summaryrefslogtreecommitdiff
path: root/src/core/hid/motion_input.cpp
diff options
context:
space:
mode:
authorGravatar Narr the Reg2024-01-04 20:37:43 -0600
committerGravatar Narr the Reg2024-01-05 11:41:15 -0600
commitee847f8ff0b1b0aec39c1b78c010bc0c08a0a613 (patch)
tree3b95cbb74be05f0ce7a007353f1f9f95e1ed3901 /src/core/hid/motion_input.cpp
parentMerge pull request #12437 from ameerj/gl-amd-fixes (diff)
downloadyuzu-ee847f8ff0b1b0aec39c1b78c010bc0c08a0a613.tar.gz
yuzu-ee847f8ff0b1b0aec39c1b78c010bc0c08a0a613.tar.xz
yuzu-ee847f8ff0b1b0aec39c1b78c010bc0c08a0a613.zip
hid_core: Move hid to it's own subproject
Diffstat (limited to 'src/core/hid/motion_input.cpp')
-rw-r--r--src/core/hid/motion_input.cpp357
1 files changed, 0 insertions, 357 deletions
diff --git a/src/core/hid/motion_input.cpp b/src/core/hid/motion_input.cpp
deleted file mode 100644
index f56f2ae1d..000000000
--- a/src/core/hid/motion_input.cpp
+++ /dev/null
@@ -1,357 +0,0 @@
1// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
2// SPDX-License-Identifier: GPL-2.0-or-later
3
4#include <cmath>
5
6#include "common/math_util.h"
7#include "core/hid/motion_input.h"
8
9namespace Core::HID {
10
11MotionInput::MotionInput() {
12 // Initialize PID constants with default values
13 SetPID(0.3f, 0.005f, 0.0f);
14 SetGyroThreshold(ThresholdStandard);
15 ResetQuaternion();
16 ResetRotations();
17}
18
19void MotionInput::SetPID(f32 new_kp, f32 new_ki, f32 new_kd) {
20 kp = new_kp;
21 ki = new_ki;
22 kd = new_kd;
23}
24
25void MotionInput::SetAcceleration(const Common::Vec3f& acceleration) {
26 accel = acceleration;
27
28 accel.x = std::clamp(accel.x, -AccelMaxValue, AccelMaxValue);
29 accel.y = std::clamp(accel.y, -AccelMaxValue, AccelMaxValue);
30 accel.z = std::clamp(accel.z, -AccelMaxValue, AccelMaxValue);
31}
32
33void MotionInput::SetGyroscope(const Common::Vec3f& gyroscope) {
34 gyro = gyroscope - gyro_bias;
35
36 gyro.x = std::clamp(gyro.x, -GyroMaxValue, GyroMaxValue);
37 gyro.y = std::clamp(gyro.y, -GyroMaxValue, GyroMaxValue);
38 gyro.z = std::clamp(gyro.z, -GyroMaxValue, GyroMaxValue);
39
40 // Auto adjust gyro_bias to minimize drift
41 if (!IsMoving(IsAtRestRelaxed)) {
42 gyro_bias = (gyro_bias * 0.9999f) + (gyroscope * 0.0001f);
43 }
44
45 // Adjust drift when calibration mode is enabled
46 if (calibration_mode) {
47 gyro_bias = (gyro_bias * 0.99f) + (gyroscope * 0.01f);
48 StopCalibration();
49 }
50
51 if (gyro.Length() < gyro_threshold * user_gyro_threshold) {
52 gyro = {};
53 } else {
54 only_accelerometer = false;
55 }
56}
57
58void MotionInput::SetQuaternion(const Common::Quaternion<f32>& quaternion) {
59 quat = quaternion;
60}
61
62void MotionInput::SetEulerAngles(const Common::Vec3f& euler_angles) {
63 const float cr = std::cos(euler_angles.x * 0.5f);
64 const float sr = std::sin(euler_angles.x * 0.5f);
65 const float cp = std::cos(euler_angles.y * 0.5f);
66 const float sp = std::sin(euler_angles.y * 0.5f);
67 const float cy = std::cos(euler_angles.z * 0.5f);
68 const float sy = std::sin(euler_angles.z * 0.5f);
69
70 quat.w = cr * cp * cy + sr * sp * sy;
71 quat.xyz.x = sr * cp * cy - cr * sp * sy;
72 quat.xyz.y = cr * sp * cy + sr * cp * sy;
73 quat.xyz.z = cr * cp * sy - sr * sp * cy;
74}
75
76void MotionInput::SetGyroBias(const Common::Vec3f& bias) {
77 gyro_bias = bias;
78}
79
80void MotionInput::SetGyroThreshold(f32 threshold) {
81 gyro_threshold = threshold;
82}
83
84void MotionInput::SetUserGyroThreshold(f32 threshold) {
85 user_gyro_threshold = threshold / ThresholdStandard;
86}
87
88void MotionInput::EnableReset(bool reset) {
89 reset_enabled = reset;
90}
91
92void MotionInput::ResetRotations() {
93 rotations = {};
94}
95
96void MotionInput::ResetQuaternion() {
97 quat = {{0.0f, 0.0f, -1.0f}, 0.0f};
98}
99
100bool MotionInput::IsMoving(f32 sensitivity) const {
101 return gyro.Length() >= sensitivity || accel.Length() <= 0.9f || accel.Length() >= 1.1f;
102}
103
104bool MotionInput::IsCalibrated(f32 sensitivity) const {
105 return real_error.Length() < sensitivity;
106}
107
108void MotionInput::UpdateRotation(u64 elapsed_time) {
109 const auto sample_period = static_cast<f32>(elapsed_time) / 1000000.0f;
110 if (sample_period > 0.1f) {
111 return;
112 }
113 rotations += gyro * sample_period;
114}
115
116void MotionInput::Calibrate() {
117 calibration_mode = true;
118 calibration_counter = 0;
119}
120
121void MotionInput::StopCalibration() {
122 if (calibration_counter++ > CalibrationSamples) {
123 calibration_mode = false;
124 ResetQuaternion();
125 ResetRotations();
126 }
127}
128
129// Based on Madgwick's implementation of Mayhony's AHRS algorithm.
