summaryrefslogtreecommitdiff
path: root/externals/FidelityFX-FSR
diff options
context:
space:
mode:
authorGravatar ameerj2021-10-23 23:35:02 -0400
committerGravatar Fernando Sahmkow2021-11-16 22:11:31 +0100
commit77b0812d69c05e5df998b03ffa57655973a452d3 (patch)
tree40c30ebbd8c075feff927c4e114bd5c3735ccb65 /externals/FidelityFX-FSR
parentvulkan: Implement FidelityFX Super Resolution (diff)
downloadyuzu-77b0812d69c05e5df998b03ffa57655973a452d3.tar.gz
yuzu-77b0812d69c05e5df998b03ffa57655973a452d3.tar.xz
yuzu-77b0812d69c05e5df998b03ffa57655973a452d3.zip
externals: Add only included ffx-fsr headers
The submodule adds a lot of unneeded bloat due its addition of samples that contain large media files that are difficult to compress.
Diffstat (limited to 'externals/FidelityFX-FSR')
-rw-r--r--externals/FidelityFX-FSR/ffx-fsr/ffx_a.h2656
-rw-r--r--externals/FidelityFX-FSR/ffx-fsr/ffx_fsr1.h1199
-rw-r--r--externals/FidelityFX-FSR/license.txt19
3 files changed, 3874 insertions, 0 deletions
diff --git a/externals/FidelityFX-FSR/ffx-fsr/ffx_a.h b/externals/FidelityFX-FSR/ffx-fsr/ffx_a.h
new file mode 100644
index 000000000..d04bff55c
--- /dev/null
+++ b/externals/FidelityFX-FSR/ffx-fsr/ffx_a.h
@@ -0,0 +1,2656 @@
1//==============================================================================================================================
2//
3// [A] SHADER PORTABILITY 1.20210629
4//
5//==============================================================================================================================
6// FidelityFX Super Resolution Sample
7//
8// Copyright (c) 2021 Advanced Micro Devices, Inc. All rights reserved.
9// Permission is hereby granted, free of charge, to any person obtaining a copy
10// of this software and associated documentation files(the "Software"), to deal
11// in the Software without restriction, including without limitation the rights
12// to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
13// copies of the Software, and to permit persons to whom the Software is
14// furnished to do so, subject to the following conditions :
15// The above copyright notice and this permission notice shall be included in
16// all copies or substantial portions of the Software.
17// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
20// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23// THE SOFTWARE.
24//------------------------------------------------------------------------------------------------------------------------------
25// MIT LICENSE
26// ===========
27// Copyright (c) 2014 Michal Drobot (for concepts used in "FLOAT APPROXIMATIONS").
28// -----------
29// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
30// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
31// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
32// Software is furnished to do so, subject to the following conditions:
33// -----------
34// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
35// Software.
36// -----------
37// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
38// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
39// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
40// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
41//------------------------------------------------------------------------------------------------------------------------------
42// ABOUT
43// =====
44// Common central point for high-level shading language and C portability for various shader headers.
45//------------------------------------------------------------------------------------------------------------------------------
46// DEFINES
47// =======
48// A_CPU ..... Include the CPU related code.
49// A_GPU ..... Include the GPU related code.
50// A_GLSL .... Using GLSL.
51// A_HLSL .... Using HLSL.
52// A_HLSL_6_2 Using HLSL 6.2 with new 'uint16_t' and related types (requires '-enable-16bit-types').
53// A_NO_16_BIT_CAST Don't use instructions that are not availabe in SPIR-V (needed for running A_HLSL_6_2 on Vulkan)
54// A_GCC ..... Using a GCC compatible compiler (else assume MSVC compatible compiler by default).
55// =======
56// A_BYTE .... Support 8-bit integer.
57// A_HALF .... Support 16-bit integer and floating point.
58// A_LONG .... Support 64-bit integer.
59// A_DUBL .... Support 64-bit floating point.
60// =======
61// A_WAVE .... Support wave-wide operations.
62//------------------------------------------------------------------------------------------------------------------------------
63// To get #include "ffx_a.h" working in GLSL use '#extension GL_GOOGLE_include_directive:require'.
64//------------------------------------------------------------------------------------------------------------------------------
65// SIMPLIFIED TYPE SYSTEM
66// ======================
67// - All ints will be unsigned with exception of when signed is required.
68// - Type naming simplified and shortened "A<type><#components>",
69// - H = 16-bit float (half)
70// - F = 32-bit float (float)
71// - D = 64-bit float (double)
72// - P = 1-bit integer (predicate, not using bool because 'B' is used for byte)
73// - B = 8-bit integer (byte)
74// - W = 16-bit integer (word)
75// - U = 32-bit integer (unsigned)
76// - L = 64-bit integer (long)
77// - Using "AS<type><#components>" for signed when required.
78//------------------------------------------------------------------------------------------------------------------------------
79// TODO
80// ====
81// - Make sure 'ALerp*(a,b,m)' does 'b*m+(-a*m+a)' (2 ops).
82//------------------------------------------------------------------------------------------------------------------------------
83// CHANGE LOG
84// ==========
85// 20200914 - Expanded wave ops and prx code.
86// 20200713 - Added [ZOL] section, fixed serious bugs in sRGB and Rec.709 color conversion code, etc.
87//==============================================================================================================================
88////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
89////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
90//_____________________________________________________________/\_______________________________________________________________
91//==============================================================================================================================
92// COMMON
93//==============================================================================================================================
94#define A_2PI 6.28318530718
95////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
96////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
97////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
98////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
99////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
100////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
101//_____________________________________________________________/\_______________________________________________________________
102//==============================================================================================================================
103//
104//
105// CPU
106//
107//
108//==============================================================================================================================
109#ifdef A_CPU
110 // Supporting user defined overrides.
111 #ifndef A_RESTRICT
112 #define A_RESTRICT __restrict
113 #endif
114//------------------------------------------------------------------------------------------------------------------------------
115 #ifndef A_STATIC
116 #define A_STATIC static
117 #endif
118//------------------------------------------------------------------------------------------------------------------------------
119 // Same types across CPU and GPU.
120 // Predicate uses 32-bit integer (C friendly bool).
121 typedef uint32_t AP1;
122 typedef float AF1;
123 typedef double AD1;
124 typedef uint8_t AB1;
125 typedef uint16_t AW1;
126 typedef uint32_t AU1;
127 typedef uint64_t AL1;
128 typedef int8_t ASB1;
129 typedef int16_t ASW1;
130 typedef int32_t ASU1;
131 typedef int64_t ASL1;
132//------------------------------------------------------------------------------------------------------------------------------
133 #define AD1_(a) ((AD1)(a))
134 #define AF1_(a) ((AF1)(a))
135 #define AL1_(a) ((AL1)(a))
136 #define AU1_(a) ((AU1)(a))
137//------------------------------------------------------------------------------------------------------------------------------
138 #define ASL1_(a) ((ASL1)(a))
139 #define ASU1_(a) ((ASU1)(a))
140//------------------------------------------------------------------------------------------------------------------------------
141 A_STATIC AU1 AU1_AF1(AF1 a){union{AF1 f;AU1 u;}bits;bits.f=a;return bits.u;}
142//------------------------------------------------------------------------------------------------------------------------------
143 #define A_TRUE 1
144 #define A_FALSE 0
145////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
146////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
147////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
148////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
149//_____________________________________________________________/\_______________________________________________________________
150//==============================================================================================================================
151//
152// CPU/GPU PORTING
153//
154//------------------------------------------------------------------------------------------------------------------------------
155// Get CPU and GPU to share all setup code, without duplicate code paths.
156// This uses a lower-case prefix for special vector constructs.
157// - In C restrict pointers are used.
158// - In the shading language, in/inout/out arguments are used.
159// This depends on the ability to access a vector value in both languages via array syntax (aka color[2]).
160//==============================================================================================================================
161////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
162////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
163//_____________________________________________________________/\_______________________________________________________________
164//==============================================================================================================================
165// VECTOR ARGUMENT/RETURN/INITIALIZATION PORTABILITY
166//==============================================================================================================================
167 #define retAD2 AD1 *A_RESTRICT
168 #define retAD3 AD1 *A_RESTRICT
169 #define retAD4 AD1 *A_RESTRICT
170 #define retAF2 AF1 *A_RESTRICT
171 #define retAF3 AF1 *A_RESTRICT
172 #define retAF4 AF1 *A_RESTRICT
173 #define retAL2 AL1 *A_RESTRICT
174 #define retAL3 AL1 *A_RESTRICT
175 #define retAL4 AL1 *A_RESTRICT
176 #define retAU2 AU1 *A_RESTRICT
177 #define retAU3 AU1 *A_RESTRICT
178 #define retAU4 AU1 *A_RESTRICT
179//------------------------------------------------------------------------------------------------------------------------------
180 #define inAD2 AD1 *A_RESTRICT
181 #define inAD3 AD1 *A_RESTRICT
182 #define inAD4 AD1 *A_RESTRICT
183 #define inAF2 AF1 *A_RESTRICT
184 #define inAF3 AF1 *A_RESTRICT
185 #define inAF4 AF1 *A_RESTRICT
186 #define inAL2 AL1 *A_RESTRICT
187 #define inAL3 AL1 *A_RESTRICT
188 #define inAL4 AL1 *A_RESTRICT
189 #define inAU2 AU1 *A_RESTRICT
190 #define inAU3 AU1 *A_RESTRICT
191 #define inAU4 AU1 *A_RESTRICT
192//------------------------------------------------------------------------------------------------------------------------------
193 #define inoutAD2 AD1 *A_RESTRICT
194 #define inoutAD3 AD1 *A_RESTRICT
195 #define inoutAD4 AD1 *A_RESTRICT
196 #define inoutAF2 AF1 *A_RESTRICT
197 #define inoutAF3 AF1 *A_RESTRICT
198 #define inoutAF4 AF1 *A_RESTRICT
199 #define inoutAL2 AL1 *A_RESTRICT
200 #define inoutAL3 AL1 *A_RESTRICT
201 #define inoutAL4 AL1 *A_RESTRICT
202 #define inoutAU2 AU1 *A_RESTRICT
203 #define inoutAU3 AU1 *A_RESTRICT
204 #define inoutAU4 AU1 *A_RESTRICT
205//------------------------------------------------------------------------------------------------------------------------------
206 #define outAD2 AD1 *A_RESTRICT
207 #define outAD3 AD1 *A_RESTRICT
208 #define outAD4 AD1 *A_RESTRICT
209 #define outAF2 AF1 *A_RESTRICT
210 #define outAF3 AF1 *A_RESTRICT
211 #define outAF4 AF1 *A_RESTRICT
212 #define outAL2 AL1 *A_RESTRICT
213 #define outAL3 AL1 *A_RESTRICT
214 #define outAL4 AL1 *A_RESTRICT
215 #define outAU2 AU1 *A_RESTRICT
216 #define outAU3 AU1 *A_RESTRICT
217 #define outAU4 AU1 *A_RESTRICT
218//------------------------------------------------------------------------------------------------------------------------------
219 #define varAD2(x) AD1 x[2]
220 #define varAD3(x) AD1 x[3]
221 #define varAD4(x) AD1 x[4]
222 #define varAF2(x) AF1 x[2]
223 #define varAF3(x) AF1 x[3]
224 #define varAF4(x) AF1 x[4]
225 #define varAL2(x) AL1 x[2]
226 #define varAL3(x) AL1 x[3]
227 #define varAL4(x) AL1 x[4]
228 #define varAU2(x) AU1 x[2]
229 #define varAU3(x) AU1 x[3]
230 #define varAU4(x) AU1 x[4]
231//------------------------------------------------------------------------------------------------------------------------------
232 #define initAD2(x,y) {x,y}
233 #define initAD3(x,y,z) {x,y,z}
234 #define initAD4(x,y,z,w) {x,y,z,w}
235 #define initAF2(x,y) {x,y}
236 #define initAF3(x,y,z) {x,y,z}
237 #define initAF4(x,y,z,w) {x,y,z,w}
238 #define initAL2(x,y) {x,y}
239 #define initAL3(x,y,z) {x,y,z}
240 #define initAL4(x,y,z,w) {x,y,z,w}
241 #define initAU2(x,y) {x,y}
242 #define initAU3(x,y,z) {x,y,z}
243 #define initAU4(x,y,z,w) {x,y,z,w}
244////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
245////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
246//_____________________________________________________________/\_______________________________________________________________
247//==============================================================================================================================
248// SCALAR RETURN OPS
249//------------------------------------------------------------------------------------------------------------------------------
250// TODO
251// ====
252// - Replace transcendentals with manual versions.
