diff options
| author | 2019-09-09 21:37:29 -0400 | |
|---|---|---|
| committer | 2019-10-09 12:30:31 -0400 | |
| commit | 555866f8dcb98897688d5d7b0e6c6cca55ac069f (patch) | |
| tree | 287ffee685bd8fbd6a8a16aa02a198a6cab3ede3 /src/core/core_timing.cpp | |
| parent | Merge pull request #2921 from FreddyFunk/compiler-warnings-core (diff) | |
| download | yuzu-555866f8dcb98897688d5d7b0e6c6cca55ac069f.tar.gz yuzu-555866f8dcb98897688d5d7b0e6c6cca55ac069f.tar.xz yuzu-555866f8dcb98897688d5d7b0e6c6cca55ac069f.zip | |
Core Timing: Rework Core Timing to run all cores evenly.
Diffstat (limited to 'src/core/core_timing.cpp')
| -rw-r--r-- | src/core/core_timing.cpp | 66 |
1 files changed, 50 insertions, 16 deletions
diff --git a/src/core/core_timing.cpp b/src/core/core_timing.cpp index a58f7b131..6da2dcfb4 100644 --- a/src/core/core_timing.cpp +++ b/src/core/core_timing.cpp | |||
| @@ -15,7 +15,7 @@ | |||
| 15 | 15 | ||
| 16 | namespace Core::Timing { | 16 | namespace Core::Timing { |
| 17 | 17 | ||
| 18 | constexpr int MAX_SLICE_LENGTH = 20000; | 18 | constexpr int MAX_SLICE_LENGTH = 10000; |
| 19 | 19 | ||
| 20 | struct CoreTiming::Event { | 20 | struct CoreTiming::Event { |
| 21 | s64 time; | 21 | s64 time; |
| @@ -38,10 +38,14 @@ CoreTiming::CoreTiming() = default; | |||
| 38 | CoreTiming::~CoreTiming() = default; | 38 | CoreTiming::~CoreTiming() = default; |
| 39 | 39 | ||
| 40 | void CoreTiming::Initialize() { | 40 | void CoreTiming::Initialize() { |
| 41 | downcount = MAX_SLICE_LENGTH; | 41 | for (std::size_t core = 0; core < num_cpu_cores; core++) { |
| 42 | downcounts[core] = MAX_SLICE_LENGTH; | ||
| 43 | time_slice[core] = MAX_SLICE_LENGTH; | ||
| 44 | } | ||
| 42 | slice_length = MAX_SLICE_LENGTH; | 45 | slice_length = MAX_SLICE_LENGTH; |
| 43 | global_timer = 0; | 46 | global_timer = 0; |
| 44 | idled_cycles = 0; | 47 | idled_cycles = 0; |
| 48 | current_context = 0; | ||
| 45 | 49 | ||
| 46 | // The time between CoreTiming being initialized and the first call to Advance() is considered | 50 | // The time between CoreTiming being initialized and the first call to Advance() is considered |
| 47 | // the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before | 51 | // the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before |
| @@ -110,7 +114,7 @@ void CoreTiming::UnscheduleEvent(const EventType* event_type, u64 userdata) { | |||
| 110 | u64 CoreTiming::GetTicks() const { | 114 | u64 CoreTiming::GetTicks() const { |
| 111 | u64 ticks = static_cast<u64>(global_timer); | 115 | u64 ticks = static_cast<u64>(global_timer); |
| 112 | if (!is_global_timer_sane) { | 116 | if (!is_global_timer_sane) { |
| 113 | ticks += slice_length - downcount; | 117 | ticks += time_slice[current_context] - downcounts[current_context]; |
| 114 | } | 118 | } |
| 115 | return ticks; | 119 | return ticks; |
| 116 | } | 120 | } |
| @@ -120,7 +124,7 @@ u64 CoreTiming::GetIdleTicks() const { | |||
| 120 | } | 124 | } |
| 121 | 125 | ||
| 122 | void CoreTiming::AddTicks(u64 ticks) { | 126 | void CoreTiming::AddTicks(u64 ticks) { |
| 123 | downcount -= static_cast<int>(ticks); | 127 | downcounts[current_context] -= static_cast<s64>(ticks); |
| 124 | } | 128 | } |
| 125 | 129 | ||
| 126 | void CoreTiming::ClearPendingEvents() { | 130 | void CoreTiming::ClearPendingEvents() { |
| @@ -141,22 +145,36 @@ void CoreTiming::RemoveEvent(const EventType* event_type) { | |||
| 141 | 145 | ||
| 142 | void CoreTiming::ForceExceptionCheck(s64 cycles) { | 146 | void CoreTiming::ForceExceptionCheck(s64 cycles) { |
| 143 | cycles = std::max<s64>(0, cycles); | 147 | cycles = std::max<s64>(0, cycles); |
| 144 | if (downcount <= cycles) { | 148 | if (downcounts[current_context] <= cycles) { |
| 145 | return; | 149 | return; |
| 146 | } | 150 | } |
| 147 | 151 | ||
| 148 | // downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int | 152 | // downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int |
