAPermission::ReadWrite;
187 final_vma.state = state;
188 final_vma.paddr = paddr;
189 final_vma.mmio_handler = std::move(mmio_handler);
190 UpdatePageTableForVMA(final_vma);
191
192 return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
193}
194
195VMManager::VMAIter VMManager::Unmap(VMAIter vma_handle) {
196 VirtualMemoryArea& vma = vma_handle->second;
197 vma.type = VMAType::Free;
198 vma.permissions = VMAPermission::None;
199 vma.state = MemoryState::Unmapped;
200 vma.attribute = MemoryAttribute::None;
201
202 vma.backing_block = nullptr;
203 vma.offset = 0;
204 vma.backing_memory = nullptr;
205 vma.paddr = 0;
206
207 UpdatePageTableForVMA(vma);
208
209 return MergeAdjacent(vma_handle);
210}
211
212ResultCode VMManager::UnmapRange(VAddr target, u64 size) {
213 CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size));
214 const VAddr target_end = target + size;
215
216 const VMAIter end = vma_map.end();
217 // The comparison against the end of the range must be done using addresses since VMAs can be
218 // merged during this process, causing invalidation of the iterators.
219 while (vma != end && vma->second.base < target_end) {
220 vma = std::next(Unmap(vma));
221 }
222
223 ASSERT(FindVMA(target)->second.size >= size);
224
225 return RESULT_SUCCESS;
226}
227
228VMManager::VMAHandle VMManager::Reprotect(VMAHandle vma_handle, VMAPermission new_perms) {
229 VMAIter iter = StripIterConstness(vma_handle);
230
231 VirtualMemoryArea& vma = iter->second;
232 vma.permissions = new_perms;
233 UpdatePageTableForVMA(vma);
234
235 return MergeAdjacent(iter);
236}
237
238ResultCode VMManager::ReprotectRange(VAddr target, u64 size, VMAPermission new_perms) {
239 CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size));
240 const VAddr target_end = target + size;
241
242 const VMAIter end = vma_map.end();
243 // The comparison against the end of the range must be done using addresses since VMAs can be
244 // merged during this process, causing invalidation of the iterators.
245 while (vma != end && vma->second.base < target_end) {
246 vma = std::next(StripIterConstness(Reprotect(vma, new_perms)));
247 }
248
249 return RESULT_SUCCESS;
250}
251
252ResultVal<VAddr> VMManager::SetHeapSize(u64 size) {
253 if (size > GetHeapRegionSize()) {
254 return ERR_OUT_OF_MEMORY;
255 }
256
257 // No need to do any additional work if the heap is already the given size.
258 if (size == GetCurrentHeapSize()) {
259 return MakeResult(heap_region_base);
260 }
261
262 if (heap_memory == nullptr) {
263 // Initialize heap
264 heap_memory = std::make_shared<PhysicalMemory>(size);
265 heap_end = heap_region_base + size;
266 } else {
267 UnmapRange(heap_region_base, GetCurrentHeapSize());
268 }
269
270 // If necessary, expand backing vector to cover new heap extents in
271 // the case of allocating. Otherwise, shrink the backing memory,
272 // if a smaller heap has been requested.
273 heap_memory->resize(size);
274 heap_memory->shrink_to_fit();
275 RefreshMemoryBlockMappings(heap_memory.get());
276
277 heap_end = heap_region_base + size;
278 ASSERT(GetCurrentHeapSize() == heap_memory->size());
279
280 const auto mapping_result =
281 MapMemoryBlock(heap_region_base, heap_memory, 0, size, MemoryState::Heap);
282 if (mapping_result.Failed()) {
283 return mapping_result.Code();
284 }
285
286 return MakeResult<VAddr>(heap_region_base);
287}
288
289ResultCode VMManager::MapPhysicalMemory(VAddr target, u64 size) {
290 // Check how much memory we've already mapped.
291 const auto mapped_size_result = SizeOfAllocatedVMAsInRange(target, size);
292 if (mapped_size_result.Failed()) {
293 return mapped_size_result.Code();
294 }
295
296 // If we've already mapped the desired amount, return early.
297 const std::size_t mapped_size = *mapped_size_result;
298 if (mapped_size == size) {
299 return RESULT_SUCCESS;
300 }
301
302 // Check that we can map the memory we want.
303 const auto res_limit = system.CurrentProcess()->GetResourceLimit();
304 const u64 physmem_remaining = res_limit->GetMaxResourceValue(ResourceType::PhysicalMemory) -
305 res_limit->GetCurrentResourceValue(ResourceType::PhysicalMemory);
306 if (physmem_remaining < (size - mapped_size)) {
307 return ERR_RESOURCE_LIMIT_EXCEEDED;
308 }
309
310 // Keep track of the memory regions we unmap.
311 std::vector<std::pair<u64, u64>> mapped_regions;
312 ResultCode result = RESULT_SUCCESS;
313
314 // Iterate, trying to map memory.
315 {
316 const auto end_addr = target + size;
317 const auto last_addr = end_addr - 1;
318 VAddr cur_addr = target;
319
320 auto iter = FindVMA(target);
321 ASSERT(iter != vma_map.end());
322
323 while (true) {
324 const auto& vma = iter->second;
325 const auto vma_start = vma.base;
326 const auto vma_end = vma_start + vma.size;
327 const auto vma_last = vma_end - 1;
328
329 // Map the memory block
330 const auto map_size = std::min(end_addr - cur_addr, vma_end - cur_addr);
331 if (vma.state == MemoryState::Unmapped) {
332 const auto map_res =
333 MapMemoryBlock(cur_addr, std::make_shared<PhysicalMemory>(map_size), 0,
334 map_size, MemoryState::Heap, VMAPermission::ReadWrite);
335 result = map_res.Code();
336 if (result.IsError()) {
337 break;
338 }
339
340 mapped_regions.emplace_back(cur_addr, map_size);
341 }
342
343 // Break once we hit the end of the range.
344 if (last_addr <= vma_last) {
345 break;
346 }
347
348 // Advance to the next block.
349 cur_addr = vma_end;
350 iter = FindVMA(cur_addr);
351 ASSERT(iter != vma_map.end());
352 }
353 }
354
355 // If we failed, unmap memory.
356 if (result.IsError()) {
357 for (const auto [unmap_address, unmap_size] : mapped_regions) {
358 ASSERT_MSG(UnmapRange(unmap_address, unmap_size).IsSuccess(),
359 "Failed to unmap memory range.");
360 }
361
362 return result;
363 }
364
365 // Update amount of mapped physical memory.
366 physical_memory_mapped += size - mapped_size;
367
368 return RESULT_SUCCESS;
369}
370
371ResultCode VMManager::UnmapPhysicalMemory(VAddr target, u64 size) {
372 // Check how much memory is currently mapped.
373 const auto mapped_size_result = SizeOfUnmappablePhysicalMemoryInRange(target, size);
374 if (mapped_size_result.Failed()) {
375 return mapped_size_result.Code();
376 }
377
378 // If we've already unmapped all the memory, return early.
379 const std::size_t mapped_size = *mapped_size_result;
380 if (mapped_size == 0) {
381 return RESULT_SUCCESS;
382 }
383
384 // Keep track of the memory regions we unmap.
385 std::vector<std::pair<u64, u64>> unmapped_regions;
386 ResultCode result = RESULT_SUCCESS;
387
388 // Try to unmap regions.
389 {
390 const auto end_addr = target + size;
391 const auto last_addr = end_addr - 1;
392 VAddr cur_addr = target;
393
394 auto iter = FindVMA(target);
395 ASSERT(iter != vma_map.end());
396
397 while (true) {
398 const auto& vma = iter->second;
399 const auto vma_start = vma.base;
400 const auto vma_end = vma_start + vma.size;
401 const auto vma_last = vma_end - 1;
402
403 // Unmap the memory block
404 const auto unmap_size = std::min(end_addr - cur_addr, vma_end - cur_addr);
405 if (vma.state == MemoryState::Heap) {
406 result = UnmapRange(cur_addr, unmap_size);
407 if (result.IsError()) {
408 break;
409 }
410
411 unmapped_regions.emplace_back(cur_addr, unmap_size);
412 }
413
414 // Break once we hit the end of the range.
415 if (last_addr <= vma_last) {
416 break;
417 }
418
419 // Advance to the next block.
420 cur_addr = vma_end;
421 iter = FindVMA(cur_addr);
422 ASSERT(iter != vma_map.end());
423 }
424 }
425
426 // If we failed, re-map regions.
427 // TODO: Preserve memory contents?