253//==============================================================================================================================
254 #ifdef A_GCC
255 A_STATIC AD1 AAbsD1(AD1 a){return __builtin_fabs(a);}
256 A_STATIC AF1 AAbsF1(AF1 a){return __builtin_fabsf(a);}
257 A_STATIC AU1 AAbsSU1(AU1 a){return AU1_(__builtin_abs(ASU1_(a)));}
258 A_STATIC AL1 AAbsSL1(AL1 a){return AL1_(__builtin_llabs(ASL1_(a)));}
259 #else
260 A_STATIC AD1 AAbsD1(AD1 a){return fabs(a);}
261 A_STATIC AF1 AAbsF1(AF1 a){return fabsf(a);}
262 A_STATIC AU1 AAbsSU1(AU1 a){return AU1_(abs(ASU1_(a)));}
263 A_STATIC AL1 AAbsSL1(AL1 a){return AL1_(labs((long)ASL1_(a)));}
264 #endif
265//------------------------------------------------------------------------------------------------------------------------------
266 #ifdef A_GCC
267 A_STATIC AD1 ACosD1(AD1 a){return __builtin_cos(a);}
268 A_STATIC AF1 ACosF1(AF1 a){return __builtin_cosf(a);}
269 #else
270 A_STATIC AD1 ACosD1(AD1 a){return cos(a);}
271 A_STATIC AF1 ACosF1(AF1 a){return cosf(a);}
272 #endif
273//------------------------------------------------------------------------------------------------------------------------------
274 A_STATIC AD1 ADotD2(inAD2 a,inAD2 b){return a[0]*b[0]+a[1]*b[1];}
275 A_STATIC AD1 ADotD3(inAD3 a,inAD3 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2];}
276 A_STATIC AD1 ADotD4(inAD4 a,inAD4 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2]+a[3]*b[3];}
277 A_STATIC AF1 ADotF2(inAF2 a,inAF2 b){return a[0]*b[0]+a[1]*b[1];}
278 A_STATIC AF1 ADotF3(inAF3 a,inAF3 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2];}
279 A_STATIC AF1 ADotF4(inAF4 a,inAF4 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2]+a[3]*b[3];}
280//------------------------------------------------------------------------------------------------------------------------------
281 #ifdef A_GCC
282 A_STATIC AD1 AExp2D1(AD1 a){return __builtin_exp2(a);}
283 A_STATIC AF1 AExp2F1(AF1 a){return __builtin_exp2f(a);}
284 #else
285 A_STATIC AD1 AExp2D1(AD1 a){return exp2(a);}
286 A_STATIC AF1 AExp2F1(AF1 a){return exp2f(a);}
287 #endif
288//------------------------------------------------------------------------------------------------------------------------------
289 #ifdef A_GCC
290 A_STATIC AD1 AFloorD1(AD1 a){return __builtin_floor(a);}
291 A_STATIC AF1 AFloorF1(AF1 a){return __builtin_floorf(a);}
292 #else
293 A_STATIC AD1 AFloorD1(AD1 a){return floor(a);}
294 A_STATIC AF1 AFloorF1(AF1 a){return floorf(a);}
295 #endif
296//------------------------------------------------------------------------------------------------------------------------------
297 A_STATIC AD1 ALerpD1(AD1 a,AD1 b,AD1 c){return b*c+(-a*c+a);}
298 A_STATIC AF1 ALerpF1(AF1 a,AF1 b,AF1 c){return b*c+(-a*c+a);}
299//------------------------------------------------------------------------------------------------------------------------------
300 #ifdef A_GCC
301 A_STATIC AD1 ALog2D1(AD1 a){return __builtin_log2(a);}
302 A_STATIC AF1 ALog2F1(AF1 a){return __builtin_log2f(a);}
303 #else
304 A_STATIC AD1 ALog2D1(AD1 a){return log2(a);}
305 A_STATIC AF1 ALog2F1(AF1 a){return log2f(a);}
306 #endif
307//------------------------------------------------------------------------------------------------------------------------------
308 A_STATIC AD1 AMaxD1(AD1 a,AD1 b){return a>b?a:b;}
309 A_STATIC AF1 AMaxF1(AF1 a,AF1 b){return a>b?a:b;}
310 A_STATIC AL1 AMaxL1(AL1 a,AL1 b){return a>b?a:b;}
311 A_STATIC AU1 AMaxU1(AU1 a,AU1 b){return a>b?a:b;}
312//------------------------------------------------------------------------------------------------------------------------------
313 // These follow the convention that A integer types don't have signage, until they are operated on.
314 A_STATIC AL1 AMaxSL1(AL1 a,AL1 b){return (ASL1_(a)>ASL1_(b))?a:b;}
315 A_STATIC AU1 AMaxSU1(AU1 a,AU1 b){return (ASU1_(a)>ASU1_(b))?a:b;}
316//------------------------------------------------------------------------------------------------------------------------------
317 A_STATIC AD1 AMinD1(AD1 a,AD1 b){return a<b?a:b;}
318 A_STATIC AF1 AMinF1(AF1 a,AF1 b){return a<b?a:b;}
319 A_STATIC AL1 AMinL1(AL1 a,AL1 b){return a<b?a:b;}
320 A_STATIC AU1 AMinU1(AU1 a,AU1 b){return a<b?a:b;}
321//------------------------------------------------------------------------------------------------------------------------------
322 A_STATIC AL1 AMinSL1(AL1 a,AL1 b){return (ASL1_(a)<ASL1_(b))?a:b;}
323 A_STATIC AU1 AMinSU1(AU1 a,AU1 b){return (ASU1_(a)<ASU1_(b))?a:b;}
324//------------------------------------------------------------------------------------------------------------------------------
325 A_STATIC AD1 ARcpD1(AD1 a){return 1.0/a;}
326 A_STATIC AF1 ARcpF1(AF1 a){return 1.0f/a;}
327//------------------------------------------------------------------------------------------------------------------------------
328 A_STATIC AL1 AShrSL1(AL1 a,AL1 b){return AL1_(ASL1_(a)>>ASL1_(b));}
329 A_STATIC AU1 AShrSU1(AU1 a,AU1 b){return AU1_(ASU1_(a)>>ASU1_(b));}
330//------------------------------------------------------------------------------------------------------------------------------
331 #ifdef A_GCC
332 A_STATIC AD1 ASinD1(AD1 a){return __builtin_sin(a);}
333 A_STATIC AF1 ASinF1(AF1 a){return __builtin_sinf(a);}
334 #else
335 A_STATIC AD1 ASinD1(AD1 a){return sin(a);}
336 A_STATIC AF1 ASinF1(AF1 a){return sinf(a);}
337 #endif
338//------------------------------------------------------------------------------------------------------------------------------
339 #ifdef A_GCC
340 A_STATIC AD1 ASqrtD1(AD1 a){return __builtin_sqrt(a);}
341 A_STATIC AF1 ASqrtF1(AF1 a){return __builtin_sqrtf(a);}
342 #else
343 A_STATIC AD1 ASqrtD1(AD1 a){return sqrt(a);}
344 A_STATIC AF1 ASqrtF1(AF1 a){return sqrtf(a);}
345 #endif
346////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
347////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
348//_____________________________________________________________/\_______________________________________________________________
349//==============================================================================================================================
350// SCALAR RETURN OPS - DEPENDENT
351//==============================================================================================================================
352 A_STATIC AD1 AClampD1(AD1 x,AD1 n,AD1 m){return AMaxD1(n,AMinD1(x,m));}
353 A_STATIC AF1 AClampF1(AF1 x,AF1 n,AF1 m){return AMaxF1(n,AMinF1(x,m));}
354//------------------------------------------------------------------------------------------------------------------------------
355 A_STATIC AD1 AFractD1(AD1 a){return a-AFloorD1(a);}
356 A_STATIC AF1 AFractF1(AF1 a){return a-AFloorF1(a);}
357//------------------------------------------------------------------------------------------------------------------------------
358 A_STATIC AD1 APowD1(AD1 a,AD1 b){return AExp2D1(b*ALog2D1(a));}
359 A_STATIC AF1 APowF1(AF1 a,AF1 b){return AExp2F1(b*ALog2F1(a));}
360//------------------------------------------------------------------------------------------------------------------------------
361 A_STATIC AD1 ARsqD1(AD1 a){return ARcpD1(ASqrtD1(a));}
362 A_STATIC AF1 ARsqF1(AF1 a){return ARcpF1(ASqrtF1(a));}
363//------------------------------------------------------------------------------------------------------------------------------
364 A_STATIC AD1 ASatD1(AD1 a){return AMinD1(1.0,AMaxD1(0.0,a));}
365 A_STATIC AF1 ASatF1(AF1 a){return AMinF1(1.0f,AMaxF1(0.0f,a));}
366////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
367////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
368//_____________________________________________________________/\_______________________________________________________________
369//==============================================================================================================================
370// VECTOR OPS
371//------------------------------------------------------------------------------------------------------------------------------
372// These are added as needed for production or prototyping, so not necessarily a complete set.
373// They follow a convention of taking in a destination and also returning the destination value to increase utility.
