diff options
| author | 2020-02-24 22:04:12 -0400 | |
|---|---|---|
| committer | 2020-06-27 11:35:06 -0400 | |
| commit | e31425df3877636c098ec7426ebd2067920715cb (patch) | |
| tree | 5c0fc518a4ebb8413c491b43a9fdd99450c7bd80 /src/core/core_timing.cpp | |
| parent | Merge pull request #3396 from FernandoS27/prometheus-1 (diff) | |
| download | yuzu-e31425df3877636c098ec7426ebd2067920715cb.tar.gz yuzu-e31425df3877636c098ec7426ebd2067920715cb.tar.xz yuzu-e31425df3877636c098ec7426ebd2067920715cb.zip | |
General: Recover Prometheus project from harddrive failure
This commit: Implements CPU Interrupts, Replaces Cycle Timing for Host
Timing, Reworks the Kernel's Scheduler, Introduce Idle State and
Suspended State, Recreates the bootmanager, Initializes Multicore
system.
Diffstat (limited to 'src/core/core_timing.cpp')
| -rw-r--r-- | src/core/core_timing.cpp | 208 |
1 files changed, 96 insertions, 112 deletions
diff --git a/src/core/core_timing.cpp b/src/core/core_timing.cpp index 46d4178c4..a3ce69790 100644 --- a/src/core/core_timing.cpp +++ b/src/core/core_timing.cpp | |||
| @@ -1,5 +1,5 @@ | |||
| 1 | // Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project | 1 | // Copyright 2020 yuzu Emulator Project |
| 2 | // Licensed under GPLv2+ | 2 | // Licensed under GPLv2 or any later version |
| 3 | // Refer to the license.txt file included. | 3 | // Refer to the license.txt file included. |
| 4 | 4 | ||
| 5 | #include "core/core_timing.h" | 5 | #include "core/core_timing.h" |
| @@ -10,20 +10,16 @@ | |||
| 10 | #include <tuple> | 10 | #include <tuple> |
| 11 | 11 | ||
| 12 | #include "common/assert.h" | 12 | #include "common/assert.h" |
| 13 | #include "common/thread.h" | ||
| 14 | #include "core/core_timing_util.h" | 13 | #include "core/core_timing_util.h" |
| 15 | #include "core/hardware_properties.h" | ||
| 16 | 14 | ||
| 17 | namespace Core::Timing { | 15 | namespace Core::Timing { |
| 18 | 16 | ||
| 19 | constexpr int MAX_SLICE_LENGTH = 10000; | ||
| 20 | |||
| 21 | std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback) { | 17 | std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback) { |
| 22 | return std::make_shared<EventType>(std::move(callback), std::move(name)); | 18 | return std::make_shared<EventType>(std::move(callback), std::move(name)); |
| 23 | } | 19 | } |
| 24 | 20 | ||
| 25 | struct CoreTiming::Event { | 21 | struct CoreTiming::Event { |
| 26 | s64 time; | 22 | u64 time; |
| 27 | u64 fifo_order; | 23 | u64 fifo_order; |
| 28 | u64 userdata; | 24 | u64 userdata; |
| 29 | std::weak_ptr<EventType> type; | 25 | std::weak_ptr<EventType> type; |
| @@ -39,51 +35,74 @@ struct CoreTiming::Event { | |||
| 39 | } | 35 | } |
| 40 | }; | 36 | }; |
| 41 | 37 | ||
| 42 | CoreTiming::CoreTiming() = default; | 38 | CoreTiming::CoreTiming() { |
| 43 | CoreTiming::~CoreTiming() = default; | 39 | clock = |
| 40 | Common::CreateBestMatchingClock(Core::Hardware::BASE_CLOCK_RATE, Core::Hardware::CNTFREQ); | ||
| 41 | } | ||
| 44 | 42 | ||
| 45 | void CoreTiming::Initialize() { | 43 | CoreTiming::~CoreTiming() = default; |
| 46 | downcounts.fill(MAX_SLICE_LENGTH); | ||
| 47 | time_slice.fill(MAX_SLICE_LENGTH); | ||
| 48 | slice_length = MAX_SLICE_LENGTH; | ||
| 49 | global_timer = 0; | ||
| 50 | idled_cycles = 0; | ||
| 51 | current_context = 0; | ||
| 52 | 44 | ||
| 53 | // The time between CoreTiming being initialized and the first call to Advance() is considered | 45 | void CoreTiming::ThreadEntry(CoreTiming& instance) { |
| 54 | // the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before | 46 | std::string name = "yuzu:HostTiming"; |
| 55 | // executing the first cycle of each slice to prepare the slice length and downcount for | 47 | Common::SetCurrentThreadName(name.c_str()); |
| 56 | // that slice. | 48 | instance.on_thread_init(); |