130// https://github.com/xioTechnologies/Open-Source-AHRS-With-x-IMU/blob/master/x-IMU%20IMU%20and%20AHRS%20Algorithms/x-IMU%20IMU%20and%20AHRS%20Algorithms/AHRS/MahonyAHRS.cs
131void MotionInput::UpdateOrientation(u64 elapsed_time) {
132 if (!IsCalibrated(0.1f)) {
133 ResetOrientation();
134 }
135 // Short name local variable for readability
136 f32 q1 = quat.w;
137 f32 q2 = quat.xyz[0];
138 f32 q3 = quat.xyz[1];
139 f32 q4 = quat.xyz[2];
140 const auto sample_period = static_cast<f32>(elapsed_time) / 1000000.0f;
141
142 // Ignore invalid elapsed time
143 if (sample_period > 0.1f) {
144 return;
145 }
146
147 const auto normal_accel = accel.Normalized();
148 auto rad_gyro = gyro * Common::PI * 2;
149 const f32 swap = rad_gyro.x;
150 rad_gyro.x = rad_gyro.y;
151 rad_gyro.y = -swap;
152 rad_gyro.z = -rad_gyro.z;
153
154 // Clear gyro values if there is no gyro present
155 if (only_accelerometer) {
156 rad_gyro.x = 0;
157 rad_gyro.y = 0;
158 rad_gyro.z = 0;
159 }
160
161 // Ignore drift correction if acceleration is not reliable
162 if (accel.Length() >= 0.75f && accel.Length() <= 1.25f) {
163 const f32 ax = -normal_accel.x;
164 const f32 ay = normal_accel.y;
165 const f32 az = -normal_accel.z;
166
167 // Estimated direction of gravity
168 const f32 vx = 2.0f * (q2 * q4 - q1 * q3);
169 const f32 vy = 2.0f * (q1 * q2 + q3 * q4);
170 const f32 vz = q1 * q1 - q2 * q2 - q3 * q3 + q4 * q4;
171
172 // Error is cross product between estimated direction and measured direction of gravity
173 const Common::Vec3f new_real_error = {
174 az * vx - ax * vz,
175 ay * vz - az * vy,
176 ax * vy - ay * vx,
177 };
178
179 derivative_error = new_real_error - real_error;
180 real_error = new_real_error;
181
182 // Prevent integral windup
183 if (ki != 0.0f && !IsCalibrated(0.05f)) {
184 integral_error += real_error;
185 } else {
186 integral_error = {};
187 }
188
189 // Apply feedback terms
190 if (!only_accelerometer) {
191 rad_gyro += kp * real_error;
192 rad_gyro += ki * integral_error;
193 rad_gyro += kd * derivative_error;
194 } else {
195 // Give more weight to accelerometer values to compensate for the lack of gyro
196 rad_gyro += 35.0f * kp * real_error;
197 rad_gyro += 10.0f * ki * integral_error;
198 rad_gyro += 10.0f * kd * derivative_error;
199
200 // Emulate gyro values for games that need them
201 gyro.x = -rad_gyro.y;
202 gyro.y = rad_gyro.x;
203 gyro.z = -rad_gyro.z;
204 UpdateRotation(elapsed_time);
205 }
206 }
207
208 const f32 gx = rad_gyro.y;
209 const f32 gy = rad_gyro.x;
210 const f32 gz = rad_gyro.z;
211
212 // Integrate rate of change of quaternion
213 const f32 pa = q2;
214 const f32 pb = q3;
215 const f32 pc = q4;
216 q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * sample_period);
217 q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * sample_period);
218 q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * sample_period);
219 q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * sample_period);
220
221 quat.w = q1;
222 quat.xyz[0] = q2;
223 quat.xyz[1] = q3;
224 quat.xyz[2] = q4;
225 quat = quat.Normalized();
226}
227
228std::array<Common::Vec3f, 3> MotionInput::GetOrientation() const {
229 const Common::Quaternion<float> quad{
230 .xyz = {-quat.xyz[1], -quat.xyz[0], -quat.w},
231 .w = -quat.xyz[2],
232 };
233 const std::array<float, 16> matrix4x4 = quad.ToMatrix();
234
235 return {Common::Vec3f(matrix4x4[0], matrix4x4[1], -matrix4x4[2]),
236 Common::Vec3f(matrix4x4[4], matrix4x4[5], -matrix4x4[6]),
237 Common::Vec3f(-matrix4x4[8], -matrix4x4[9], matrix4x4[10])};