374//==============================================================================================================================
375 A_STATIC retAD2 opAAbsD2(outAD2 d,inAD2 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);return d;}
376 A_STATIC retAD3 opAAbsD3(outAD3 d,inAD3 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);d[2]=AAbsD1(a[2]);return d;}
377 A_STATIC retAD4 opAAbsD4(outAD4 d,inAD4 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);d[2]=AAbsD1(a[2]);d[3]=AAbsD1(a[3]);return d;}
378//------------------------------------------------------------------------------------------------------------------------------
379 A_STATIC retAF2 opAAbsF2(outAF2 d,inAF2 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);return d;}
380 A_STATIC retAF3 opAAbsF3(outAF3 d,inAF3 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);d[2]=AAbsF1(a[2]);return d;}
381 A_STATIC retAF4 opAAbsF4(outAF4 d,inAF4 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);d[2]=AAbsF1(a[2]);d[3]=AAbsF1(a[3]);return d;}
382//==============================================================================================================================
383 A_STATIC retAD2 opAAddD2(outAD2 d,inAD2 a,inAD2 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];return d;}
384 A_STATIC retAD3 opAAddD3(outAD3 d,inAD3 a,inAD3 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];return d;}
385 A_STATIC retAD4 opAAddD4(outAD4 d,inAD4 a,inAD4 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];d[3]=a[3]+b[3];return d;}
386//------------------------------------------------------------------------------------------------------------------------------
387 A_STATIC retAF2 opAAddF2(outAF2 d,inAF2 a,inAF2 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];return d;}
388 A_STATIC retAF3 opAAddF3(outAF3 d,inAF3 a,inAF3 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];return d;}
389 A_STATIC retAF4 opAAddF4(outAF4 d,inAF4 a,inAF4 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];d[3]=a[3]+b[3];return d;}
390//==============================================================================================================================
391 A_STATIC retAD2 opAAddOneD2(outAD2 d,inAD2 a,AD1 b){d[0]=a[0]+b;d[1]=a[1]+b;return d;}
392 A_STATIC retAD3 opAAddOneD3(outAD3 d,inAD3 a,AD1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;return d;}
393 A_STATIC retAD4 opAAddOneD4(outAD4 d,inAD4 a,AD1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;d[3]=a[3]+b;return d;}
394//------------------------------------------------------------------------------------------------------------------------------
395 A_STATIC retAF2 opAAddOneF2(outAF2 d,inAF2 a,AF1 b){d[0]=a[0]+b;d[1]=a[1]+b;return d;}
396 A_STATIC retAF3 opAAddOneF3(outAF3 d,inAF3 a,AF1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;return d;}
397 A_STATIC retAF4 opAAddOneF4(outAF4 d,inAF4 a,AF1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;d[3]=a[3]+b;return d;}
398//==============================================================================================================================
399 A_STATIC retAD2 opACpyD2(outAD2 d,inAD2 a){d[0]=a[0];d[1]=a[1];return d;}
400 A_STATIC retAD3 opACpyD3(outAD3 d,inAD3 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];return d;}
401 A_STATIC retAD4 opACpyD4(outAD4 d,inAD4 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];d[3]=a[3];return d;}
402//------------------------------------------------------------------------------------------------------------------------------
403 A_STATIC retAF2 opACpyF2(outAF2 d,inAF2 a){d[0]=a[0];d[1]=a[1];return d;}
404 A_STATIC retAF3 opACpyF3(outAF3 d,inAF3 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];return d;}
405 A_STATIC retAF4 opACpyF4(outAF4 d,inAF4 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];d[3]=a[3];return d;}
406//==============================================================================================================================
407 A_STATIC retAD2 opALerpD2(outAD2 d,inAD2 a,inAD2 b,inAD2 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);return d;}
408 A_STATIC retAD3 opALerpD3(outAD3 d,inAD3 a,inAD3 b,inAD3 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);d[2]=ALerpD1(a[2],b[2],c[2]);return d;}
409 A_STATIC retAD4 opALerpD4(outAD4 d,inAD4 a,inAD4 b,inAD4 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);d[2]=ALerpD1(a[2],b[2],c[2]);d[3]=ALerpD1(a[3],b[3],c[3]);return d;}
410//------------------------------------------------------------------------------------------------------------------------------
411 A_STATIC retAF2 opALerpF2(outAF2 d,inAF2 a,inAF2 b,inAF2 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);return d;}
412 A_STATIC retAF3 opALerpF3(outAF3 d,inAF3 a,inAF3 b,inAF3 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);d[2]=ALerpF1(a[2],b[2],c[2]);return d;}
413 A_STATIC retAF4 opALerpF4(outAF4 d,inAF4 a,inAF4 b,inAF4 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);d[2]=ALerpF1(a[2],b[2],c[2]);d[3]=ALerpF1(a[3],b[3],c[3]);return d;}
414//==============================================================================================================================
415 A_STATIC retAD2 opALerpOneD2(outAD2 d,inAD2 a,inAD2 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);return d;}
416 A_STATIC retAD3 opALerpOneD3(outAD3 d,inAD3 a,inAD3 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);d[2]=ALerpD1(a[2],b[2],c);return d;}
417 A_STATIC retAD4 opALerpOneD4(outAD4 d,inAD4 a,inAD4 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);d[2]=ALerpD1(a[2],b[2],c);d[3]=ALerpD1(a[3],b[3],c);return d;}
418//------------------------------------------------------------------------------------------------------------------------------
419 A_STATIC retAF2 opALerpOneF2(outAF2 d,inAF2 a,inAF2 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);return d;}
420 A_STATIC retAF3 opALerpOneF3(outAF3 d,inAF3 a,inAF3 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);d[2]=ALerpF1(a[2],b[2],c);return d;}
421 A_STATIC retAF4 opALerpOneF4(outAF4 d,inAF4 a,inAF4 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);d[2]=ALerpF1(a[2],b[2],c);d[3]=ALerpF1(a[3],b[3],c);return d;}
422//==============================================================================================================================
423 A_STATIC retAD2 opAMaxD2(outAD2 d,inAD2 a,inAD2 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);return d;}
424 A_STATIC retAD3 opAMaxD3(outAD3 d,inAD3 a,inAD3 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);d[2]=AMaxD1(a[2],b[2]);return d;}
425 A_STATIC retAD4 opAMaxD4(outAD4 d,inAD4 a,inAD4 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);d[2]=AMaxD1(a[2],b[2]);d[3]=AMaxD1(a[3],b[3]);return d;}
426//------------------------------------------------------------------------------------------------------------------------------
427 A_STATIC retAF2 opAMaxF2(outAF2 d,inAF2 a,inAF2 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);return d;}
428 A_STATIC retAF3 opAMaxF3(outAF3 d,inAF3 a,inAF3 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);d[2]=AMaxF1(a[2],b[2]);return d;}
429 A_STATIC retAF4 opAMaxF4(outAF4 d,inAF4 a,inAF4 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);d[2]=AMaxF1(a[2],b[2]);d[3]=AMaxF1(a[3],b[3]);return d;}
430//==============================================================================================================================
431 A_STATIC retAD2 opAMinD2(outAD2 d,inAD2 a,inAD2 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);return d;}
432 A_STATIC retAD3 opAMinD3(outAD3 d,inAD3 a,inAD3 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);d[2]=AMinD1(a[2],b[2]);return d;}
433 A_STATIC retAD4 opAMinD4(outAD4 d,inAD4 a,inAD4 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);d[2]=AMinD1(a[2],b[2]);d[3]=AMinD1(a[3],b[3]);return d;}
434//------------------------------------------------------------------------------------------------------------------------------
435 A_STATIC retAF2 opAMinF2(outAF2 d,inAF2 a,inAF2 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);return d;}
436 A_STATIC retAF3 opAMinF3(outAF3 d,inAF3 a,inAF3 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);d[2]=AMinF1(a[2],b[2]);return d;}
437 A_STATIC retAF4 opAMinF4(outAF4 d,inAF4 a,inAF4 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);d[2]=AMinF1(a[2],b[2]);d[3]=AMinF1(a[3],b[3]);return d;}
438//==============================================================================================================================
439 A_STATIC retAD2 opAMulD2(outAD2 d,inAD2 a,inAD2 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];return d;}
440 A_STATIC retAD3 opAMulD3(outAD3 d,inAD3 a,inAD3 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];return d;}
441 A_STATIC retAD4 opAMulD4(outAD4 d,inAD4 a,inAD4 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];d[3]=a[3]*b[3];return d;}
442//------------------------------------------------------------------------------------------------------------------------------
443 A_STATIC retAF2 opAMulF2(outAF2 d,inAF2 a,inAF2 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];return d;}
444 A_STATIC retAF3 opAMulF3(outAF3 d,inAF3 a,inAF3 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];return d;}
445 A_STATIC retAF4 opAMulF4(outAF4 d,inAF4 a,inAF4 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];d[3]=a[3]*b[3];return d;}
446//==============================================================================================================================
447 A_STATIC retAD2 opAMulOneD2(outAD2 d,inAD2 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;return d;}
448 A_STATIC retAD3 opAMulOneD3(outAD3 d,inAD3 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;return d;}
449 A_STATIC retAD4 opAMulOneD4(outAD4 d,inAD4 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;d[3]=a[3]*b;return d;}
450//------------------------------------------------------------------------------------------------------------------------------
451 A_STATIC retAF2 opAMulOneF2(outAF2 d,inAF2 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;return d;}
452 A_STATIC retAF3 opAMulOneF3(outAF3 d,inAF3 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;return d;}
453 A_STATIC retAF4 opAMulOneF4(outAF4 d,inAF4 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;d[3]=a[3]*b;return d;}
454//==============================================================================================================================
455 A_STATIC retAD2 opANegD2(outAD2 d,inAD2 a){d[0]=-a[0];d[1]=-a[1];return d;}
456 A_STATIC retAD3 opANegD3(outAD3 d,inAD3 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];return d;}
457 A_STATIC retAD4 opANegD4(outAD4 d,inAD4 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];d[3]=-a[3];return d;}
458//------------------------------------------------------------------------------------------------------------------------------
459 A_STATIC retAF2 opANegF2(outAF2 d,inAF2 a){d[0]=-a[0];d[1]=-a[1];return d;}
460 A_STATIC retAF3 opANegF3(outAF3 d,inAF3 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];return d;}
461 A_STATIC retAF4 opANegF4(outAF4 d,inAF4 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];d[3]=-a[3];return d;}
462//==============================================================================================================================
463 A_STATIC retAD2 opARcpD2(outAD2 d,inAD2 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);return d;}
464 A_STATIC retAD3 opARcpD3(outAD3 d,inAD3 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);d[2]=ARcpD1(a[2]);return d;}
465 A_STATIC retAD4 opARcpD4(outAD4 d,inAD4 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);d[2]=ARcpD1(a[2]);d[3]=ARcpD1(a[3]);return d;}
466//------------------------------------------------------------------------------------------------------------------------------
467 A_STATIC retAF2 opARcpF2(outAF2 d,inAF2 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);return d;}
468 A_STATIC retAF3 opARcpF3(outAF3 d,inAF3 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);d[2]=ARcpF1(a[2]);return d;}
469 A_STATIC retAF4 opARcpF4(outAF4 d,inAF4 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);d[2]=ARcpF1(a[2]);d[3]=ARcpF1(a[3]);return d;}
470////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
471////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
472//_____________________________________________________________/\_______________________________________________________________
473//==============================================================================================================================
474// HALF FLOAT PACKING
475//==============================================================================================================================
476 // Convert float to half (in lower 16-bits of output).