428 if (result.IsError()) {
429 for (const auto [map_address, map_size] : unmapped_regions) {
430 const auto remap_res =
431 MapMemoryBlock(map_address, std::make_shared<PhysicalMemory>(map_size), 0, map_size,
432 MemoryState::Heap, VMAPermission::None);
433 ASSERT_MSG(remap_res.Succeeded(), "Failed to remap a memory block.");
434 }
435
436 return result;
437 }
438
439 // Update mapped amount
440 physical_memory_mapped -= mapped_size;
441
442 return RESULT_SUCCESS;
443}
444
445ResultCode VMManager::MapCodeMemory(VAddr dst_address, VAddr src_address, u64 size) {
446 constexpr auto ignore_attribute = MemoryAttribute::LockedForIPC | MemoryAttribute::DeviceMapped;
447 const auto src_check_result = CheckRangeState(
448 src_address, size, MemoryState::All, MemoryState::Heap, VMAPermission::All,
449 VMAPermission::ReadWrite, MemoryAttribute::Mask, MemoryAttribute::None, ignore_attribute);
450
451 if (src_check_result.Failed()) {
452 return src_check_result.Code();
453 }
454
455 const auto mirror_result =
456 MirrorMemory(dst_address, src_address, size, MemoryState::ModuleCode);
457 if (mirror_result.IsError()) {
458 return mirror_result;
459 }
460
461 // Ensure we lock the source memory region.
462 const auto src_vma_result = CarveVMARange(src_address, size);
463 if (src_vma_result.Failed()) {
464 return src_vma_result.Code();
465 }
466 auto src_vma_iter = *src_vma_result;
467 src_vma_iter->second.attribute = MemoryAttribute::Locked;
468 Reprotect(src_vma_iter, VMAPermission::Read);
469
470 // The destination memory region is fine as is, however we need to make it read-only.
471 return ReprotectRange(dst_address, size, VMAPermission::Read);
472}
473
474ResultCode VMManager::UnmapCodeMemory(VAddr dst_address, VAddr src_address, u64 size) {
475 constexpr auto ignore_attribute = MemoryAttribute::LockedForIPC | MemoryAttribute::DeviceMapped;
476 const auto src_check_result = CheckRangeState(
477 src_address, size, MemoryState::All, MemoryState::Heap, VMAPermission::None,
478 VMAPermission::None, MemoryAttribute::Mask, MemoryAttribute::Locked, ignore_attribute);
479
480 if (src_check_result.Failed()) {
481 return src_check_result.Code();
482 }
483
484 // Yes, the kernel only checks the first page of the region.
485 const auto dst_check_result =
486 CheckRangeState(dst_address, Memory::PAGE_SIZE, MemoryState::FlagModule,
487 MemoryState::FlagModule, VMAPermission::None, VMAPermission::None,
488 MemoryAttribute::Mask, MemoryAttribute::None, ignore_attribute);
489
490 if (dst_check_result.Failed()) {
491 return dst_check_result.Code();
492 }
493
494 const auto dst_memory_state = std::get<MemoryState>(*dst_check_result);
495 const auto dst_contiguous_check_result = CheckRangeState(
496 dst_address, size, MemoryState::All, dst_memory_state, VMAPermission::None,
497 VMAPermission::None, MemoryAttribute::Mask, MemoryAttribute::None, ignore_attribute);
498
499 if (dst_contiguous_check_result.Failed()) {
500 return dst_contiguous_check_result.Code();
501 }
502
503 const auto unmap_result = UnmapRange(dst_address, size);
504 if (unmap_result.IsError()) {
505 return unmap_result;
506 }
507
508 // With the mirrored portion unmapped, restore the original region's traits.
509 const auto src_vma_result = CarveVMARange(src_address, size);
510 if (src_vma_result.Failed()) {
511 return src_vma_result.Code();
512 }
513 auto src_vma_iter = *src_vma_result;
514 src_vma_iter->second.state = MemoryState::Heap;
515 src_vma_iter->second.attribute = MemoryAttribute::None;
516 Reprotect(src_vma_iter, VMAPermission::ReadWrite);
517
518 if (dst_memory_state == MemoryState::ModuleCode) {
519 system.InvalidateCpuInstructionCaches();
520 }
521
522 return unmap_result;
523}
524
525MemoryInfo VMManager::QueryMemory(VAddr address) const {
526 const auto vma = FindVMA(address);
527 MemoryInfo memory_info{};
528
529 if (IsValidHandle(vma)) {
530 memory_info.base_address = vma->second.base;
531 memory_info.attributes = ToSvcMemoryAttribute(vma->second.attribute);
532 memory_info.permission = static_cast<u32>(vma->second.permissions);
533 memory_info.size = vma->second.size;
534 memory_info.state = ToSvcMemoryState(vma->second.state);
535 } else {
536 memory_info.base_address = address_space_end;
537 memory_info.permission = static_cast<u32>(VMAPermission::None);
538 memory_info.size = 0 - address_space_end;
539 memory_info.state = static_cast<u32>(MemoryState::Inaccessible);
540 }
541
542 return memory_info;
543}
544
545ResultCode VMManager::SetMemoryAttribute(VAddr address, u64 size, MemoryAttribute mask,
546 MemoryAttribute attribute) {
547 constexpr auto ignore_mask =
548 MemoryAttribute::Uncached | MemoryAttribute::DeviceMapped | MemoryAttribute::Locked;
549 constexpr auto attribute_mask = ~ignore_mask;
550
551 const auto result = CheckRangeState(
552 address, size, MemoryState::FlagUncached, MemoryState::FlagUncached, VMAPermission::None,
553 VMAPermission::None, attribute_mask, MemoryAttribute::None, ignore_mask);
554
555 if (result.Failed()) {
556 return result.Code();
557 }
558
559 const auto [prev_state, prev_permissions, prev_attributes] = *result;
560 const auto new_attribute = (prev_attributes & ~mask) | (mask & attribute);
561
562 const auto carve_result = CarveVMARange(address, size);
563 if (carve_result.Failed()) {
564 return carve_result.Code();
565 }
566
567 auto vma_iter = *carve_result;
568 vma_iter->second.attribute = new_attribute;
569
570 MergeAdjacent(vma_iter);
571 return RESULT_SUCCESS;
572}
573
574ResultCode VMManager::MirrorMemory(VAddr dst_addr, VAddr src_addr, u64 size, MemoryState state) {
575 const auto vma = FindVMA(src_addr);
576
577 ASSERT_MSG(vma != vma_map.end(), "Invalid memory address");
578 ASSERT_MSG(vma->second.backing_block, "Backing block doesn't exist for address");
579
580 // The returned VMA might be a bigger one encompassing the desired address.
581 const auto vma_offset = src_addr - vma->first;
582 ASSERT_MSG(vma_offset + size <= vma->second.size,
583 "Shared memory exceeds bounds of mapped block");
584
585 const std::shared_ptr<PhysicalMemory>& backing_block = vma->second.backing_block;
586 const std::size_t backing_block_offset = vma->second.offset + vma_offset;
587
588 CASCADE_RESULT(auto new_vma,
589 MapMemoryBlock(dst_addr, backing_block, backing_block_offset, size, state));
590 // Protect mirror with permissions from old region
591 Reprotect(new_vma, vma->second.permissions);
592 // Remove permissions from old region
593 ReprotectRange(src_addr, size, VMAPermission::None);
594
595 return RESULT_SUCCESS;
596}
597
598void VMManager::RefreshMemoryBlockMappings(const PhysicalMemory* block) {
599 // If this ever proves to have a noticeable performance impact, allow users of the function to
600 // specify a specific range of addresses to limit the scan to.
601 for (const auto& p : vma_map) {
602 const VirtualMemoryArea& vma = p.second;
603 if (block == vma.backing_block.get()) {
604 UpdatePageTableForVMA(vma);
605 }
606 }
607}
608
609void VMManager::LogLayout() const {
610 for (const auto& p : vma_map) {
611 const VirtualMemoryArea& vma = p.second;
612 LOG_DEBUG(Kernel, "{:016X} - {:016X} size: {:016X} {}{}{} {}", vma.base,
613 vma.base + vma.size, vma.size,
614 (u8)vma.permissions & (u8)VMAPermission::Read ? 'R' : '-',
615 (u8)vma.permissions & (u8)VMAPermission::Write ? 'W' : '-',
616 (u8)vma.permissions & (u8)VMAPermission::Execute ? 'X' : '-',
617 GetMemoryStateName(vma.state));
618 }
619}
620
621VMManager::VMAIter VMManager::StripIterConstness(const VMAHandle& iter) {
622 // This uses a neat C++ trick to convert a const_iterator to a regular iterator, given
623 // non-const access to its container.