| 57 | is_global_timer_sane = true; | 49 | instance.ThreadLoop(); |
| 50 | } | ||
| 58 | 51 | ||
| 52 | void CoreTiming::Initialize(std::function<void(void)>&& on_thread_init_) { | ||
| 53 | on_thread_init = std::move(on_thread_init_); | ||
| 59 | event_fifo_id = 0; | 54 | event_fifo_id = 0; |
| 60 | |||
| 61 | const auto empty_timed_callback = [](u64, s64) {}; | 55 | const auto empty_timed_callback = [](u64, s64) {}; |
| 62 | ev_lost = CreateEvent("_lost_event", empty_timed_callback); | 56 | ev_lost = CreateEvent("_lost_event", empty_timed_callback); |
| 57 | timer_thread = std::make_unique<std::thread>(ThreadEntry, std::ref(*this)); | ||
| 63 | } | 58 | } |
| 64 | 59 | ||
| 65 | void CoreTiming::Shutdown() { | 60 | void CoreTiming::Shutdown() { |
| 61 | paused = true; | ||
| 62 | shutting_down = true; | ||
| 63 | event.Set(); | ||
| 64 | timer_thread->join(); | ||
| 66 | ClearPendingEvents(); | 65 | ClearPendingEvents(); |
| 66 | timer_thread.reset(); | ||
| 67 | has_started = false; | ||
| 67 | } | 68 | } |
| 68 | 69 | ||
| 69 | void CoreTiming::ScheduleEvent(s64 cycles_into_future, const std::shared_ptr<EventType>& event_type, | 70 | void CoreTiming::Pause(bool is_paused) { |
| 70 | u64 userdata) { | 71 | paused = is_paused; |
| 71 | std::lock_guard guard{inner_mutex}; | 72 | } |
| 72 | const s64 timeout = GetTicks() + cycles_into_future; | ||
| 73 | 73 | ||
| 74 | // If this event needs to be scheduled before the next advance(), force one early | 74 | void CoreTiming::SyncPause(bool is_paused) { |
| 75 | if (!is_global_timer_sane) { | 75 | if (is_paused == paused && paused_set == paused) { |
| 76 | ForceExceptionCheck(cycles_into_future); | 76 | return; |
| 77 | } | 77 | } |
| 78 | Pause(is_paused); | ||
| 79 | event.Set(); | ||
| 80 | while (paused_set != is_paused) | ||
| 81 | ; | ||
| 82 | } | ||
| 83 | |||
| 84 | bool CoreTiming::IsRunning() const { | ||
| 85 | return !paused_set; | ||
| 86 | } | ||
| 87 | |||
| 88 | bool CoreTiming::HasPendingEvents() const { | ||
| 89 | return !(wait_set && event_queue.empty()); | ||
| 90 | } | ||
| 91 | |||
| 92 | void CoreTiming::ScheduleEvent(s64 ns_into_future, const std::shared_ptr<EventType>& event_type, | ||
| 93 | u64 userdata) { | ||
| 94 | basic_lock.lock(); | ||
| 95 | const u64 timeout = static_cast<u64>(GetGlobalTimeNs().count() + ns_into_future); | ||
| 78 | 96 | ||
| 79 | event_queue.emplace_back(Event{timeout, event_fifo_id++, userdata, event_type}); | 97 | event_queue.emplace_back(Event{timeout, event_fifo_id++, userdata, event_type}); |
| 80 | 98 | ||
| 81 | std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>()); | 99 | std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>()); |
| 100 | basic_lock.unlock(); | ||
| 101 | event.Set(); | ||
| 82 | } | 102 | } |
| 83 | 103 | ||
| 84 | void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type, u64 userdata) { | 104 | void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type, u64 userdata) { |
| 85 | std::lock_guard guard{inner_mutex}; | 105 | basic_lock.lock(); |
| 86 | |||
| 87 | const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) { | 106 | const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) { |
| 88 | return e.type.lock().get() == event_type.get() && e.userdata == userdata; | 107 | return e.type.lock().get() == event_type.get() && e.userdata == userdata; |
| 89 | }); | 108 | }); |
| @@ -93,23 +112,23 @@ void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type, u | |||
| 93 | event_queue.erase(itr, event_queue.end()); | 112 | event_queue.erase(itr, event_queue.end()); |
| 94 | std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>()); | 113 | std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>()); |
| 95 | } | 114 | } |
| 115 | basic_lock.unlock(); | ||