477 // Same fast technique as documented here: ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf
478 // Supports denormals.
479 // Conversion rules are to make computations possibly "safer" on the GPU,
480 // -INF & -NaN -> -65504
481 // +INF & +NaN -> +65504
482 A_STATIC AU1 AU1_AH1_AF1(AF1 f){
483 static AW1 base[512]={
484 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
485 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
486 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
487 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
488 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
489 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
490 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0001,0x0002,0x0004,0x0008,0x0010,0x0020,0x0040,0x0080,0x0100,
491 0x0200,0x0400,0x0800,0x0c00,0x1000,0x1400,0x1800,0x1c00,0x2000,0x2400,0x2800,0x2c00,0x3000,0x3400,0x3800,0x3c00,
492 0x4000,0x4400,0x4800,0x4c00,0x5000,0x5400,0x5800,0x5c00,0x6000,0x6400,0x6800,0x6c00,0x7000,0x7400,0x7800,0x7bff,
493 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
494 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
495 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
496 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
497 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
498 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
499 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
500 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,
501 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,
502 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,
503 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,
504 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,
505 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,
506 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8001,0x8002,0x8004,0x8008,0x8010,0x8020,0x8040,0x8080,0x8100,
507 0x8200,0x8400,0x8800,0x8c00,0x9000,0x9400,0x9800,0x9c00,0xa000,0xa400,0xa800,0xac00,0xb000,0xb400,0xb800,0xbc00,
508 0xc000,0xc400,0xc800,0xcc00,0xd000,0xd400,0xd800,0xdc00,0xe000,0xe400,0xe800,0xec00,0xf000,0xf400,0xf800,0xfbff,
509 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,
510 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,
511 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,
512 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,
513 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,
514 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,
515 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff};
516 static AB1 shift[512]={
517 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
518 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
519 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
520 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
521 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
522 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
523 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x17,0x16,0x15,0x14,0x13,0x12,0x11,0x10,0x0f,
524 0x0e,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,
525 0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x18,
526 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
527 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
528 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
529 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
530 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
531 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
532 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
533 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
534 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
535 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
536 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
537 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
538 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
539 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x17,0x16,0x15,0x14,0x13,0x12,0x11,0x10,0x0f,
540 0x0e,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,
541 0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x18,
542 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
543 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
544 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
545 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
546 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
547 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
548 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18};
549 union{AF1 f;AU1 u;}bits;bits.f=f;AU1 u=bits.u;AU1 i=u>>23;return (AU1)(base[i])+((u&0x7fffff)>>shift[i]);}
550//------------------------------------------------------------------------------------------------------------------------------
551 // Used to output packed constant.
552 A_STATIC AU1 AU1_AH2_AF2(inAF2 a){return AU1_AH1_AF1(a[0])+(AU1_AH1_AF1(a[1])<<16);}
553#endif
554////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
555////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
556////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
557////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
558////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
559////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
560//_____________________________________________________________/\_______________________________________________________________
561//==============================================================================================================================
562//
563//
564// GLSL
565//
566//
567//==============================================================================================================================
568#if defined(A_GLSL) && defined(A_GPU)
569 #ifndef A_SKIP_EXT
570 #ifdef A_HALF
571 #extension GL_EXT_shader_16bit_storage:require
572 #extension GL_EXT_shader_explicit_arithmetic_types:require
573 #endif
574//------------------------------------------------------------------------------------------------------------------------------
575 #ifdef A_LONG
576 #extension GL_ARB_gpu_shader_int64:require
577 #extension GL_NV_shader_atomic_int64:require
578 #endif
579//------------------------------------------------------------------------------------------------------------------------------
580 #ifdef A_WAVE
581 #extension GL_KHR_shader_subgroup_arithmetic:require
582 #extension GL_KHR_shader_subgroup_ballot:require
583 #extension GL_KHR_shader_subgroup_quad:require
584 #extension GL_KHR_shader_subgroup_shuffle:require
585 #endif
586 #endif
587//==============================================================================================================================
588 #define AP1 bool
589 #define AP2 bvec2
590 #define AP3 bvec3
591 #define AP4 bvec4
592//------------------------------------------------------------------------------------------------------------------------------
593 #define AF1 float
594 #define AF2 vec2
595 #define AF3 vec3
596 #define AF4 vec4
597//------------------------------------------------------------------------------------------------------------------------------
598 #define AU1 uint
599 #define AU2 uvec2
600 #define AU3 uvec3
601 #define AU4 uvec4
602//------------------------------------------------------------------------------------------------------------------------------
603 #define ASU1 int
604 #define ASU2 ivec2
605 #define ASU3 ivec3
606 #define ASU4 ivec4
607//==============================================================================================================================
608 #define AF1_AU1(x) uintBitsToFloat(AU1(x))
609 #define AF2_AU2(x) uintBitsToFloat(AU2(x))
610 #define AF3_AU3(x) uintBitsToFloat(AU3(x))
611 #define AF4_AU4(x) uintBitsToFloat(AU4(x))
612//------------------------------------------------------------------------------------------------------------------------------
613 #define AU1_AF1(x) floatBitsToUint(AF1(x))
614 #define AU2_AF2(x) floatBitsToUint(AF2(x))
615 #define AU3_AF3(x) floatBitsToUint(AF3(x))
616 #define AU4_AF4(x) floatBitsToUint(AF4(x))
617//------------------------------------------------------------------------------------------------------------------------------
618 AU1 AU1_AH1_AF1_x(AF1 a){return packHalf2x16(AF2(a,0.0));}
619 #define AU1_AH1_AF1(a) AU1_AH1_AF1_x(AF1(a))
620//------------------------------------------------------------------------------------------------------------------------------
621 #define AU1_AH2_AF2 packHalf2x16
622 #define AU1_AW2Unorm_AF2 packUnorm2x16
623 #define AU1_AB4Unorm_AF4 packUnorm4x8
624//------------------------------------------------------------------------------------------------------------------------------
625 #define AF2_AH2_AU1 unpackHalf2x16
626 #define AF2_AW2Unorm_AU1 unpackUnorm2x16
627 #define AF4_AB4Unorm_AU1 unpackUnorm4x8
628//==============================================================================================================================
629 AF1 AF1_x(AF1 a){return AF1(a);}
630 AF2 AF2_x(AF1 a){return AF2(a,a);}
631 AF3 AF3_x(AF1 a){return AF3(a,a,a);}
632 AF4 AF4_x(AF1 a){return AF4(a,a,a,a);}
633 #define AF1_(a) AF1_x(AF1(a))
634 #define AF2_(a) AF2_x(AF1(a))
635 #define AF3_(a) AF3_x(AF1(a))
636 #define AF4_(a) AF4_x(AF1(a))
637//------------------------------------------------------------------------------------------------------------------------------
638 AU1 AU1_x(AU1 a){return AU1(a);}
639 AU2 AU2_x(AU1 a){return AU2(a,a);}
640 AU3 AU3_x(AU1 a){return AU3(a,a,a);}
641 AU4 AU4_x(AU1 a){return AU4(a,a,a,a);}
642 #define AU1_(a) AU1_x(AU1(a))
643 #define AU2_(a) AU2_x(AU1(a))
644 #define AU3_(a) AU3_x(AU1(a))
645 #define AU4_(a) AU4_x(AU1(a))
646//==============================================================================================================================
647 AU1 AAbsSU1(AU1 a){return AU1(abs(ASU1(a)));}
648 AU2 AAbsSU2(AU2 a){return AU2(abs(ASU2(a)));}
649 AU3 AAbsSU3(AU3 a){return AU3(abs(ASU3(a)));}
650 AU4 AAbsSU4(AU4 a){return AU4(abs(ASU4(a)));}
651//------------------------------------------------------------------------------------------------------------------------------
652 AU1 ABfe(AU1 src,AU1 off,AU1 bits){return bitfieldExtract(src,ASU1(off),ASU1(bits));}
653 AU1 ABfi(AU1 src,AU1 ins,AU1 mask){return (ins&mask)|(src&(~mask));}
654 // Proxy for V_BFI_B32 where the 'mask' is set as 'bits', 'mask=(1<<bits)-1', and 'bits' needs to be an immediate.
655 AU1 ABfiM(AU1 src,AU1 ins,AU1 bits){return bitfieldInsert(src,ins,0,ASU1(bits));}
656//------------------------------------------------------------------------------------------------------------------------------
657 // V_MED3_F32.
658 AF1 AClampF1(AF1 x,AF1 n,AF1 m){return clamp(x,n,m);}
659 AF2 AClampF2(AF2 x,AF2 n,AF2 m){return clamp(x,n,m);}
660 AF3 AClampF3(AF3 x,AF3 n,AF3 m){return clamp(x,n,m);}
661 AF4 AClampF4(AF4 x,AF4 n,AF4 m){return clamp(x,n,m);}
662//------------------------------------------------------------------------------------------------------------------------------
663 // V_FRACT_F32 (note DX frac() is different).
664 AF1 AFractF1(AF1 x){return fract(x);}
665 AF2 AFractF2(AF2 x){return fract(x);}
666 AF3 AFractF3(AF3 x){return fract(x);}
667 AF4 AFractF4(AF4 x){return fract(x);}
668//------------------------------------------------------------------------------------------------------------------------------
669 AF1 ALerpF1(AF1 x,AF1 y,AF1 a){return mix(x,y,a);}
670 AF2 ALerpF2(AF2 x,AF2 y,AF2 a){return mix(x,y,a);}
671 AF3 ALerpF3(AF3 x,AF3 y,AF3 a){return mix(x,y,a);}
672 AF4 ALerpF4(AF4 x,AF4 y,AF4 a){return mix(x,y,a);}
673//------------------------------------------------------------------------------------------------------------------------------
674 // V_MAX3_F32.