624 return vma_map.erase(iter, iter); // Erases an empty range of elements
625}
626
627ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u64 size) {
628 ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x{:016X}", size);
629 ASSERT_MSG((base & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x{:016X}", base);
630
631 VMAIter vma_handle = StripIterConstness(FindVMA(base));
632 if (vma_handle == vma_map.end()) {
633 // Target address is outside the range managed by the kernel
634 return ERR_INVALID_ADDRESS;
635 }
636
637 const VirtualMemoryArea& vma = vma_handle->second;
638 if (vma.type != VMAType::Free) {
639 // Region is already allocated
640 return ERR_INVALID_ADDRESS_STATE;
641 }
642
643 const VAddr start_in_vma = base - vma.base;
644 const VAddr end_in_vma = start_in_vma + size;
645
646 if (end_in_vma > vma.size) {
647 // Requested allocation doesn't fit inside VMA
648 return ERR_INVALID_ADDRESS_STATE;
649 }
650
651 if (end_in_vma != vma.size) {
652 // Split VMA at the end of the allocated region
653 SplitVMA(vma_handle, end_in_vma);
654 }
655 if (start_in_vma != 0) {
656 // Split VMA at the start of the allocated region
657 vma_handle = SplitVMA(vma_handle, start_in_vma);
658 }
659
660 return MakeResult<VMAIter>(vma_handle);
661}
662
663ResultVal<VMManager::VMAIter> VMManager::CarveVMARange(VAddr target, u64 size) {
664 ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x{:016X}", size);
665 ASSERT_MSG((target & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x{:016X}", target);
666
667 const VAddr target_end = target + size;
668 ASSERT(target_end >= target);
669 ASSERT(target_end <= address_space_end);
670 ASSERT(size > 0);
671
672 VMAIter begin_vma = StripIterConstness(FindVMA(target));
673 const VMAIter i_end = vma_map.lower_bound(target_end);
674 if (std::any_of(begin_vma, i_end,
675 [](const auto& entry) { return entry.second.type == VMAType::Free; })) {
676 return ERR_INVALID_ADDRESS_STATE;
677 }
678
679 if (target != begin_vma->second.base) {
680 begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base);
681 }
682
683 VMAIter end_vma = StripIterConstness(FindVMA(target_end));
684 if (end_vma != vma_map.end() && target_end != end_vma->second.base) {
685 end_vma = SplitVMA(end_vma, target_end - end_vma->second.base);
686 }
687
688 return MakeResult<VMAIter>(begin_vma);
689}
690
691VMManager::VMAIter VMManager::SplitVMA(VMAIter vma_handle, u64 offset_in_vma) {
692 VirtualMemoryArea& old_vma = vma_handle->second;
693 VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA
694
695 // For now, don't allow no-op VMA splits (trying to split at a boundary) because it's probably
696 // a bug. This restriction might be removed later.
697 ASSERT(offset_in_vma < old_vma.size);
698 ASSERT(offset_in_vma > 0);
699
700 old_vma.size = offset_in_vma;
701 new_vma.base += offset_in_vma;
702 new_vma.size -= offset_in_vma;
703
704 switch (new_vma.type) {
705 case VMAType::Free:
706 break;
707 case VMAType::AllocatedMemoryBlock:
708 new_vma.offset += offset_in_vma;
709 break;
710 case VMAType::BackingMemory:
711 new_vma.backing_memory += offset_in_vma;
712 break;
713 case VMAType::MMIO:
714 new_vma.paddr += offset_in_vma;
715 break;
716 }
717
718 ASSERT(old_vma.CanBeMergedWith(new_vma));
719
720 return vma_map.emplace_hint(std::next(vma_handle), new_vma.base, new_vma);
721}
722
723VMManager::VMAIter VMManager::MergeAdjacent(VMAIter iter) {
724 const VMAIter next_vma = std::next(iter);
725 if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) {
726 MergeAdjacentVMA(iter->second, next_vma->second);
727 vma_map.erase(next_vma);
728 }
729
730 if (iter != vma_map.begin()) {
731 VMAIter prev_vma = std::prev(iter);
732 if (prev_vma->second.CanBeMergedWith(iter->second)) {
733 MergeAdjacentVMA(prev_vma->second, iter->second);
734 vma_map.erase(iter);
735 iter = prev_vma;
736 }
737 }
738
739 return iter;
740}
741
742void VMManager::MergeAdjacentVMA(VirtualMemoryArea& left, const VirtualMemoryArea& right) {
743 ASSERT(left.CanBeMergedWith(right));
744
745 // Always merge allocated memory blocks, even when they don't share the same backing block.
746 if (left.type == VMAType::AllocatedMemoryBlock &&
747 (left.backing_block != right.backing_block || left.offset + left.size != right.offset)) {
748
749 // Check if we can save work.
750 if (left.offset == 0 && left.size == left.backing_block->size()) {
751 // Fast case: left is an entire backing block.
752 left.backing_block->resize(left.size + right.size);
753 std::memcpy(left.backing_block->data() + left.size,
754 right.backing_block->data() + right.offset, right.size);
755 } else {
756 // Slow case: make a new memory block for left and right.
757 auto new_memory = std::make_shared<PhysicalMemory>();
758 new_memory->resize(left.size + right.size);
759 std::memcpy(new_memory->data(), left.backing_block->data() + left.offset, left.size);
760 std::memcpy(new_memory->data() + left.size, right.backing_block->data() + right.offset,
761 right.size);
762
763 left.backing_block = std::move(new_memory);
764 left.offset = 0;
765 }
766
767 // Page table update is needed, because backing memory changed.
768 left.size += right.size;
769 UpdatePageTableForVMA(left);
770 } else {
771 // Just update the size.
772 left.size += right.size;
773 }
774}
775
776void VMManager::UpdatePageTableForVMA(const VirtualMemoryArea& vma) {
777 auto& memory = system.Memory();
778
779 switch (vma.type) {
780 case VMAType::Free:
781 memory.UnmapRegion(page_table, vma.base, vma.size);
782 break;
783 case VMAType::AllocatedMemoryBlock:
784 memory.MapMemoryRegion(page_table, vma.base, vma.size, *vma.backing_block, vma.offset);
785 break;
786 case VMAType::BackingMemory:
787 memory.MapMemoryRegion(page_table, vma.base, vma.size, vma.backing_memory);
788 break;
789 case VMAType::MMIO:
790 memory.MapIoRegion(page_table, vma.base, vma.size, vma.mmio_handler);
791 break;
792 }
793}
794
795void VMManager::InitializeMemoryRegionRanges(FileSys::ProgramAddressSpaceType type) {
796 u64 map_region_size = 0;
797 u64 heap_region_size = 0;
798 u64 stack_region_size = 0;
799 u64 tls_io_region_size = 0;
800
801 u64 stack_and_tls_io_end = 0;
802
803 switch (type) {
804 case FileSys::ProgramAddressSpaceType::Is32Bit:
805 case FileSys::ProgramAddressSpaceType::Is32BitNoMap:
806 address_space_width = 32;
807 code_region_base = 0x200000;
808 code_region_end = code_region_base + 0x3FE00000;
809 aslr_region_base = 0x200000;
810 aslr_region_end = aslr_region_base + 0xFFE00000;
811 if (type == FileSys::ProgramAddressSpaceType::Is32Bit) {
812 map_region_size = 0x40000000;
813 heap_region_size = 0x40000000;
814 } else {
815 map_region_size = 0;
816 heap_region_size = 0x80000000;
817 }
818 stack_and_tls_io_end = 0x40000000;
819 break;
820 case FileSys::ProgramAddressSpaceType::Is36Bit:
821 address_space_width = 36;
822 code_region_base = 0x8000000;
823 code_region_end = code_region_base + 0x78000000;
824 aslr_region_base = 0x8000000;
825 aslr_region_end = aslr_region_base + 0xFF8000000;
826 map_region_size = 0x180000000;
827 heap_region_size = 0x180000000;
828 stack_and_tls_io_end = 0x80000000;
829 break;
830 case FileSys::ProgramAddressSpaceType::Is39Bit:
831 address_space_width = 39;
832 code_region_base = 0x8000000;
833 code_region_end = code_region_base + 0x80000000;
834 aslr_region_base = 0x8000000;
835 aslr_region_end = aslr_region_base + 0x7FF8000000;
836 map_region_size = 0x1000000000;
837 heap_region_size = 0x180000000;
838 stack_region_size = 0x80000000;
839 tls_io_region_size = 0x1000000000;
840 break;
841 default:
842 UNREACHABLE_MSG("Invalid address space type specified: {}", static_cast<u32>(type));
843 return;
844 }
845
846 const u64 stack_and_tls_io_begin = aslr_region_base;
847
848 address_space_base = 0;
849 address_space_end = 1ULL << address_space_width;
850
851 map_region_base = code_region_end;
852 map_region_end = map_region_base + map_region_size;
853
854 heap_region_base = map_region_end;
855 heap_region_end = heap_region_base + heap_region_size;
856 heap_end = heap_region_base;
857
858 stack_region_base = heap_region_end;
859 stack_region_end = stack_region_base + stack_region_size;
860
861 tls_io_region_base = stack_region_end;
862 tls_io_region_end = tls_io_region_base + tls_io_region_size;
863
864 if (stack_region_size == 0) {
865 stack_region_base = stack_and_tls_io_begin;
866 stack_region_end = stack_and_tls_io_end;
867 }
868
869 if (tls_io_region_size == 0) {
870 tls_io_region_base = stack_and_tls_io_begin;
871 tls_io_region_end = stack_and_tls_io_end;
872 }
873}
874
875void VMManager::Clear() {
876 ClearVMAMap();
877 ClearPageTable();
878}
879
880void VMManager::ClearVMAMap() {
881 vma_map.clear();
882}
883
884void VMManager::ClearPageTable() {
885 std::fill(page_table.pointers.begin(), page_table.pointers.end(), nullptr);
886 page_table.special_regions.clear();
887 std::fill(page_table.attributes.begin(), page_table.attributes.end(),
888 Common::PageType::Unmapped);
889}
890
891VMManager::CheckResults VMManager::CheckRangeState(VAddr address, u64 size, MemoryState state_mask,
892 MemoryState state, VMAPermission permission_mask,
893 VMAPermission permissions,
894 MemoryAttribute attribute_mask,
895 MemoryAttribute attribute,
896 MemoryAttribute ignore_mask) const {
897 auto iter = FindVMA(address);
898
899 // If we don't have a valid VMA handle at this point, then it means this is
900 // being called with an address outside of the address space, which is definitely
901 // indicative of a bug, as this function only operates on mapped memory regions.