| 149 | // here. Account for cycles already executed by adjusting the g.slice_length | 153 | // here. Account for cycles already executed by adjusting the g.slice_length |
| 150 | slice_length -= downcount - static_cast<int>(cycles); | 154 | slice_length -= downcounts[current_context] - static_cast<int>(cycles); |
| 151 | downcount = static_cast<int>(cycles); | 155 | downcounts[current_context] = static_cast<int>(cycles); |
| 156 | } | ||
| 157 | |||
| 158 | std::optional<u64> CoreTiming::NextAvailableCore(const s64 needed_ticks) const { | ||
| 159 | const u64 original_context = current_context; | ||
| 160 | u64 next_context = (original_context + 1) % num_cpu_cores; | ||
| 161 | while (next_context != original_context) { | ||
| 162 | if (time_slice[next_context] >= needed_ticks) { | ||
| 163 | return {next_context}; | ||
| 164 | } else if (time_slice[next_context] >= 0) { | ||
| 165 | return {}; | ||
| 166 | } | ||
| 167 | next_context = (next_context + 1) % num_cpu_cores; | ||
| 168 | } | ||
| 169 | return {}; | ||
| 152 | } | 170 | } |
| 153 | 171 | ||
| 154 | void CoreTiming::Advance() { | 172 | void CoreTiming::Advance() { |
| 155 | std::unique_lock<std::mutex> guard(inner_mutex); | 173 | std::unique_lock<std::mutex> guard(inner_mutex); |
| 156 | 174 | ||
| 157 | const int cycles_executed = slice_length - downcount; | 175 | const int cycles_executed = time_slice[current_context] - downcounts[current_context]; |
| 176 | time_slice[current_context] = std::max<s64>(0, downcounts[current_context]); | ||
| 158 | global_timer += cycles_executed; | 177 | global_timer += cycles_executed; |
| 159 | slice_length = MAX_SLICE_LENGTH; | ||
| 160 | 178 | ||
| 161 | is_global_timer_sane = true; | 179 | is_global_timer_sane = true; |
| 162 | 180 | ||
| @@ -173,24 +191,40 @@ void CoreTiming::Advance() { | |||
| 173 | 191 | ||
| 174 | // Still events left (scheduled in the future) | 192 | // Still events left (scheduled in the future) |
| 175 | if (!event_queue.empty()) { | 193 | if (!event_queue.empty()) { |
| 176 | slice_length = static_cast<int>( | 194 | s64 needed_ticks = std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH); |
| 177 | std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH)); | 195 | const auto next_core = NextAvailableCore(needed_ticks); |
| 196 | if (next_core) { | ||
| 197 | downcounts[*next_core] = needed_ticks; | ||
| 198 | } | ||
| 178 | } | 199 | } |
| 179 | 200 | ||
| 180 | downcount = slice_length; | 201 | downcounts[current_context] = time_slice[current_context]; |
| 202 | } | ||
| 203 | |||
| 204 | void CoreTiming::ResetRun() { | ||
| 205 | for (std::size_t core = 0; core < num_cpu_cores; core++) { | ||
| 206 | downcounts[core] = MAX_SLICE_LENGTH; | ||
| 207 | time_slice[core] = MAX_SLICE_LENGTH; | ||
| 208 | } | ||
| 209 | current_context = 0; | ||
| 210 | // Still events left (scheduled in the future) | ||
| 211 | if (!event_queue.empty()) { | ||
| 212 | s64 needed_ticks = std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH); | ||
| 213 | downcounts[current_context] = needed_ticks; | ||
| 214 | } | ||
| 181 | } | 215 | } |
| 182 | 216 | ||
| 183 | void CoreTiming::Idle() { | 217 | void CoreTiming::Idle() { |
| 184 | idled_cycles += downcount; | 218 | idled_cycles += downcounts[current_context]; |
| 185 | downcount = 0; | 219 | downcounts[current_context] = 0; |
| 186 | } | 220 | } |
| 187 | 221 | ||
| 188 | std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const { | 222 | std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const { |
| 189 | return std::chrono::microseconds{GetTicks() * 1000000 / BASE_CLOCK_RATE}; | 223 | return std::chrono::microseconds{GetTicks() * 1000000 / BASE_CLOCK_RATE}; |
| 190 | } | 224 | } |
| 191 | 225 | ||
| 192 | int CoreTiming::GetDowncount() const { | 226 | s64 CoreTiming::GetDowncount() const { |
| 193 | return downcount; | 227 | return downcounts[current_context]; |
| 194 | } | 228 | } |
| 195 | 229 | ||
| 196 | } // namespace Core::Timing | 230 | } // namespace Core::Timing |