675 AF1 AMax3F1(AF1 x,AF1 y,AF1 z){return max(x,max(y,z));}
676 AF2 AMax3F2(AF2 x,AF2 y,AF2 z){return max(x,max(y,z));}
677 AF3 AMax3F3(AF3 x,AF3 y,AF3 z){return max(x,max(y,z));}
678 AF4 AMax3F4(AF4 x,AF4 y,AF4 z){return max(x,max(y,z));}
679//------------------------------------------------------------------------------------------------------------------------------
680 AU1 AMax3SU1(AU1 x,AU1 y,AU1 z){return AU1(max(ASU1(x),max(ASU1(y),ASU1(z))));}
681 AU2 AMax3SU2(AU2 x,AU2 y,AU2 z){return AU2(max(ASU2(x),max(ASU2(y),ASU2(z))));}
682 AU3 AMax3SU3(AU3 x,AU3 y,AU3 z){return AU3(max(ASU3(x),max(ASU3(y),ASU3(z))));}
683 AU4 AMax3SU4(AU4 x,AU4 y,AU4 z){return AU4(max(ASU4(x),max(ASU4(y),ASU4(z))));}
684//------------------------------------------------------------------------------------------------------------------------------
685 AU1 AMax3U1(AU1 x,AU1 y,AU1 z){return max(x,max(y,z));}
686 AU2 AMax3U2(AU2 x,AU2 y,AU2 z){return max(x,max(y,z));}
687 AU3 AMax3U3(AU3 x,AU3 y,AU3 z){return max(x,max(y,z));}
688 AU4 AMax3U4(AU4 x,AU4 y,AU4 z){return max(x,max(y,z));}
689//------------------------------------------------------------------------------------------------------------------------------
690 AU1 AMaxSU1(AU1 a,AU1 b){return AU1(max(ASU1(a),ASU1(b)));}
691 AU2 AMaxSU2(AU2 a,AU2 b){return AU2(max(ASU2(a),ASU2(b)));}
692 AU3 AMaxSU3(AU3 a,AU3 b){return AU3(max(ASU3(a),ASU3(b)));}
693 AU4 AMaxSU4(AU4 a,AU4 b){return AU4(max(ASU4(a),ASU4(b)));}
694//------------------------------------------------------------------------------------------------------------------------------
695 // Clamp has an easier pattern match for med3 when some ordering is known.
696 // V_MED3_F32.
697 AF1 AMed3F1(AF1 x,AF1 y,AF1 z){return max(min(x,y),min(max(x,y),z));}
698 AF2 AMed3F2(AF2 x,AF2 y,AF2 z){return max(min(x,y),min(max(x,y),z));}
699 AF3 AMed3F3(AF3 x,AF3 y,AF3 z){return max(min(x,y),min(max(x,y),z));}
700 AF4 AMed3F4(AF4 x,AF4 y,AF4 z){return max(min(x,y),min(max(x,y),z));}
701//------------------------------------------------------------------------------------------------------------------------------
702 // V_MIN3_F32.
703 AF1 AMin3F1(AF1 x,AF1 y,AF1 z){return min(x,min(y,z));}
704 AF2 AMin3F2(AF2 x,AF2 y,AF2 z){return min(x,min(y,z));}
705 AF3 AMin3F3(AF3 x,AF3 y,AF3 z){return min(x,min(y,z));}
706 AF4 AMin3F4(AF4 x,AF4 y,AF4 z){return min(x,min(y,z));}
707//------------------------------------------------------------------------------------------------------------------------------
708 AU1 AMin3SU1(AU1 x,AU1 y,AU1 z){return AU1(min(ASU1(x),min(ASU1(y),ASU1(z))));}
709 AU2 AMin3SU2(AU2 x,AU2 y,AU2 z){return AU2(min(ASU2(x),min(ASU2(y),ASU2(z))));}
710 AU3 AMin3SU3(AU3 x,AU3 y,AU3 z){return AU3(min(ASU3(x),min(ASU3(y),ASU3(z))));}
711 AU4 AMin3SU4(AU4 x,AU4 y,AU4 z){return AU4(min(ASU4(x),min(ASU4(y),ASU4(z))));}
712//------------------------------------------------------------------------------------------------------------------------------
713 AU1 AMin3U1(AU1 x,AU1 y,AU1 z){return min(x,min(y,z));}
714 AU2 AMin3U2(AU2 x,AU2 y,AU2 z){return min(x,min(y,z));}
715 AU3 AMin3U3(AU3 x,AU3 y,AU3 z){return min(x,min(y,z));}
716 AU4 AMin3U4(AU4 x,AU4 y,AU4 z){return min(x,min(y,z));}
717//------------------------------------------------------------------------------------------------------------------------------
718 AU1 AMinSU1(AU1 a,AU1 b){return AU1(min(ASU1(a),ASU1(b)));}
719 AU2 AMinSU2(AU2 a,AU2 b){return AU2(min(ASU2(a),ASU2(b)));}
720 AU3 AMinSU3(AU3 a,AU3 b){return AU3(min(ASU3(a),ASU3(b)));}
721 AU4 AMinSU4(AU4 a,AU4 b){return AU4(min(ASU4(a),ASU4(b)));}
722//------------------------------------------------------------------------------------------------------------------------------
723 // Normalized trig. Valid input domain is {-256 to +256}. No GLSL compiler intrinsic exists to map to this currently.
724 // V_COS_F32.
725 AF1 ANCosF1(AF1 x){return cos(x*AF1_(A_2PI));}
726 AF2 ANCosF2(AF2 x){return cos(x*AF2_(A_2PI));}
727 AF3 ANCosF3(AF3 x){return cos(x*AF3_(A_2PI));}
728 AF4 ANCosF4(AF4 x){return cos(x*AF4_(A_2PI));}
729//------------------------------------------------------------------------------------------------------------------------------
730 // Normalized trig. Valid input domain is {-256 to +256}. No GLSL compiler intrinsic exists to map to this currently.
731 // V_SIN_F32.
732 AF1 ANSinF1(AF1 x){return sin(x*AF1_(A_2PI));}
733 AF2 ANSinF2(AF2 x){return sin(x*AF2_(A_2PI));}
734 AF3 ANSinF3(AF3 x){return sin(x*AF3_(A_2PI));}
735 AF4 ANSinF4(AF4 x){return sin(x*AF4_(A_2PI));}
736//------------------------------------------------------------------------------------------------------------------------------
737 AF1 ARcpF1(AF1 x){return AF1_(1.0)/x;}
738 AF2 ARcpF2(AF2 x){return AF2_(1.0)/x;}
739 AF3 ARcpF3(AF3 x){return AF3_(1.0)/x;}
740 AF4 ARcpF4(AF4 x){return AF4_(1.0)/x;}
741//------------------------------------------------------------------------------------------------------------------------------
742 AF1 ARsqF1(AF1 x){return AF1_(1.0)/sqrt(x);}
743 AF2 ARsqF2(AF2 x){return AF2_(1.0)/sqrt(x);}
744 AF3 ARsqF3(AF3 x){return AF3_(1.0)/sqrt(x);}
745 AF4 ARsqF4(AF4 x){return AF4_(1.0)/sqrt(x);}
746//------------------------------------------------------------------------------------------------------------------------------
747 AF1 ASatF1(AF1 x){return clamp(x,AF1_(0.0),AF1_(1.0));}
748 AF2 ASatF2(AF2 x){return clamp(x,AF2_(0.0),AF2_(1.0));}
749 AF3 ASatF3(AF3 x){return clamp(x,AF3_(0.0),AF3_(1.0));}
750 AF4 ASatF4(AF4 x){return clamp(x,AF4_(0.0),AF4_(1.0));}
751//------------------------------------------------------------------------------------------------------------------------------
752 AU1 AShrSU1(AU1 a,AU1 b){return AU1(ASU1(a)>>ASU1(b));}
753 AU2 AShrSU2(AU2 a,AU2 b){return AU2(ASU2(a)>>ASU2(b));}
754 AU3 AShrSU3(AU3 a,AU3 b){return AU3(ASU3(a)>>ASU3(b));}
755 AU4 AShrSU4(AU4 a,AU4 b){return AU4(ASU4(a)>>ASU4(b));}
756////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
757////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
758//_____________________________________________________________/\_______________________________________________________________
759//==============================================================================================================================
760// GLSL BYTE
761//==============================================================================================================================
762 #ifdef A_BYTE
763 #define AB1 uint8_t
764 #define AB2 u8vec2
765 #define AB3 u8vec3
766 #define AB4 u8vec4
767//------------------------------------------------------------------------------------------------------------------------------
768 #define ASB1 int8_t
769 #define ASB2 i8vec2
770 #define ASB3 i8vec3
771 #define ASB4 i8vec4
772//------------------------------------------------------------------------------------------------------------------------------
773 AB1 AB1_x(AB1 a){return AB1(a);}
774 AB2 AB2_x(AB1 a){return AB2(a,a);}
775 AB3 AB3_x(AB1 a){return AB3(a,a,a);}
776 AB4 AB4_x(AB1 a){return AB4(a,a,a,a);}
777 #define AB1_(a) AB1_x(AB1(a))
778 #define AB2_(a) AB2_x(AB1(a))
779 #define AB3_(a) AB3_x(AB1(a))
780 #define AB4_(a) AB4_x(AB1(a))
781 #endif
782////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
783////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
784//_____________________________________________________________/\_______________________________________________________________
785//==============================================================================================================================
786// GLSL HALF
787//==============================================================================================================================
788 #ifdef A_HALF
789 #define AH1 float16_t
790 #define AH2 f16vec2
791 #define AH3 f16vec3
792 #define AH4 f16vec4
793//------------------------------------------------------------------------------------------------------------------------------
794 #define AW1 uint16_t
795 #define AW2 u16vec2
796 #define AW3 u16vec3
797 #define AW4 u16vec4
798//------------------------------------------------------------------------------------------------------------------------------
799 #define ASW1 int16_t
800 #define ASW2 i16vec2
801 #define ASW3 i16vec3
802 #define ASW4 i16vec4
803//==============================================================================================================================
804 #define AH2_AU1(x) unpackFloat2x16(AU1(x))
805 AH4 AH4_AU2_x(AU2 x){return AH4(unpackFloat2x16(x.x),unpackFloat2x16(x.y));}
806 #define AH4_AU2(x) AH4_AU2_x(AU2(x))
807 #define AW2_AU1(x) unpackUint2x16(AU1(x))
808 #define AW4_AU2(x) unpackUint4x16(pack64(AU2(x)))
809//------------------------------------------------------------------------------------------------------------------------------
810 #define AU1_AH2(x) packFloat2x16(AH2(x))
811 AU2 AU2_AH4_x(AH4 x){return AU2(packFloat2x16(x.xy),packFloat2x16(x.zw));}
812 #define AU2_AH4(x) AU2_AH4_x(AH4(x))
813 #define AU1_AW2(x) packUint2x16(AW2(x))
814 #define AU2_AW4(x) unpack32(packUint4x16(AW4(x)))
815//==============================================================================================================================
816 #define AW1_AH1(x) halfBitsToUint16(AH1(x))
817 #define AW2_AH2(x) halfBitsToUint16(AH2(x))
818 #define AW3_AH3(x) halfBitsToUint16(AH3(x))
819 #define AW4_AH4(x) halfBitsToUint16(AH4(x))
820//------------------------------------------------------------------------------------------------------------------------------
821 #define AH1_AW1(x) uint16BitsToHalf(AW1(x))
822 #define AH2_AW2(x) uint16BitsToHalf(AW2(x))
823 #define AH3_AW3(x) uint16BitsToHalf(AW3(x))
824 #define AH4_AW4(x) uint16BitsToHalf(AW4(x))
825//==============================================================================================================================
826 AH1 AH1_x(AH1 a){return AH1(a);}
827 AH2 AH2_x(AH1 a){return AH2(a,a);}
828 AH3 AH3_x(AH1 a){return AH3(a,a,a);}
829 AH4 AH4_x(AH1 a){return AH4(a,a,a,a);}
830 #define AH1_(a) AH1_x(AH1(a))
831 #define AH2_(a) AH2_x(AH1(a))
832 #define AH3_(a) AH3_x(AH1(a))
833 #define AH4_(a) AH4_x(AH1(a))
834//------------------------------------------------------------------------------------------------------------------------------
835 AW1 AW1_x(AW1 a){return AW1(a);}
836 AW2 AW2_x(AW1 a){return AW2(a,a);}
837 AW3 AW3_x(AW1 a){return AW3(a,a,a);}
838 AW4 AW4_x(AW1 a){return AW4(a,a,a,a);}
839 #define AW1_(a) AW1_x(AW1(a))
840 #define AW2_(a) AW2_x(AW1(a))
841 #define AW3_(a) AW3_x(AW1(a))
842 #define AW4_(a) AW4_x(AW1(a))
843//==============================================================================================================================
844 AW1 AAbsSW1(AW1 a){return AW1(abs(ASW1(a)));}
845 AW2 AAbsSW2(AW2 a){return AW2(abs(ASW2(a)));}
846 AW3 AAbsSW3(AW3 a){return AW3(abs(ASW3(a)));}
847 AW4 AAbsSW4(AW4 a){return AW4(abs(ASW4(a)));}
848//------------------------------------------------------------------------------------------------------------------------------
849 AH1 AClampH1(AH1 x,AH1 n,AH1 m){return clamp(x,n,m);}
850 AH2 AClampH2(AH2 x,AH2 n,AH2 m){return clamp(x,n,m);}
851 AH3 AClampH3(AH3 x,AH3 n,AH3 m){return clamp(x,n,m);}
852 AH4 AClampH4(AH4 x,AH4 n,AH4 m){return clamp(x,n,m);}
853//------------------------------------------------------------------------------------------------------------------------------
854 AH1 AFractH1(AH1 x){return fract(x);}
855 AH2 AFractH2(AH2 x){return fract(x);}
856 AH3 AFractH3(AH3 x){return fract(x);}
857 AH4 AFractH4(AH4 x){return fract(x);}
858//------------------------------------------------------------------------------------------------------------------------------
859 AH1 ALerpH1(AH1 x,AH1 y,AH1 a){return mix(x,y,a);}
860 AH2 ALerpH2(AH2 x,AH2 y,AH2 a){return mix(x,y,a);}
861 AH3 ALerpH3(AH3 x,AH3 y,AH3 a){return mix(x,y,a);}
862 AH4 ALerpH4(AH4 x,AH4 y,AH4 a){return mix(x,y,a);}
863//------------------------------------------------------------------------------------------------------------------------------
864 // No packed version of max3.