902 DEBUG_ASSERT(IsValidHandle(iter));
903
904 const VAddr end_address = address + size - 1;
905 const MemoryAttribute initial_attributes = iter->second.attribute;
906 const VMAPermission initial_permissions = iter->second.permissions;
907 const MemoryState initial_state = iter->second.state;
908
909 while (true) {
910 // The iterator should be valid throughout the traversal. Hitting the end of
911 // the mapped VMA regions is unquestionably indicative of a bug.
912 DEBUG_ASSERT(IsValidHandle(iter));
913
914 const auto& vma = iter->second;
915
916 if (vma.state != initial_state) {
917 return ERR_INVALID_ADDRESS_STATE;
918 }
919
920 if ((vma.state & state_mask) != state) {
921 return ERR_INVALID_ADDRESS_STATE;
922 }
923
924 if (vma.permissions != initial_permissions) {
925 return ERR_INVALID_ADDRESS_STATE;
926 }
927
928 if ((vma.permissions & permission_mask) != permissions) {
929 return ERR_INVALID_ADDRESS_STATE;
930 }
931
932 if ((vma.attribute | ignore_mask) != (initial_attributes | ignore_mask)) {
933 return ERR_INVALID_ADDRESS_STATE;
934 }
935
936 if ((vma.attribute & attribute_mask) != attribute) {
937 return ERR_INVALID_ADDRESS_STATE;
938 }
939
940 if (end_address <= vma.EndAddress()) {
941 break;
942 }
943
944 ++iter;
945 }
946
947 return MakeResult(
948 std::make_tuple(initial_state, initial_permissions, initial_attributes & ~ignore_mask));
949}
950
951ResultVal<std::size_t> VMManager::SizeOfAllocatedVMAsInRange(VAddr address,
952 std::size_t size) const {
953 const VAddr end_addr = address + size;
954 const VAddr last_addr = end_addr - 1;
955 std::size_t mapped_size = 0;
956
957 VAddr cur_addr = address;
958 auto iter = FindVMA(cur_addr);
959 ASSERT(iter != vma_map.end());
960
961 while (true) {
962 const auto& vma = iter->second;
963 const VAddr vma_start = vma.base;
964 const VAddr vma_end = vma_start + vma.size;
965 const VAddr vma_last = vma_end - 1;
966
967 // Add size if relevant.
968 if (vma.state != MemoryState::Unmapped) {
969 mapped_size += std::min(end_addr - cur_addr, vma_end - cur_addr);
970 }
971
972 // Break once we hit the end of the range.
973 if (last_addr <= vma_last) {
974 break;
975 }
976
977 // Advance to the next block.
978 cur_addr = vma_end;
979 iter = std::next(iter);
980 ASSERT(iter != vma_map.end());
981 }
982
983 return MakeResult(mapped_size);
984}
985
986ResultVal<std::size_t> VMManager::SizeOfUnmappablePhysicalMemoryInRange(VAddr address,
987 std::size_t size) const {
988 const VAddr end_addr = address + size;
989 const VAddr last_addr = end_addr - 1;
990 std::size_t mapped_size = 0;
991
992 VAddr cur_addr = address;
993 auto iter = FindVMA(cur_addr);
994 ASSERT(iter != vma_map.end());
995
996 while (true) {
997 const auto& vma = iter->second;
998 const auto vma_start = vma.base;
999 const auto vma_end = vma_start + vma.size;
1000 const auto vma_last = vma_end - 1;
1001 const auto state = vma.state;
1002 const auto attr = vma.attribute;
1003
1004 // Memory within region must be free or mapped heap.
1005 if (!((state == MemoryState::Heap && attr == MemoryAttribute::None) ||
1006 (state == MemoryState::Unmapped))) {
1007 return ERR_INVALID_ADDRESS_STATE;
1008 }
1009
1010 // Add size if relevant.
1011 if (state != MemoryState::Unmapped) {
1012 mapped_size += std::min(end_addr - cur_addr, vma_end - cur_addr);
1013 }
1014
1015 // Break once we hit the end of the range.
1016 if (last_addr <= vma_last) {
1017 break;
1018 }
1019
1020 // Advance to the next block.
1021 cur_addr = vma_end;
1022 iter = std::next(iter);
1023 ASSERT(iter != vma_map.end());
1024 }
1025
1026 return MakeResult(mapped_size);
1027}
1028
1029u64 VMManager::GetTotalPhysicalMemoryAvailable() const {
1030 LOG_WARNING(Kernel, "(STUBBED) called");
1031 return 0xF8000000;
1032}
1033
1034VAddr VMManager::GetAddressSpaceBaseAddress() const {
1035 return address_space_base;
1036}
1037
1038VAddr VMManager::GetAddressSpaceEndAddress() const {
1039 return address_space_end;
1040}
1041
1042u64 VMManager::GetAddressSpaceSize() const {
1043 return address_space_end - address_space_base;
1044}
1045
1046u64 VMManager::GetAddressSpaceWidth() const {
1047 return address_space_width;
1048}
1049
1050bool VMManager::IsWithinAddressSpace(VAddr address, u64 size) const {
1051 return IsInsideAddressRange(address, size, GetAddressSpaceBaseAddress(),
1052 GetAddressSpaceEndAddress());
1053}
1054
1055VAddr VMManager::GetASLRRegionBaseAddress() const {
1056 return aslr_region_base;
1057}
1058
1059VAddr VMManager::GetASLRRegionEndAddress() const {
1060 return aslr_region_end;
1061}
1062
1063u64 VMManager::GetASLRRegionSize() const {
1064 return aslr_region_end - aslr_region_base;
1065}
1066
1067bool VMManager::IsWithinASLRRegion(VAddr begin, u64 size) const {
1068 const VAddr range_end = begin + size;
1069 const VAddr aslr_start = GetASLRRegionBaseAddress();
1070 const VAddr aslr_end = GetASLRRegionEndAddress();
1071
1072 if (aslr_start > begin || begin > range_end || range_end - 1 > aslr_end - 1) {
1073 return false;
1074 }
1075
1076 if (range_end > heap_region_base && heap_region_end > begin) {
1077 return false;
1078 }
1079
1080 if (range_end > map_region_base && map_region_end > begin) {
1081 return false;
1082 }
1083
1084 return true;
1085}
1086
1087VAddr VMManager::GetCodeRegionBaseAddress() const {
1088 return code_region_base;
1089}
1090
1091VAddr VMManager::GetCodeRegionEndAddress() const {
1092 return code_region_end;
1093}
1094
1095u64 VMManager::GetCodeRegionSize() const {
1096 return code_region_end - code_region_base;
1097}
1098
1099bool VMManager::IsWithinCodeRegion(VAddr address, u64 size) const {
1100 return IsInsideAddressRange(address, size, GetCodeRegionBaseAddress(),
1101 GetCodeRegionEndAddress());
1102}
1103
1104VAddr VMManager::GetHeapRegionBaseAddress() const {
1105 return heap_region_base;
1106}
1107
1108VAddr VMManager::GetHeapRegionEndAddress() const {
1109 return heap_region_end;
1110}
1111
1112u64 VMManager::GetHeapRegionSize() const {
1113 return heap_region_end - heap_region_base;
1114}
1115
1116u64 VMManager::GetCurrentHeapSize() const {
1117 return heap_end - heap_region_base;
1118}
1119
1120bool VMManager::IsWithinHeapRegion(VAddr address, u64 size) const {
1121 return IsInsideAddressRange(address, size, GetHeapRegionBaseAddress(),
1122 GetHeapRegionEndAddress());
1123}
1124
1125VAddr VMManager::GetMapRegionBaseAddress() const {
1126 return map_region_base;
1127}
1128