238}
239
240Common::Vec3f MotionInput::GetAcceleration() const {
241 return accel;
242}
243
244Common::Vec3f MotionInput::GetGyroscope() const {
245 return gyro;
246}
247
248Common::Vec3f MotionInput::GetGyroBias() const {
249 return gyro_bias;
250}
251
252Common::Quaternion<f32> MotionInput::GetQuaternion() const {
253 return quat;
254}
255
256Common::Vec3f MotionInput::GetRotations() const {
257 return rotations;
258}
259
260Common::Vec3f MotionInput::GetEulerAngles() const {
261 // roll (x-axis rotation)
262 const float sinr_cosp = 2 * (quat.w * quat.xyz.x + quat.xyz.y * quat.xyz.z);
263 const float cosr_cosp = 1 - 2 * (quat.xyz.x * quat.xyz.x + quat.xyz.y * quat.xyz.y);
264
265 // pitch (y-axis rotation)
266 const float sinp = std::sqrt(1 + 2 * (quat.w * quat.xyz.y - quat.xyz.x * quat.xyz.z));
267 const float cosp = std::sqrt(1 - 2 * (quat.w * quat.xyz.y - quat.xyz.x * quat.xyz.z));
268
269 // yaw (z-axis rotation)
270 const float siny_cosp = 2 * (quat.w * quat.xyz.z + quat.xyz.x * quat.xyz.y);
271 const float cosy_cosp = 1 - 2 * (quat.xyz.y * quat.xyz.y + quat.xyz.z * quat.xyz.z);
272
273 return {
274 std::atan2(sinr_cosp, cosr_cosp),
275 2 * std::atan2(sinp, cosp) - Common::PI / 2,
276 std::atan2(siny_cosp, cosy_cosp),
277 };
278}
279
280void MotionInput::ResetOrientation() {
281 if (!reset_enabled || only_accelerometer) {
282 return;
283 }
284 if (!IsMoving(IsAtRestRelaxed) && accel.z <= -0.9f) {
285 ++reset_counter;
286 if (reset_counter > 900) {
287 quat.w = 0;
288 quat.xyz[0] = 0;
289 quat.xyz[1] = 0;
290 quat.xyz[2] = -1;
291 SetOrientationFromAccelerometer();
292 integral_error = {};
293 reset_counter = 0;
294 }
295 } else {
296 reset_counter = 0;
297 }
298}
299
300void MotionInput::SetOrientationFromAccelerometer() {
301 int iterations = 0;
302 const f32 sample_period = 0.015f;
303
304 const auto normal_accel = accel.Normalized();
305
306 while (!IsCalibrated(0.01f) && ++iterations < 100) {
307 // Short name local variable for readability
308 f32 q1 = quat.w;
309 f32 q2 = quat.xyz[0];
310 f32 q3 = quat.xyz[1];
311 f32 q4 = quat.xyz[2];
312
313 Common::Vec3f rad_gyro;
314 const f32 ax = -normal_accel.x;
315 const f32 ay = normal_accel.y;
316 const f32 az = -normal_accel.z;
317
318 // Estimated direction of gravity
319 const f32 vx = 2.0f * (q2 * q4 - q1 * q3);
320 const f32 vy = 2.0f * (q1 * q2 + q3 * q4);
321 const f32 vz = q1 * q1 - q2 * q2 - q3 * q3 + q4 * q4;
322
323 // Error is cross product between estimated direction and measured direction of gravity
324 const Common::Vec3f new_real_error = {
325 az * vx - ax * vz,
326 ay * vz - az * vy,
327 ax * vy - ay * vx,
328 };
329
330 derivative_error = new_real_error - real_error;
331 real_error = new_real_error;
332
333 rad_gyro += 10.0f * kp * real_error;
334 rad_gyro += 5.0f * ki * integral_error;
335 rad_gyro += 10.0f * kd * derivative_error;
336
337 const f32 gx = rad_gyro.y;
338 const f32 gy = rad_gyro.x;
339 const f32 gz = rad_gyro.z;
340
341 // Integrate rate of change of quaternion
342 const f32 pa = q2;
343 const f32 pb = q3;
344 const f32 pc = q4;
345 q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * sample_period);
346 q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * sample_period);
347 q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * sample_period);
348 q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * sample_period);
349
350 quat.w = q1;
351 quat.xyz[0] = q2;
352 quat.xyz[1] = q3;
353 quat.xyz[2] = q4;
354 quat = quat.Normalized();
355 }
356}
357} // namespace Core::HID