865 AH1 AMax3H1(AH1 x,AH1 y,AH1 z){return max(x,max(y,z));}
866 AH2 AMax3H2(AH2 x,AH2 y,AH2 z){return max(x,max(y,z));}
867 AH3 AMax3H3(AH3 x,AH3 y,AH3 z){return max(x,max(y,z));}
868 AH4 AMax3H4(AH4 x,AH4 y,AH4 z){return max(x,max(y,z));}
869//------------------------------------------------------------------------------------------------------------------------------
870 AW1 AMaxSW1(AW1 a,AW1 b){return AW1(max(ASU1(a),ASU1(b)));}
871 AW2 AMaxSW2(AW2 a,AW2 b){return AW2(max(ASU2(a),ASU2(b)));}
872 AW3 AMaxSW3(AW3 a,AW3 b){return AW3(max(ASU3(a),ASU3(b)));}
873 AW4 AMaxSW4(AW4 a,AW4 b){return AW4(max(ASU4(a),ASU4(b)));}
874//------------------------------------------------------------------------------------------------------------------------------
875 // No packed version of min3.
876 AH1 AMin3H1(AH1 x,AH1 y,AH1 z){return min(x,min(y,z));}
877 AH2 AMin3H2(AH2 x,AH2 y,AH2 z){return min(x,min(y,z));}
878 AH3 AMin3H3(AH3 x,AH3 y,AH3 z){return min(x,min(y,z));}
879 AH4 AMin3H4(AH4 x,AH4 y,AH4 z){return min(x,min(y,z));}
880//------------------------------------------------------------------------------------------------------------------------------
881 AW1 AMinSW1(AW1 a,AW1 b){return AW1(min(ASU1(a),ASU1(b)));}
882 AW2 AMinSW2(AW2 a,AW2 b){return AW2(min(ASU2(a),ASU2(b)));}
883 AW3 AMinSW3(AW3 a,AW3 b){return AW3(min(ASU3(a),ASU3(b)));}
884 AW4 AMinSW4(AW4 a,AW4 b){return AW4(min(ASU4(a),ASU4(b)));}
885//------------------------------------------------------------------------------------------------------------------------------
886 AH1 ARcpH1(AH1 x){return AH1_(1.0)/x;}
887 AH2 ARcpH2(AH2 x){return AH2_(1.0)/x;}
888 AH3 ARcpH3(AH3 x){return AH3_(1.0)/x;}
889 AH4 ARcpH4(AH4 x){return AH4_(1.0)/x;}
890//------------------------------------------------------------------------------------------------------------------------------
891 AH1 ARsqH1(AH1 x){return AH1_(1.0)/sqrt(x);}
892 AH2 ARsqH2(AH2 x){return AH2_(1.0)/sqrt(x);}
893 AH3 ARsqH3(AH3 x){return AH3_(1.0)/sqrt(x);}
894 AH4 ARsqH4(AH4 x){return AH4_(1.0)/sqrt(x);}
895//------------------------------------------------------------------------------------------------------------------------------
896 AH1 ASatH1(AH1 x){return clamp(x,AH1_(0.0),AH1_(1.0));}
897 AH2 ASatH2(AH2 x){return clamp(x,AH2_(0.0),AH2_(1.0));}
898 AH3 ASatH3(AH3 x){return clamp(x,AH3_(0.0),AH3_(1.0));}
899 AH4 ASatH4(AH4 x){return clamp(x,AH4_(0.0),AH4_(1.0));}
900//------------------------------------------------------------------------------------------------------------------------------
901 AW1 AShrSW1(AW1 a,AW1 b){return AW1(ASW1(a)>>ASW1(b));}
902 AW2 AShrSW2(AW2 a,AW2 b){return AW2(ASW2(a)>>ASW2(b));}
903 AW3 AShrSW3(AW3 a,AW3 b){return AW3(ASW3(a)>>ASW3(b));}
904 AW4 AShrSW4(AW4 a,AW4 b){return AW4(ASW4(a)>>ASW4(b));}
905 #endif
906////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
907////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
908//_____________________________________________________________/\_______________________________________________________________
909//==============================================================================================================================
910// GLSL DOUBLE
911//==============================================================================================================================
912 #ifdef A_DUBL
913 #define AD1 double
914 #define AD2 dvec2
915 #define AD3 dvec3
916 #define AD4 dvec4
917//------------------------------------------------------------------------------------------------------------------------------
918 AD1 AD1_x(AD1 a){return AD1(a);}
919 AD2 AD2_x(AD1 a){return AD2(a,a);}
920 AD3 AD3_x(AD1 a){return AD3(a,a,a);}
921 AD4 AD4_x(AD1 a){return AD4(a,a,a,a);}
922 #define AD1_(a) AD1_x(AD1(a))
923 #define AD2_(a) AD2_x(AD1(a))
924 #define AD3_(a) AD3_x(AD1(a))
925 #define AD4_(a) AD4_x(AD1(a))
926//==============================================================================================================================
927 AD1 AFractD1(AD1 x){return fract(x);}
928 AD2 AFractD2(AD2 x){return fract(x);}
929 AD3 AFractD3(AD3 x){return fract(x);}
930 AD4 AFractD4(AD4 x){return fract(x);}
931//------------------------------------------------------------------------------------------------------------------------------
932 AD1 ALerpD1(AD1 x,AD1 y,AD1 a){return mix(x,y,a);}
933 AD2 ALerpD2(AD2 x,AD2 y,AD2 a){return mix(x,y,a);}
934 AD3 ALerpD3(AD3 x,AD3 y,AD3 a){return mix(x,y,a);}
935 AD4 ALerpD4(AD4 x,AD4 y,AD4 a){return mix(x,y,a);}
936//------------------------------------------------------------------------------------------------------------------------------
937 AD1 ARcpD1(AD1 x){return AD1_(1.0)/x;}
938 AD2 ARcpD2(AD2 x){return AD2_(1.0)/x;}
939 AD3 ARcpD3(AD3 x){return AD3_(1.0)/x;}
940 AD4 ARcpD4(AD4 x){return AD4_(1.0)/x;}
941//------------------------------------------------------------------------------------------------------------------------------
942 AD1 ARsqD1(AD1 x){return AD1_(1.0)/sqrt(x);}
943 AD2 ARsqD2(AD2 x){return AD2_(1.0)/sqrt(x);}
944 AD3 ARsqD3(AD3 x){return AD3_(1.0)/sqrt(x);}
945 AD4 ARsqD4(AD4 x){return AD4_(1.0)/sqrt(x);}
946//------------------------------------------------------------------------------------------------------------------------------
947 AD1 ASatD1(AD1 x){return clamp(x,AD1_(0.0),AD1_(1.0));}
948 AD2 ASatD2(AD2 x){return clamp(x,AD2_(0.0),AD2_(1.0));}
949 AD3 ASatD3(AD3 x){return clamp(x,AD3_(0.0),AD3_(1.0));}
950 AD4 ASatD4(AD4 x){return clamp(x,AD4_(0.0),AD4_(1.0));}
951 #endif
952////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
953////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
954//_____________________________________________________________/\_______________________________________________________________
955//==============================================================================================================================
956// GLSL LONG
957//==============================================================================================================================
958 #ifdef A_LONG
959 #define AL1 uint64_t
960 #define AL2 u64vec2
961 #define AL3 u64vec3
962 #define AL4 u64vec4
963//------------------------------------------------------------------------------------------------------------------------------
964 #define ASL1 int64_t
965 #define ASL2 i64vec2
966 #define ASL3 i64vec3
967 #define ASL4 i64vec4
968//------------------------------------------------------------------------------------------------------------------------------
969 #define AL1_AU2(x) packUint2x32(AU2(x))
970 #define AU2_AL1(x) unpackUint2x32(AL1(x))
971//------------------------------------------------------------------------------------------------------------------------------
972 AL1 AL1_x(AL1 a){return AL1(a);}
973 AL2 AL2_x(AL1 a){return AL2(a,a);}
974 AL3 AL3_x(AL1 a){return AL3(a,a,a);}
975 AL4 AL4_x(AL1 a){return AL4(a,a,a,a);}
976 #define AL1_(a) AL1_x(AL1(a))
977 #define AL2_(a) AL2_x(AL1(a))
978 #define AL3_(a) AL3_x(AL1(a))
979 #define AL4_(a) AL4_x(AL1(a))
980//==============================================================================================================================
981 AL1 AAbsSL1(AL1 a){return AL1(abs(ASL1(a)));}
982 AL2 AAbsSL2(AL2 a){return AL2(abs(ASL2(a)));}
983 AL3 AAbsSL3(AL3 a){return AL3(abs(ASL3(a)));}
984 AL4 AAbsSL4(AL4 a){return AL4(abs(ASL4(a)));}
985//------------------------------------------------------------------------------------------------------------------------------
986 AL1 AMaxSL1(AL1 a,AL1 b){return AL1(max(ASU1(a),ASU1(b)));}
987 AL2 AMaxSL2(AL2 a,AL2 b){return AL2(max(ASU2(a),ASU2(b)));}
988 AL3 AMaxSL3(AL3 a,AL3 b){return AL3(max(ASU3(a),ASU3(b)));}
989 AL4 AMaxSL4(AL4 a,AL4 b){return AL4(max(ASU4(a),ASU4(b)));}
990//------------------------------------------------------------------------------------------------------------------------------
991 AL1 AMinSL1(AL1 a,AL1 b){return AL1(min(ASU1(a),ASU1(b)));}
992 AL2 AMinSL2(AL2 a,AL2 b){return AL2(min(ASU2(a),ASU2(b)));}
993 AL3 AMinSL3(AL3 a,AL3 b){return AL3(min(ASU3(a),ASU3(b)));}
994 AL4 AMinSL4(AL4 a,AL4 b){return AL4(min(ASU4(a),ASU4(b)));}
995 #endif
996////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
997////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
998//_____________________________________________________________/\_______________________________________________________________
999//==============================================================================================================================
1000// WAVE OPERATIONS
1001//==============================================================================================================================
1002 #ifdef A_WAVE
1003 // Where 'x' must be a compile time literal.