1129VAddr VMManager::GetMapRegionEndAddress() const {
1130 return map_region_end;
1131}
1132
1133u64 VMManager::GetMapRegionSize() const {
1134 return map_region_end - map_region_base;
1135}
1136
1137bool VMManager::IsWithinMapRegion(VAddr address, u64 size) const {
1138 return IsInsideAddressRange(address, size, GetMapRegionBaseAddress(), GetMapRegionEndAddress());
1139}
1140
1141VAddr VMManager::GetStackRegionBaseAddress() const {
1142 return stack_region_base;
1143}
1144
1145VAddr VMManager::GetStackRegionEndAddress() const {
1146 return stack_region_end;
1147}
1148
1149u64 VMManager::GetStackRegionSize() const {
1150 return stack_region_end - stack_region_base;
1151}
1152
1153bool VMManager::IsWithinStackRegion(VAddr address, u64 size) const {
1154 return IsInsideAddressRange(address, size, GetStackRegionBaseAddress(),
1155 GetStackRegionEndAddress());
1156}
1157
1158VAddr VMManager::GetTLSIORegionBaseAddress() const {
1159 return tls_io_region_base;
1160}
1161
1162VAddr VMManager::GetTLSIORegionEndAddress() const {
1163 return tls_io_region_end;
1164}
1165
1166u64 VMManager::GetTLSIORegionSize() const {
1167 return tls_io_region_end - tls_io_region_base;
1168}
1169
1170bool VMManager::IsWithinTLSIORegion(VAddr address, u64 size) const {
1171 return IsInsideAddressRange(address, size, GetTLSIORegionBaseAddress(),
1172 GetTLSIORegionEndAddress());
1173}
1174
1175} // namespace Kernel
diff --git a/src/core/hle/kernel/vm_manager.h b/src/core/hle/kernel/vm_manager.h
deleted file mode 100644
index 90b4b006a..000000000
--- a/src/core/hle/kernel/vm_manager.h
+++ /dev/null
@@ -1,796 +0,0 @@
1// Copyright 2015 Citra Emulator Project
2// Licensed under GPLv2 or any later version
3// Refer to the license.txt file included.
4
5#pragma once
6
7#include <map>
8#include <memory>
9#include <tuple>
10#include <vector>
11#include "common/common_types.h"
12#include "common/memory_hook.h"
13#include "common/page_table.h"
14#include "core/hle/kernel/physical_memory.h"
15#include "core/hle/result.h"
16#include "core/memory.h"
17
18namespace Core {
19class System;
20}
21
22namespace FileSys {
23enum class ProgramAddressSpaceType : u8;
24}
25
26namespace Kernel {
27
28enum class VMAType : u8 {
29 /// VMA represents an unmapped region of the address space.
30 Free,
31 /// VMA is backed by a ref-counted allocate memory block.
32 AllocatedMemoryBlock,
33 /// VMA is backed by a raw, unmanaged pointer.
34 BackingMemory,
35 /// VMA is mapped to MMIO registers at a fixed PAddr.
36 MMIO,
37 // TODO(yuriks): Implement MemoryAlias to support MAP/UNMAP
38};
39
40/// Permissions for mapped memory blocks
41enum class VMAPermission : u8 {
42 None = 0,
43 Read = 1,
44 Write = 2,
45 Execute = 4,
46
47 ReadWrite = Read | Write,
48 ReadExecute = Read | Execute,
49 WriteExecute = Write | Execute,
50 ReadWriteExecute = Read | Write | Execute,
51
52 // Used as a wildcard when checking permissions across memory ranges
53 All = 0xFF,
54};
55
56constexpr VMAPermission operator|(VMAPermission lhs, VMAPermission rhs) {
57 return static_cast<VMAPermission>(u32(lhs) | u32(rhs));
58}
59
60constexpr VMAPermission operator&(VMAPermission lhs, VMAPermission rhs) {
61 return static_cast<VMAPermission>(u32(lhs) & u32(rhs));
62}
63
64constexpr VMAPermission operator^(VMAPermission lhs, VMAPermission rhs) {
65 return static_cast<VMAPermission>(u32(lhs) ^ u32(rhs));
66}
67
68constexpr VMAPermission operator~(VMAPermission permission) {
69 return static_cast<VMAPermission>(~u32(permission));
70}
71
72constexpr VMAPermission& operator|=(VMAPermission& lhs, VMAPermission rhs) {
73 lhs = lhs | rhs;
74 return lhs;
75}
76
77constexpr VMAPermission& operator&=(VMAPermission& lhs, VMAPermission rhs) {
78 lhs = lhs & rhs;
79 return lhs;
80}
81
82constexpr VMAPermission& operator^=(VMAPermission& lhs, VMAPermission rhs) {
83 lhs = lhs ^ rhs;
84 return lhs;
85}
86
87/// Attribute flags that can be applied to a VMA
88enum class MemoryAttribute : u32 {
89 Mask = 0xFF,
90
91 /// No particular qualities
92 None = 0,
93 /// Memory locked/borrowed for use. e.g. This would be used by transfer memory.
94 Locked = 1,
95 /// Memory locked for use by IPC-related internals.
96 LockedForIPC = 2,
97 /// Mapped as part of the device address space.
98 DeviceMapped = 4,
99 /// Uncached memory
100 Uncached = 8,
101
102 IpcAndDeviceMapped = LockedForIPC | DeviceMapped,
103};
104
105constexpr MemoryAttribute operator|(MemoryAttribute lhs, MemoryAttribute rhs) {
106 return static_cast<MemoryAttribute>(u32(lhs) | u32(rhs));
107}
108
109constexpr MemoryAttribute operator&(MemoryAttribute lhs, MemoryAttribute rhs) {
110 return static_cast<MemoryAttribute>(u32(lhs) & u32(rhs));
111}
112
113constexpr MemoryAttribute operator^(MemoryAttribute lhs, MemoryAttribute rhs) {
114 return static_cast<MemoryAttribute>(u32(lhs) ^ u32(rhs));
115}
116
117constexpr MemoryAttribute operator~(MemoryAttribute attribute) {
118 return static_cast<MemoryAttribute>(~u32(attribute));
119}
120
121constexpr MemoryAttribute& operator|=(MemoryAttribute& lhs, MemoryAttribute rhs) {
122 lhs = lhs | rhs;
123 return lhs;
124}
125
126constexpr MemoryAttribute& operator&=(MemoryAttribute& lhs, MemoryAttribute rhs) {
127 lhs = lhs & rhs;
128 return lhs;
129}
130
131constexpr MemoryAttribute& operator^=(MemoryAttribute& lhs, MemoryAttribute rhs) {
132 lhs = lhs ^ rhs;
133 return lhs;
134}
135
136constexpr u32 ToSvcMemoryAttribute(MemoryAttribute attribute) {
137 return static_cast<u32>(attribute & MemoryAttribute::Mask);
138}
139
140// clang-format off
141/// Represents memory states and any relevant flags, as used by the kernel.
142/// svcQueryMemory interprets these by masking away all but the first eight
143/// bits when storing memory state into a MemoryInfo instance.
144enum class MemoryState : u32 {
145 Mask = 0xFF,
146 FlagProtect = 1U << 8,
147 FlagDebug = 1U << 9,
148 FlagIPC0 = 1U << 10,
149 FlagIPC3 = 1U << 11,
150 FlagIPC1 = 1U << 12,
151 FlagMapped = 1U << 13,
152 FlagCode = 1U << 14,
153 FlagAlias = 1U << 15,
154 FlagModule = 1U << 16,
155 FlagTransfer = 1U << 17,
156 FlagQueryPhysicalAddressAllowed = 1U << 18,
157 FlagSharedDevice = 1U << 19,
158 FlagSharedDeviceAligned = 1U << 20,
159 FlagIPCBuffer = 1U << 21,
160 FlagMemoryPoolAllocated = 1U << 22,
161 FlagMapProcess = 1U << 23,
162 FlagUncached = 1U << 24,
163 FlagCodeMemory = 1U << 25,
164
165 // Wildcard used in range checking to indicate all states.