| 96 | } | 116 | } |
| 97 | 117 | ||
| 98 | u64 CoreTiming::GetTicks() const { | 118 | void CoreTiming::AddTicks(std::size_t core_index, u64 ticks) { |
| 99 | u64 ticks = static_cast<u64>(global_timer); | 119 | ticks_count[core_index] += ticks; |
| 100 | if (!is_global_timer_sane) { | 120 | } |
| 101 | ticks += accumulated_ticks; | 121 | |
| 102 | } | 122 | void CoreTiming::ResetTicks(std::size_t core_index) { |
| 103 | return ticks; | 123 | ticks_count[core_index] = 0; |
| 104 | } | 124 | } |
| 105 | 125 | ||
| 106 | u64 CoreTiming::GetIdleTicks() const { | 126 | u64 CoreTiming::GetCPUTicks() const { |
| 107 | return static_cast<u64>(idled_cycles); | 127 | return clock->GetCPUCycles(); |
| 108 | } | 128 | } |
| 109 | 129 | ||
| 110 | void CoreTiming::AddTicks(u64 ticks) { | 130 | u64 CoreTiming::GetClockTicks() const { |
| 111 | accumulated_ticks += ticks; | 131 | return clock->GetClockCycles(); |
| 112 | downcounts[current_context] -= static_cast<s64>(ticks); | ||
| 113 | } | 132 | } |
| 114 | 133 | ||
| 115 | void CoreTiming::ClearPendingEvents() { | 134 | void CoreTiming::ClearPendingEvents() { |
| @@ -117,7 +136,7 @@ void CoreTiming::ClearPendingEvents() { | |||
| 117 | } | 136 | } |
| 118 | 137 | ||
| 119 | void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) { | 138 | void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) { |
| 120 | std::lock_guard guard{inner_mutex}; | 139 | basic_lock.lock(); |
| 121 | 140 | ||
| 122 | const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) { | 141 | const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) { |
| 123 | return e.type.lock().get() == event_type.get(); | 142 | return e.type.lock().get() == event_type.get(); |
| @@ -128,99 +147,64 @@ void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) { | |||
| 128 | event_queue.erase(itr, event_queue.end()); | 147 | event_queue.erase(itr, event_queue.end()); |
| 129 | std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>()); | 148 | std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>()); |
| 130 | } | 149 | } |
| 150 | basic_lock.unlock(); | ||
| 131 | } | 151 | } |
| 132 | 152 | ||
| 133 | void CoreTiming::ForceExceptionCheck(s64 cycles) { | 153 | std::optional<u64> CoreTiming::Advance() { |
| 134 | cycles = std::max<s64>(0, cycles); | 154 | advance_lock.lock(); |
| 135 | if (downcounts[current_context] <= cycles) { | 155 | basic_lock.lock(); |
| 136 | return; | 156 | global_timer = GetGlobalTimeNs().count(); |
| 137 | } | ||
| 138 | |||
| 139 | // downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int | ||
| 140 | // here. Account for cycles already executed by adjusting the g.slice_length | ||
| 141 | downcounts[current_context] = static_cast<int>(cycles); | ||
| 142 | } | ||
| 143 | |||
| 144 | std::optional<u64> CoreTiming::NextAvailableCore(const s64 needed_ticks) const { | ||
| 145 | const u64 original_context = current_context; | ||
| 146 | u64 next_context = (original_context + 1) % num_cpu_cores; | ||
| 147 | while (next_context != original_context) { | ||
| 148 | if (time_slice[next_context] >= needed_ticks) { | ||
| 149 | return {next_context}; | ||
| 150 | } else if (time_slice[next_context] >= 0) { | ||
| 151 | return std::nullopt; | ||
| 152 | } | ||
| 153 | next_context = (next_context + 1) % num_cpu_cores; | ||
| 154 | } | ||
| 155 | return std::nullopt; | ||
| 156 | } | ||
| 157 | |||
| 158 | void CoreTiming::Advance() { | ||
| 159 | std::unique_lock<std::mutex> guard(inner_mutex); | ||
| 160 | |||
| 161 | const u64 cycles_executed = accumulated_ticks; | ||
| 162 | time_slice[current_context] = std::max<s64>(0, time_slice[current_context] - accumulated_ticks); | ||
| 163 | global_timer += cycles_executed; | ||
| 164 | |||
| 165 | is_global_timer_sane = true; | ||
| 166 | 157 | ||