1004 AF1 AWaveXorF1(AF1 v,AU1 x){return subgroupShuffleXor(v,x);}
1005 AF2 AWaveXorF2(AF2 v,AU1 x){return subgroupShuffleXor(v,x);}
1006 AF3 AWaveXorF3(AF3 v,AU1 x){return subgroupShuffleXor(v,x);}
1007 AF4 AWaveXorF4(AF4 v,AU1 x){return subgroupShuffleXor(v,x);}
1008 AU1 AWaveXorU1(AU1 v,AU1 x){return subgroupShuffleXor(v,x);}
1009 AU2 AWaveXorU2(AU2 v,AU1 x){return subgroupShuffleXor(v,x);}
1010 AU3 AWaveXorU3(AU3 v,AU1 x){return subgroupShuffleXor(v,x);}
1011 AU4 AWaveXorU4(AU4 v,AU1 x){return subgroupShuffleXor(v,x);}
1012//------------------------------------------------------------------------------------------------------------------------------
1013 #ifdef A_HALF
1014 AH2 AWaveXorH2(AH2 v,AU1 x){return AH2_AU1(subgroupShuffleXor(AU1_AH2(v),x));}
1015 AH4 AWaveXorH4(AH4 v,AU1 x){return AH4_AU2(subgroupShuffleXor(AU2_AH4(v),x));}
1016 AW2 AWaveXorW2(AW2 v,AU1 x){return AW2_AU1(subgroupShuffleXor(AU1_AW2(v),x));}
1017 AW4 AWaveXorW4(AW4 v,AU1 x){return AW4_AU2(subgroupShuffleXor(AU2_AW4(v),x));}
1018 #endif
1019 #endif
1020//==============================================================================================================================
1021#endif
1022////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1023////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1024////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1025////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1026////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1027////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1028//_____________________________________________________________/\_______________________________________________________________
1029//==============================================================================================================================
1030//
1031//
1032// HLSL
1033//
1034//
1035//==============================================================================================================================
1036#if defined(A_HLSL) && defined(A_GPU)
1037 #ifdef A_HLSL_6_2
1038 #define AP1 bool
1039 #define AP2 bool2
1040 #define AP3 bool3
1041 #define AP4 bool4
1042//------------------------------------------------------------------------------------------------------------------------------
1043 #define AF1 float32_t
1044 #define AF2 float32_t2
1045 #define AF3 float32_t3
1046 #define AF4 float32_t4
1047//------------------------------------------------------------------------------------------------------------------------------
1048 #define AU1 uint32_t
1049 #define AU2 uint32_t2
1050 #define AU3 uint32_t3
1051 #define AU4 uint32_t4
1052//------------------------------------------------------------------------------------------------------------------------------
1053 #define ASU1 int32_t
1054 #define ASU2 int32_t2
1055 #define ASU3 int32_t3
1056 #define ASU4 int32_t4
1057 #else
1058 #define AP1 bool
1059 #define AP2 bool2
1060 #define AP3 bool3
1061 #define AP4 bool4
1062//------------------------------------------------------------------------------------------------------------------------------
1063 #define AF1 float
1064 #define AF2 float2
1065 #define AF3 float3
1066 #define AF4 float4
1067//------------------------------------------------------------------------------------------------------------------------------
1068 #define AU1 uint
1069 #define AU2 uint2
1070 #define AU3 uint3
1071 #define AU4 uint4
1072//------------------------------------------------------------------------------------------------------------------------------
1073 #define ASU1 int
1074 #define ASU2 int2
1075 #define ASU3 int3
1076 #define ASU4 int4
1077 #endif
1078//==============================================================================================================================
1079 #define AF1_AU1(x) asfloat(AU1(x))
1080 #define AF2_AU2(x) asfloat(AU2(x))
1081 #define AF3_AU3(x) asfloat(AU3(x))
1082 #define AF4_AU4(x) asfloat(AU4(x))
1083//------------------------------------------------------------------------------------------------------------------------------
1084 #define AU1_AF1(x) asuint(AF1(x))
1085 #define AU2_AF2(x) asuint(AF2(x))
1086 #define AU3_AF3(x) asuint(AF3(x))
1087 #define AU4_AF4(x) asuint(AF4(x))
1088//------------------------------------------------------------------------------------------------------------------------------
1089 AU1 AU1_AH1_AF1_x(AF1 a){return f32tof16(a);}
1090 #define AU1_AH1_AF1(a) AU1_AH1_AF1_x(AF1(a))
1091//------------------------------------------------------------------------------------------------------------------------------
1092 AU1 AU1_AH2_AF2_x(AF2 a){return f32tof16(a.x)|(f32tof16(a.y)<<16);}
1093 #define AU1_AH2_AF2(a) AU1_AH2_AF2_x(AF2(a))
1094 #define AU1_AB4Unorm_AF4(x) D3DCOLORtoUBYTE4(AF4(x))
1095//------------------------------------------------------------------------------------------------------------------------------
1096 AF2 AF2_AH2_AU1_x(AU1 x){return AF2(f16tof32(x&0xFFFF),f16tof32(x>>16));}
1097 #define AF2_AH2_AU1(x) AF2_AH2_AU1_x(AU1(x))
1098//==============================================================================================================================
1099 AF1 AF1_x(AF1 a){return AF1(a);}
1100 AF2 AF2_x(AF1 a){return AF2(a,a);}
1101 AF3 AF3_x(AF1 a){return AF3(a,a,a);}
1102 AF4 AF4_x(AF1 a){return AF4(a,a,a,a);}
1103 #define AF1_(a) AF1_x(AF1(a))
1104 #define AF2_(a) AF2_x(AF1(a))
1105 #define AF3_(a) AF3_x(AF1(a))
1106 #define AF4_(a) AF4_x(AF1(a))
1107//------------------------------------------------------------------------------------------------------------------------------
1108 AU1 AU1_x(AU1 a){return AU1(a);}
1109 AU2 AU2_x(AU1 a){return AU2(a,a);}
1110 AU3 AU3_x(AU1 a){return AU3(a,a,a);}
1111 AU4 AU4_x(AU1 a){return AU4(a,a,a,a);}
1112 #define AU1_(a) AU1_x(AU1(a))
1113 #define AU2_(a) AU2_x(AU1(a))
1114 #define AU3_(a) AU3_x(AU1(a))
1115 #define AU4_(a) AU4_x(AU1(a))
1116//==============================================================================================================================
1117 AU1 AAbsSU1(AU1 a){return AU1(abs(ASU1(a)));}
1118 AU2 AAbsSU2(AU2 a){return AU2(abs(ASU2(a)));}
1119 AU3 AAbsSU3(AU3 a){return AU3(abs(ASU3(a)));}
1120 AU4 AAbsSU4(AU4 a){return AU4(abs(ASU4(a)));}
1121//------------------------------------------------------------------------------------------------------------------------------
1122 AU1 ABfe(AU1 src,AU1 off,AU1 bits){AU1 mask=(1u<<bits)-1;return (src>>off)&mask;}
1123 AU1 ABfi(AU1 src,AU1 ins,AU1 mask){return (ins&mask)|(src&(~mask));}
1124 AU1 ABfiM(AU1 src,AU1 ins,AU1 bits){AU1 mask=(1u<<bits)-1;return (ins&mask)|(src&(~mask));}
1125//------------------------------------------------------------------------------------------------------------------------------
1126 AF1 AClampF1(AF1 x,AF1 n,AF1 m){return max(n,min(x,m));}
1127 AF2 AClampF2(AF2 x,AF2 n,AF2 m){return max(n,min(x,m));}
1128 AF3 AClampF3(AF3 x,AF3 n,AF3 m){return max(n,min(x,m));}
1129 AF4 AClampF4(AF4 x,AF4 n,AF4 m){return max(n,min(x,m));}
1130//------------------------------------------------------------------------------------------------------------------------------
1131 AF1 AFractF1(AF1 x){return x-floor(x);}
1132 AF2 AFractF2(AF2 x){return x-floor(x);}
1133 AF3 AFractF3(AF3 x){return x-floor(x);}
1134 AF4 AFractF4(AF4 x){return x-floor(x);}
1135//------------------------------------------------------------------------------------------------------------------------------
1136 AF1 ALerpF1(AF1 x,AF1 y,AF1 a){return lerp(x,y,a);}
1137 AF2 ALerpF2(AF2 x,AF2 y,AF2 a){return lerp(x,y,a);}
1138 AF3 ALerpF3(AF3 x,AF3 y,AF3 a){return lerp(x,y,a);}
1139 AF4 ALerpF4(AF4 x,AF4 y,AF4 a){return lerp(x,y,a);}
1140//------------------------------------------------------------------------------------------------------------------------------
1141 AF1 AMax3F1(AF1 x,AF1 y,AF1 z){return max(x,max(y,z));}
1142 AF2 AMax3F2(AF2 x,AF2 y,AF2 z){return max(x,max(y,z));}
1143 AF3 AMax3F3(AF3 x,AF3 y,AF3 z){return max(x,max(y,z));}
1144 AF4 AMax3F4(AF4 x,AF4 y,AF4 z){return max(x,max(y,z));}
1145//------------------------------------------------------------------------------------------------------------------------------
1146 AU1 AMax3SU1(AU1 x,AU1 y,AU1 z){return AU1(max(ASU1(x),max(ASU1(y),ASU1(z))));}
1147 AU2 AMax3SU2(AU2 x,AU2 y,AU2 z){return AU2(max(ASU2(x),max(ASU2(y),ASU2(z))));}
1148 AU3 AMax3SU3(AU3 x,AU3 y,AU3 z){return AU3(max(ASU3(x),max(ASU3(y),ASU3(z))));}
1149 AU4 AMax3SU4(AU4 x,AU4 y,AU4 z){return AU4(max(ASU4(x),max(ASU4(y),ASU4(z))));}