166 All = 0xFFFFFFFF,
167
168 // Convenience flag sets to reduce repetition
169 IPCFlags = FlagIPC0 | FlagIPC3 | FlagIPC1,
170
171 CodeFlags = FlagDebug | IPCFlags | FlagMapped | FlagCode | FlagQueryPhysicalAddressAllowed |
172 FlagSharedDevice | FlagSharedDeviceAligned | FlagMemoryPoolAllocated,
173
174 DataFlags = FlagProtect | IPCFlags | FlagMapped | FlagAlias | FlagTransfer |
175 FlagQueryPhysicalAddressAllowed | FlagSharedDevice | FlagSharedDeviceAligned |
176 FlagMemoryPoolAllocated | FlagIPCBuffer | FlagUncached,
177
178 Unmapped = 0x00,
179 Io = 0x01 | FlagMapped,
180 Normal = 0x02 | FlagMapped | FlagQueryPhysicalAddressAllowed,
181 Code = 0x03 | CodeFlags | FlagMapProcess,
182 CodeData = 0x04 | DataFlags | FlagMapProcess | FlagCodeMemory,
183 Heap = 0x05 | DataFlags | FlagCodeMemory,
184 Shared = 0x06 | FlagMapped | FlagMemoryPoolAllocated,
185 ModuleCode = 0x08 | CodeFlags | FlagModule | FlagMapProcess,
186 ModuleCodeData = 0x09 | DataFlags | FlagModule | FlagMapProcess | FlagCodeMemory,
187
188 IpcBuffer0 = 0x0A | FlagMapped | FlagQueryPhysicalAddressAllowed | FlagMemoryPoolAllocated |
189 IPCFlags | FlagSharedDevice | FlagSharedDeviceAligned,
190
191 Stack = 0x0B | FlagMapped | IPCFlags | FlagQueryPhysicalAddressAllowed |
192 FlagSharedDevice | FlagSharedDeviceAligned | FlagMemoryPoolAllocated,
193
194 ThreadLocal = 0x0C | FlagMapped | FlagMemoryPoolAllocated,
195
196 TransferMemoryIsolated = 0x0D | IPCFlags | FlagMapped | FlagQueryPhysicalAddressAllowed |
197 FlagSharedDevice | FlagSharedDeviceAligned | FlagMemoryPoolAllocated |
198 FlagUncached,
199
200 TransferMemory = 0x0E | FlagIPC3 | FlagIPC1 | FlagMapped | FlagQueryPhysicalAddressAllowed |
201 FlagSharedDevice | FlagSharedDeviceAligned | FlagMemoryPoolAllocated,
202
203 ProcessMemory = 0x0F | FlagIPC3 | FlagIPC1 | FlagMapped | FlagMemoryPoolAllocated,
204
205 // Used to signify an inaccessible or invalid memory region with memory queries
206 Inaccessible = 0x10,
207
208 IpcBuffer1 = 0x11 | FlagIPC3 | FlagIPC1 | FlagMapped | FlagQueryPhysicalAddressAllowed |
209 FlagSharedDevice | FlagSharedDeviceAligned | FlagMemoryPoolAllocated,
210
211 IpcBuffer3 = 0x12 | FlagIPC3 | FlagMapped | FlagQueryPhysicalAddressAllowed |
212 FlagSharedDeviceAligned | FlagMemoryPoolAllocated,
213
214 KernelStack = 0x13 | FlagMapped,
215};
216// clang-format on
217
218constexpr MemoryState operator|(MemoryState lhs, MemoryState rhs) {
219 return static_cast<MemoryState>(u32(lhs) | u32(rhs));
220}
221
222constexpr MemoryState operator&(MemoryState lhs, MemoryState rhs) {
223 return static_cast<MemoryState>(u32(lhs) & u32(rhs));
224}
225
226constexpr MemoryState operator^(MemoryState lhs, MemoryState rhs) {
227 return static_cast<MemoryState>(u32(lhs) ^ u32(rhs));
228}
229
230constexpr MemoryState operator~(MemoryState lhs) {
231 return static_cast<MemoryState>(~u32(lhs));
232}
233
234constexpr MemoryState& operator|=(MemoryState& lhs, MemoryState rhs) {
235 lhs = lhs | rhs;
236 return lhs;
237}
238
239constexpr MemoryState& operator&=(MemoryState& lhs, MemoryState rhs) {
240 lhs = lhs & rhs;
241 return lhs;
242}
243
244constexpr MemoryState& operator^=(MemoryState& lhs, MemoryState rhs) {
245 lhs = lhs ^ rhs;
246 return lhs;
247}
248
249constexpr u32 ToSvcMemoryState(MemoryState state) {
250 return static_cast<u32>(state & MemoryState::Mask);
251}
252
253struct MemoryInfo {
254 u64 base_address;
255 u64 size;
256 u32 state;
257 u32 attributes;
258 u32 permission;
259 u32 ipc_ref_count;
260 u32 device_ref_count;
261};
262static_assert(sizeof(MemoryInfo) == 0x28, "MemoryInfo has incorrect size.");
263
264struct PageInfo {
265 u32 flags;
266};
267
268/**
269 * Represents a VMA in an address space. A VMA is a contiguous region of virtual addressing space
270 * with homogeneous attributes across its extents. In this particular implementation each VMA is
271 * also backed by a single host memory allocation.
272 */
273struct VirtualMemoryArea {
274 /// Gets the starting (base) address of this VMA.
275 VAddr StartAddress() const {
276 return base;
277 }
278
279 /// Gets the ending address of this VMA.
280 VAddr EndAddress() const {
281 return base + size - 1;
282 }
283
284 /// Virtual base address of the region.
285 VAddr base = 0;
286 /// Size of the region.
287 u64 size = 0;
288
289 VMAType type = VMAType::Free;
290 VMAPermission permissions = VMAPermission::None;
291 MemoryState state = MemoryState::Unmapped;
292 MemoryAttribute attribute = MemoryAttribute::None;
293
294 // Settings for type = AllocatedMemoryBlock
295 /// Memory block backing this VMA.
296 std::shared_ptr<PhysicalMemory> backing_block = nullptr;
297 /// Offset into the backing_memory the mapping starts from.
298 std::size_t offset = 0;
299
300 // Settings for type = BackingMemory
301 /// Pointer backing this VMA. It will not be destroyed or freed when the VMA is removed.
302 u8* backing_memory = nullptr;
303
304 // Settings for type = MMIO
305 /// Physical address of the register area this VMA maps to.
306 PAddr paddr = 0;
307 Common::MemoryHookPointer mmio_handler = nullptr;
308
309 /// Tests if this area can be merged to the right with `next`.
310 bool CanBeMergedWith(const VirtualMemoryArea& next) const;
311};
312
313/**
314 * Manages a process' virtual addressing space. This class maintains a list of allocated and free
315 * regions in the address space, along with their attributes, and allows kernel clients to
316 * manipulate it, adjusting the page table to match.
317 *
318 * This is similar in idea and purpose to the VM manager present in operating system kernels, with
319 * the main difference being that it doesn't have to support swapping or memory mapping of files.
320 * The implementation is also simplified by not having to allocate page frames. See these articles
321 * about the Linux kernel for an explantion of the concept and implementation:
322 * - http://duartes.org/gustavo/blog/post/how-the-kernel-manages-your-memory/
323 * - http://duartes.org/gustavo/blog/post/page-cache-the-affair-between-memory-and-files/
324 */
325class VMManager final {
326 using VMAMap = std::map<VAddr, VirtualMemoryArea>;
327
328public:
329 using VMAHandle = VMAMap::const_iterator;
330
331 explicit VMManager(Core::System& system);
332 ~VMManager();
333
334 /// Clears the address space map, re-initializing with a single free area.
335 void Reset(FileSys::ProgramAddressSpaceType type);
336
337 /// Finds the VMA in which the given address is included in, or `vma_map.end()`.
338 VMAHandle FindVMA(VAddr target) const;
339
340 /// Indicates whether or not the given handle is within the VMA map.
341 bool IsValidHandle(VMAHandle handle) const;
342
343 // TODO(yuriks): Should these functions actually return the handle?
344
345 /**
346 * Maps part of a ref-counted block of memory at a given address.
347 *
348 * @param target The guest address to start the mapping at.
349 * @param block The block to be mapped.
350 * @param offset Offset into `block` to map from.
351 * @param size Size of the mapping.
352 * @param state MemoryState tag to attach to the VMA.
353 */
354 ResultVal<VMAHandle> MapMemoryBlock(VAddr target, std::shared_ptr<PhysicalMemory> block,
355 std::size_t offset, u64 size, MemoryState state,
356 VMAPermission perm = VMAPermission::ReadWrite);
357
358 /**
359 * Maps an unmanaged host memory pointer at a given address.