| 167 | while (!event_queue.empty() && event_queue.front().time <= global_timer) { | 158 | while (!event_queue.empty() && event_queue.front().time <= global_timer) { |
| 168 | Event evt = std::move(event_queue.front()); | 159 | Event evt = std::move(event_queue.front()); |
| 169 | std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>()); | 160 | std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>()); |
| 170 | event_queue.pop_back(); | 161 | event_queue.pop_back(); |
| 171 | inner_mutex.unlock(); | 162 | basic_lock.unlock(); |
| 172 | 163 | ||
| 173 | if (auto event_type{evt.type.lock()}) { | 164 | if (auto event_type{evt.type.lock()}) { |
| 174 | event_type->callback(evt.userdata, global_timer - evt.time); | 165 | event_type->callback(evt.userdata, global_timer - evt.time); |
| 175 | } | 166 | } |
| 176 | 167 | ||
| 177 | inner_mutex.lock(); | 168 | basic_lock.lock(); |
| 178 | } | 169 | } |
| 179 | 170 | ||
| 180 | is_global_timer_sane = false; | ||
| 181 | |||
| 182 | // Still events left (scheduled in the future) | ||
| 183 | if (!event_queue.empty()) { | 171 | if (!event_queue.empty()) { |
| 184 | const s64 needed_ticks = | 172 | const u64 next_time = event_queue.front().time - global_timer; |
| 185 | std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH); | 173 | basic_lock.unlock(); |
| 186 | const auto next_core = NextAvailableCore(needed_ticks); | 174 | advance_lock.unlock(); |
| 187 | if (next_core) { | 175 | return next_time; |
| 188 | downcounts[*next_core] = needed_ticks; | 176 | } else { |
| 189 | } | 177 | basic_lock.unlock(); |
| 178 | advance_lock.unlock(); | ||
| 179 | return std::nullopt; | ||
| 190 | } | 180 | } |
| 191 | |||
| 192 | accumulated_ticks = 0; | ||
| 193 | |||
| 194 | downcounts[current_context] = time_slice[current_context]; | ||
| 195 | } | 181 | } |
| 196 | 182 | ||
| 197 | void CoreTiming::ResetRun() { | 183 | void CoreTiming::ThreadLoop() { |
| 198 | downcounts.fill(MAX_SLICE_LENGTH); | 184 | has_started = true; |
| 199 | time_slice.fill(MAX_SLICE_LENGTH); | 185 | while (!shutting_down) { |
| 200 | current_context = 0; | 186 | while (!paused) { |
| 201 | // Still events left (scheduled in the future) | 187 | paused_set = false; |
| 202 | if (!event_queue.empty()) { | 188 | const auto next_time = Advance(); |
| 203 | const s64 needed_ticks = | 189 | if (next_time) { |
| 204 | std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH); | 190 | std::chrono::nanoseconds next_time_ns = std::chrono::nanoseconds(*next_time); |
| 205 | downcounts[current_context] = needed_ticks; | 191 | event.WaitFor(next_time_ns); |
| 192 | } else { | ||
| 193 | wait_set = true; | ||
| 194 | event.Wait(); | ||
| 195 | } | ||
| 196 | wait_set = false; | ||
| 197 | } | ||
| 198 | paused_set = true; | ||
| 206 | } | 199 | } |
| 207 | |||
| 208 | is_global_timer_sane = false; | ||
| 209 | accumulated_ticks = 0; | ||
| 210 | } | 200 | } |
| 211 | 201 | ||
| 212 | void CoreTiming::Idle() { | 202 | std::chrono::nanoseconds CoreTiming::GetGlobalTimeNs() const { |
| 213 | accumulated_ticks += downcounts[current_context]; | 203 | return clock->GetTimeNS(); |
| 214 | idled_cycles += downcounts[current_context]; | ||
| 215 | downcounts[current_context] = 0; | ||
| 216 | } | 204 | } |
| 217 | 205 | ||
| 218 | std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const { | 206 | std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const { |
| 219 | return std::chrono::microseconds{GetTicks() * 1000000 / Hardware::BASE_CLOCK_RATE}; | 207 | return clock->GetTimeUS(); |
| 220 | } | ||
| 221 | |||
| 222 | s64 CoreTiming::GetDowncount() const { | ||
| 223 | return downcounts[current_context]; | ||
| 224 | } | 208 | } |
| 225 | 209 | ||
| 226 | } // namespace Core::Timing | 210 | } // namespace Core::Timing |