360 *
361 * @param target The guest address to start the mapping at.
362 * @param memory The memory to be mapped.
363 * @param size Size of the mapping.
364 * @param state MemoryState tag to attach to the VMA.
365 */
366 ResultVal<VMAHandle> MapBackingMemory(VAddr target, u8* memory, u64 size, MemoryState state);
367
368 /**
369 * Finds the first free memory region of the given size within
370 * the user-addressable ASLR memory region.
371 *
372 * @param size The size of the desired region in bytes.
373 *
374 * @returns If successful, the base address of the free region with
375 * the given size.
376 */
377 ResultVal<VAddr> FindFreeRegion(u64 size) const;
378
379 /**
380 * Finds the first free address range that can hold a region of the desired size
381 *
382 * @param begin The starting address of the range.
383 * This is treated as an inclusive beginning address.
384 *
385 * @param end The ending address of the range.
386 * This is treated as an exclusive ending address.
387 *
388 * @param size The size of the free region to attempt to locate,
389 * in bytes.
390 *
391 * @returns If successful, the base address of the free region with
392 * the given size.
393 *
394 * @returns If unsuccessful, a result containing an error code.
395 *
396 * @pre The starting address must be less than the ending address.
397 * @pre The size must not exceed the address range itself.
398 */
399 ResultVal<VAddr> FindFreeRegion(VAddr begin, VAddr end, u64 size) const;
400
401 /**
402 * Maps a memory-mapped IO region at a given address.
403 *
404 * @param target The guest address to start the mapping at.
405 * @param paddr The physical address where the registers are present.
406 * @param size Size of the mapping.
407 * @param state MemoryState tag to attach to the VMA.
408 * @param mmio_handler The handler that will implement read and write for this MMIO region.
409 */
410 ResultVal<VMAHandle> MapMMIO(VAddr target, PAddr paddr, u64 size, MemoryState state,
411 Common::MemoryHookPointer mmio_handler);
412
413 /// Unmaps a range of addresses, splitting VMAs as necessary.
414 ResultCode UnmapRange(VAddr target, u64 size);
415
416 /// Changes the permissions of the given VMA.
417 VMAHandle Reprotect(VMAHandle vma, VMAPermission new_perms);
418
419 /// Changes the permissions of a range of addresses, splitting VMAs as necessary.
420 ResultCode ReprotectRange(VAddr target, u64 size, VMAPermission new_perms);
421
422 ResultCode MirrorMemory(VAddr dst_addr, VAddr src_addr, u64 size, MemoryState state);
423
424 /// Attempts to allocate a heap with the given size.
425 ///
426 /// @param size The size of the heap to allocate in bytes.
427 ///
428 /// @note If a heap is currently allocated, and this is called
429 /// with a size that is equal to the size of the current heap,
430 /// then this function will do nothing and return the current
431 /// heap's starting address, as there's no need to perform
432 /// any additional heap allocation work.
433 ///
434 /// @note If a heap is currently allocated, and this is called
435 /// with a size less than the current heap's size, then
436 /// this function will attempt to shrink the heap.
437 ///
438 /// @note If a heap is currently allocated, and this is called
439 /// with a size larger than the current heap's size, then
440 /// this function will attempt to extend the size of the heap.
441 ///
442 /// @returns A result indicating either success or failure.
443 /// <p>
444 /// If successful, this function will return a result
445 /// containing the starting address to the allocated heap.
446 /// <p>
447 /// If unsuccessful, this function will return a result
448 /// containing an error code.
449 ///
450 /// @pre The given size must lie within the allowable heap
451 /// memory region managed by this VMManager instance.
452 /// Failure to abide by this will result in ERR_OUT_OF_MEMORY
453 /// being returned as the result.
454 ///
455 ResultVal<VAddr> SetHeapSize(u64 size);
456
457 /// Maps memory at a given address.
458 ///
459 /// @param target The virtual address to map memory at.
460 /// @param size The amount of memory to map.
461 ///
462 /// @note The destination address must lie within the Map region.
463 ///
464 /// @note This function requires that SystemResourceSize be non-zero,
465 /// however, this is just because if it were not then the
466 /// resulting page tables could be exploited on hardware by
467 /// a malicious program. SystemResource usage does not need
468 /// to be explicitly checked or updated here.
469 ResultCode MapPhysicalMemory(VAddr target, u64 size);
470
471 /// Unmaps memory at a given address.
472 ///
473 /// @param target The virtual address to unmap memory at.
474 /// @param size The amount of memory to unmap.
475 ///
476 /// @note The destination address must lie within the Map region.
477 ///
478 /// @note This function requires that SystemResourceSize be non-zero,
479 /// however, this is just because if it were not then the
480 /// resulting page tables could be exploited on hardware by
481 /// a malicious program. SystemResource usage does not need
482 /// to be explicitly checked or updated here.
483 ResultCode UnmapPhysicalMemory(VAddr target, u64 size);
484
485 /// Maps a region of memory as code memory.
486 ///
487 /// @param dst_address The base address of the region to create the aliasing memory region.
488 /// @param src_address The base address of the region to be aliased.
489 /// @param size The total amount of memory to map in bytes.
490 ///
491 /// @pre Both memory regions lie within the actual addressable address space.
492 ///
493 /// @post After this function finishes execution, assuming success, then the address range
494 /// [dst_address, dst_address+size) will alias the memory region,
495 /// [src_address, src_address+size).
496 /// <p>
497 /// What this also entails is as follows:
498 /// 1. The aliased region gains the Locked memory attribute.
499 /// 2. The aliased region becomes read-only.
500 /// 3. The aliasing region becomes read-only.
501 /// 4. The aliasing region is created with a memory state of MemoryState::CodeModule.
502 ///
503 ResultCode MapCodeMemory(VAddr dst_address, VAddr src_address, u64 size);
504
505 /// Unmaps a region of memory designated as code module memory.
506 ///
507 /// @param dst_address The base address of the memory region aliasing the source memory region.
508 /// @param src_address The base address of the memory region being aliased.
509 /// @param size The size of the memory region to unmap in bytes.
510 ///
511 /// @pre Both memory ranges lie within the actual addressable address space.
512 ///
513 /// @pre The memory region being unmapped has been previously been mapped
514 /// by a call to MapCodeMemory.
515 ///
516 /// @post After execution of the function, if successful. the aliasing memory region
517 /// will be unmapped and the aliased region will have various traits about it
518 /// restored to what they were prior to the original mapping call preceding
519 /// this function call.
520 /// <p>
521 /// What this also entails is as follows:
522 /// 1. The state of the memory region will now indicate a general heap region.
523 /// 2. All memory attributes for the memory region are cleared.
524 /// 3. Memory permissions for the region are restored to user read/write.
525 ///
526 ResultCode UnmapCodeMemory(VAddr dst_address, VAddr src_address, u64 size);
527
528 /// Queries the memory manager for information about the given address.
529 ///
530 /// @param address The address to query the memory manager about for information.
531 ///
532 /// @return A MemoryInfo instance containing information about the given address.
533 ///
534 MemoryInfo QueryMemory(VAddr address) const;
535
536 /// Sets an attribute across the given address range.
537 ///
538 /// @param address The starting address
539 /// @param size The size of the range to set the attribute on.
540 /// @param mask The attribute mask
541 /// @param attribute The attribute to set across the given address range
542 ///
543 /// @returns RESULT_SUCCESS if successful
544 /// @returns ERR_INVALID_ADDRESS_STATE if the attribute could not be set.
545 ///
546 ResultCode SetMemoryAttribute(VAddr address, u64 size, MemoryAttribute mask,
547 MemoryAttribute attribute);
548
549 /**
550 * Scans all VMAs and updates the page table range of any that use the given vector as backing
551 * memory. This should be called after any operation that causes reallocation of the vector.
552 */
553 void RefreshMemoryBlockMappings(const PhysicalMemory* block);
554
555 /// Dumps the address space layout to the log, for debugging
556 void LogLayout() const;
557
558 /// Gets the total memory usage, used by svcGetInfo
559 u64 GetTotalPhysicalMemoryAvailable() const;
560
561 /// Gets the address space base address
562 VAddr GetAddressSpaceBaseAddress() const;
563
564 /// Gets the address space end address
565 VAddr GetAddressSpaceEndAddress() const;
566
567 /// Gets the total address space address size in bytes
568 u64 GetAddressSpaceSize() const;
569
570 /// Gets the address space width in bits.
571 u64 GetAddressSpaceWidth() const;
572
573 /// Determines whether or not the given address range lies within the address space.
574 bool IsWithinAddressSpace(VAddr address, u64 size) const;
575
576 /// Gets the base address of the ASLR region.
577 VAddr GetASLRRegionBaseAddress() const;
578
579 /// Gets the end address of the ASLR region.
580 VAddr GetASLRRegionEndAddress() const;
581
582 /// Gets the size of the ASLR region
583 u64 GetASLRRegionSize() const;
584
585 /// Determines whether or not the specified address range is within the ASLR region.
586 bool IsWithinASLRRegion(VAddr address, u64 size) const;
587
588 /// Gets the base address of the code region.
589 VAddr GetCodeRegionBaseAddress() const;
590
591 /// Gets the end address of the code region.
592 VAddr GetCodeRegionEndAddress() const;
593
594 /// Gets the total size of the code region in bytes.
595 u64 GetCodeRegionSize() const;
596
597 /// Determines whether or not the specified range is within the code region.
598 bool IsWithinCodeRegion(VAddr address, u64 size) const;
599
600 /// Gets the base address of the heap region.
601 VAddr GetHeapRegionBaseAddress() const;
602
603 /// Gets the end address of the heap region;
604 VAddr GetHeapRegionEndAddress() const;
605
606 /// Gets the total size of the heap region in bytes.
607 u64 GetHeapRegionSize() const;
608
609 /// Gets the total size of the current heap in bytes.
610 ///
611 /// @note This is the current allocated heap size, not the size
612 /// of the region it's allowed to exist within.
613 ///
614 u64 GetCurrentHeapSize() const;
615
616 /// Determines whether or not the specified range is within the heap region.
617 bool IsWithinHeapRegion(VAddr address, u64 size) const;
618
619 /// Gets the base address of the map region.
620 VAddr GetMapRegionBaseAddress() const;
621
622 /// Gets the end address of the map region.
623 VAddr GetMapRegionEndAddress() const;
624
625 /// Gets the total size of the map region in bytes.
626 u64 GetMapRegionSize() const;
627
628 /// Determines whether or not the specified range is within the map region.
629 bool IsWithinMapRegion(VAddr address, u64 size) const;
630
631 /// Gets the base address of the stack region.
632 VAddr GetStackRegionBaseAddress() const;
633
634 /// Gets the end address of the stack region.
635 VAddr GetStackRegionEndAddress() const;
636
637 /// Gets the total size of the stack region in bytes.
638 u64 GetStackRegionSize() const;
639
640 /// Determines whether or not the given address range is within the stack region
641 bool IsWithinStackRegion(VAddr address, u64 size) const;
642
643 /// Gets the base address of the TLS IO region.
644 VAddr GetTLSIORegionBaseAddress() const;
645
646 /// Gets the end address of the TLS IO region.
647 VAddr GetTLSIORegionEndAddress() const;
648
649 /// Gets the total size of the TLS IO region in bytes.
650 u64 GetTLSIORegionSize() const;
651
652 /// Determines if the given address range is within the TLS IO region.
653 bool IsWithinTLSIORegion(VAddr address, u64 size) const;
654
655 /// Each VMManager has its own page table, which is set as the main one when the owning process
656 /// is scheduled.
657 Common::PageTable page_table{Memory::PAGE_BITS};
658
659 using CheckResults = ResultVal<std::tuple<MemoryState, VMAPermission, MemoryAttribute>>;
660
661 /// Checks if an address range adheres to the specified states provided.
662 ///
663 /// @param address The starting address of the address range.
664 /// @param size The size of the address range.
665 /// @param state_mask The memory state mask.
666 /// @param state The state to compare the individual VMA states against,
667 /// which is done in the form of: (vma.state & state_mask) != state.
668 /// @param permission_mask The memory permissions mask.
669 /// @param permissions The permission to compare the individual VMA permissions against,
670 /// which is done in the form of:
671 /// (vma.permission & permission_mask) != permission.
672 /// @param attribute_mask The memory attribute mask.
673 /// @param attribute The memory attributes to compare the individual VMA attributes
674 /// against, which is done in the form of:
675 /// (vma.attributes & attribute_mask) != attribute.
676 /// @param ignore_mask The memory attributes to ignore during the check.
677 ///
678 /// @returns If successful, returns a tuple containing the memory attributes
679 /// (with ignored bits specified by ignore_mask unset), memory permissions, and
680 /// memory state across the memory range.
681 /// @returns If not successful, returns ERR_INVALID_ADDRESS_STATE.
682 ///
683 CheckResults CheckRangeState(VAddr address, u64 size, MemoryState state_mask, MemoryState state,
684 VMAPermission permission_mask, VMAPermission permissions,
685 MemoryAttribute attribute_mask, MemoryAttribute attribute,
686 MemoryAttribute ignore_mask) const;
687
688private:
689 using VMAIter = VMAMap::iterator;
690
691 /// Converts a VMAHandle to a mutable VMAIter.
692 VMAIter StripIterConstness(const VMAHandle& iter);
693
694 /// Unmaps the given VMA.
695 VMAIter Unmap(VMAIter vma);
696
697 /**
698 * Carves a VMA of a specific size at the specified address by splitting Free VMAs while doing
699 * the appropriate error checking.
700 */
701 ResultVal<VMAIter> CarveVMA(VAddr base, u64 size);
702
703 /**
704 * Splits the edges of the given range of non-Free VMAs so that there is a VMA split at each
705 * end of the range.
706 */
707 ResultVal<VMAIter> CarveVMARange(VAddr base, u64 size);
708
709 /**
710 * Splits a VMA in two, at the specified offset.
711 * @returns the right side of the split, with the original iterator becoming the left side.
712 */
713 VMAIter SplitVMA(VMAIter vma, u64 offset_in_vma);
714
715 /**
716 * Checks for and merges the specified VMA with adjacent ones if possible.
717 * @returns the merged VMA or the original if no merging was possible.
718 */
719 VMAIter MergeAdjacent(VMAIter vma);
720
721 /**
722 * Merges two adjacent VMAs.
723 */
724 void MergeAdjacentVMA(VirtualMemoryArea& left, const VirtualMemoryArea& right);
725
726 /// Updates the pages corresponding to this VMA so they match the VMA's attributes.
727 void UpdatePageTableForVMA(const VirtualMemoryArea& vma);
728
729 /// Initializes memory region ranges to adhere to a given address space type.
730 void InitializeMemoryRegionRanges(FileSys::ProgramAddressSpaceType type);
731
732 /// Clears the underlying map and page table.
733 void Clear();
734
735 /// Clears out the VMA map, unmapping any previously mapped ranges.
736 void ClearVMAMap();
737
738 /// Clears out the page table
739 void ClearPageTable();
740
741 /// Gets the amount of memory currently mapped (state != Unmapped) in a range.
742 ResultVal<std::size_t> SizeOfAllocatedVMAsInRange(VAddr address, std::size_t size) const;
743
744 /// Gets the amount of memory unmappable by UnmapPhysicalMemory in a range.
745 ResultVal<std::size_t> SizeOfUnmappablePhysicalMemoryInRange(VAddr address,
746 std::size_t size) const;
747
748 /**
749 * A map covering the entirety of the managed address space, keyed by the `base` field of each
750 * VMA. It must always be modified by splitting or merging VMAs, so that the invariant
751 * `elem.base + elem.size == next.base` is preserved, and mergeable regions must always be
752 * merged when possible so that no two similar and adjacent regions exist that have not been
753 * merged.
754 */
755 VMAMap vma_map;
756
757 u32 address_space_width = 0;
758 VAddr address_space_base = 0;
759 VAddr address_space_end = 0;
760
761 VAddr aslr_region_base = 0;
762 VAddr aslr_region_end = 0;
763
764 VAddr code_region_base = 0;
765 VAddr code_region_end = 0;
766
767 VAddr heap_region_base = 0;
768 VAddr heap_region_end = 0;
769
770 VAddr map_region_base = 0;
771 VAddr map_region_end = 0;
772
773 VAddr stack_region_base = 0;
774 VAddr stack_region_end = 0;
775
776 VAddr tls_io_region_base = 0;
777 VAddr tls_io_region_end = 0;
778
779 // Memory used to back the allocations in the regular heap. A single vector is used to cover
780 // the entire virtual address space extents that bound the allocations, including any holes.
781 // This makes deallocation and reallocation of holes fast and keeps process memory contiguous
782 // in the emulator address space, allowing Memory::GetPointer to be reasonably safe.
783 std::shared_ptr<PhysicalMemory> heap_memory;
784
785 // The end of the currently allocated heap. This is not an inclusive
786 // end of the range. This is essentially 'base_address + current_size'.
787 VAddr heap_end = 0;
788
789 // The current amount of memory mapped via MapPhysicalMemory.
790 // This is used here (and in Nintendo's kernel) only for debugging, and does not impact
791 // any behavior.
792 u64 physical_memory_mapped = 0;
793
794 Core::System& system;
795};
796} // namespace Kernel