1150//------------------------------------------------------------------------------------------------------------------------------
1151 AU1 AMax3U1(AU1 x,AU1 y,AU1 z){return max(x,max(y,z));}
1152 AU2 AMax3U2(AU2 x,AU2 y,AU2 z){return max(x,max(y,z));}
1153 AU3 AMax3U3(AU3 x,AU3 y,AU3 z){return max(x,max(y,z));}
1154 AU4 AMax3U4(AU4 x,AU4 y,AU4 z){return max(x,max(y,z));}
1155//------------------------------------------------------------------------------------------------------------------------------
1156 AU1 AMaxSU1(AU1 a,AU1 b){return AU1(max(ASU1(a),ASU1(b)));}
1157 AU2 AMaxSU2(AU2 a,AU2 b){return AU2(max(ASU2(a),ASU2(b)));}
1158 AU3 AMaxSU3(AU3 a,AU3 b){return AU3(max(ASU3(a),ASU3(b)));}
1159 AU4 AMaxSU4(AU4 a,AU4 b){return AU4(max(ASU4(a),ASU4(b)));}
1160//------------------------------------------------------------------------------------------------------------------------------
1161 AF1 AMed3F1(AF1 x,AF1 y,AF1 z){return max(min(x,y),min(max(x,y),z));}
1162 AF2 AMed3F2(AF2 x,AF2 y,AF2 z){return max(min(x,y),min(max(x,y),z));}
1163 AF3 AMed3F3(AF3 x,AF3 y,AF3 z){return max(min(x,y),min(max(x,y),z));}
1164 AF4 AMed3F4(AF4 x,AF4 y,AF4 z){return max(min(x,y),min(max(x,y),z));}
1165//------------------------------------------------------------------------------------------------------------------------------
1166 AF1 AMin3F1(AF1 x,AF1 y,AF1 z){return min(x,min(y,z));}
1167 AF2 AMin3F2(AF2 x,AF2 y,AF2 z){return min(x,min(y,z));}
1168 AF3 AMin3F3(AF3 x,AF3 y,AF3 z){return min(x,min(y,z));}
1169 AF4 AMin3F4(AF4 x,AF4 y,AF4 z){return min(x,min(y,z));}
1170//------------------------------------------------------------------------------------------------------------------------------
1171 AU1 AMin3SU1(AU1 x,AU1 y,AU1 z){return AU1(min(ASU1(x),min(ASU1(y),ASU1(z))));}
1172 AU2 AMin3SU2(AU2 x,AU2 y,AU2 z){return AU2(min(ASU2(x),min(ASU2(y),ASU2(z))));}
1173 AU3 AMin3SU3(AU3 x,AU3 y,AU3 z){return AU3(min(ASU3(x),min(ASU3(y),ASU3(z))));}
1174 AU4 AMin3SU4(AU4 x,AU4 y,AU4 z){return AU4(min(ASU4(x),min(ASU4(y),ASU4(z))));}
1175//------------------------------------------------------------------------------------------------------------------------------
1176 AU1 AMin3U1(AU1 x,AU1 y,AU1 z){return min(x,min(y,z));}
1177 AU2 AMin3U2(AU2 x,AU2 y,AU2 z){return min(x,min(y,z));}
1178 AU3 AMin3U3(AU3 x,AU3 y,AU3 z){return min(x,min(y,z));}
1179 AU4 AMin3U4(AU4 x,AU4 y,AU4 z){return min(x,min(y,z));}
1180//------------------------------------------------------------------------------------------------------------------------------
1181 AU1 AMinSU1(AU1 a,AU1 b){return AU1(min(ASU1(a),ASU1(b)));}
1182 AU2 AMinSU2(AU2 a,AU2 b){return AU2(min(ASU2(a),ASU2(b)));}
1183 AU3 AMinSU3(AU3 a,AU3 b){return AU3(min(ASU3(a),ASU3(b)));}
1184 AU4 AMinSU4(AU4 a,AU4 b){return AU4(min(ASU4(a),ASU4(b)));}
1185//------------------------------------------------------------------------------------------------------------------------------
1186 AF1 ANCosF1(AF1 x){return cos(x*AF1_(A_2PI));}
1187 AF2 ANCosF2(AF2 x){return cos(x*AF2_(A_2PI));}
1188 AF3 ANCosF3(AF3 x){return cos(x*AF3_(A_2PI));}
1189 AF4 ANCosF4(AF4 x){return cos(x*AF4_(A_2PI));}
1190//------------------------------------------------------------------------------------------------------------------------------
1191 AF1 ANSinF1(AF1 x){return sin(x*AF1_(A_2PI));}
1192 AF2 ANSinF2(AF2 x){return sin(x*AF2_(A_2PI));}
1193 AF3 ANSinF3(AF3 x){return sin(x*AF3_(A_2PI));}
1194 AF4 ANSinF4(AF4 x){return sin(x*AF4_(A_2PI));}
1195//------------------------------------------------------------------------------------------------------------------------------
1196 AF1 ARcpF1(AF1 x){return rcp(x);}
1197 AF2 ARcpF2(AF2 x){return rcp(x);}
1198 AF3 ARcpF3(AF3 x){return rcp(x);}
1199 AF4 ARcpF4(AF4 x){return rcp(x);}
1200//------------------------------------------------------------------------------------------------------------------------------
1201 AF1 ARsqF1(AF1 x){return rsqrt(x);}
1202 AF2 ARsqF2(AF2 x){return rsqrt(x);}
1203 AF3 ARsqF3(AF3 x){return rsqrt(x);}
1204 AF4 ARsqF4(AF4 x){return rsqrt(x);}
1205//------------------------------------------------------------------------------------------------------------------------------
1206 AF1 ASatF1(AF1 x){return saturate(x);}
1207 AF2 ASatF2(AF2 x){return saturate(x);}
1208 AF3 ASatF3(AF3 x){return saturate(x);}
1209 AF4 ASatF4(AF4 x){return saturate(x);}
1210//------------------------------------------------------------------------------------------------------------------------------
1211 AU1 AShrSU1(AU1 a,AU1 b){return AU1(ASU1(a)>>ASU1(b));}
1212 AU2 AShrSU2(AU2 a,AU2 b){return AU2(ASU2(a)>>ASU2(b));}
1213 AU3 AShrSU3(AU3 a,AU3 b){return AU3(ASU3(a)>>ASU3(b));}
1214 AU4 AShrSU4(AU4 a,AU4 b){return AU4(ASU4(a)>>ASU4(b));}
1215////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1216////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1217//_____________________________________________________________/\_______________________________________________________________
1218//==============================================================================================================================
1219// HLSL BYTE
1220//==============================================================================================================================
1221 #ifdef A_BYTE
1222 #endif
1223////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1224////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1225//_____________________________________________________________/\_______________________________________________________________
1226//==============================================================================================================================
1227// HLSL HALF
1228//==============================================================================================================================
1229 #ifdef A_HALF
1230 #ifdef A_HLSL_6_2
1231 #define AH1 float16_t
1232 #define AH2 float16_t2
1233 #define AH3 float16_t3
1234 #define AH4 float16_t4
1235//------------------------------------------------------------------------------------------------------------------------------
1236 #define AW1 uint16_t
1237 #define AW2 uint16_t2
1238 #define AW3 uint16_t3
1239 #define AW4 uint16_t4
1240//------------------------------------------------------------------------------------------------------------------------------
1241 #define ASW1 int16_t
1242 #define ASW2 int16_t2
1243 #define ASW3 int16_t3
1244 #define ASW4 int16_t4
1245 #else
1246 #define AH1 min16float
1247 #define AH2 min16float2
1248 #define AH3 min16float3
1249 #define AH4 min16float4
1250//------------------------------------------------------------------------------------------------------------------------------
1251 #define AW1 min16uint
1252 #define AW2 min16uint2
1253 #define AW3 min16uint3
1254 #define AW4 min16uint4
1255//------------------------------------------------------------------------------------------------------------------------------
1256 #define ASW1 min16int
1257 #define ASW2 min16int2
1258 #define ASW3 min16int3
1259 #define ASW4 min16int4
1260 #endif
1261//==============================================================================================================================
1262 // Need to use manual unpack to get optimal execution (don't use packed types in buffers directly).
1263 // Unpack requires this pattern: https://gpuopen.com/first-steps-implementing-fp16/
1264 AH2 AH2_AU1_x(AU1 x){AF2 t=f16tof32(AU2(x&0xFFFF,x>>16));return AH2(t);}
1265 AH4 AH4_AU2_x(AU2 x){return AH4(AH2_AU1_x(x.x),AH2_AU1_x(x.y));}
1266 AW2 AW2_AU1_x(AU1 x){AU2 t=AU2(x&0xFFFF,x>>16);return AW2(t);}
1267 AW4 AW4_AU2_x(AU2 x){return AW4(AW2_AU1_x(x.x),AW2_AU1_x(x.y));}
1268 #define AH2_AU1(x) AH2_AU1_x(AU1(x))
1269 #define AH4_AU2(x) AH4_AU2_x(AU2(x))
1270 #define AW2_AU1(x) AW2_AU1_x(AU1(x))
1271 #define AW4_AU2(x) AW4_AU2_x(AU2(x))
1272//------------------------------------------------------------------------------------------------------------------------------
1273 AU1 AU1_AH2_x(AH2 x){return f32tof16(x.x)+(f32tof16(x.y)<<16);}
1274 AU2 AU2_AH4_x(AH4 x){return AU2(AU1_AH2_x(x.xy),AU1_AH2_x(x.zw));}
1275 AU1 AU1_AW2_x(AW2 x){return AU1(x.x)+(AU1(x.y)<<16);}
1276 AU2 AU2_AW4_x(AW4 x){return AU2(AU1_AW2_x(x.xy),AU1_AW2_x(x.zw));}
1277 #define AU1_AH2(x) AU1_AH2_x(AH2(x))
1278 #define AU2_AH4(x) AU2_AH4_x(AH4(x))
1279 #define AU1_AW2(x) AU1_AW2_x(AW2(x))
1280 #define AU2_AW4(x) AU2_AW4_x(AW4(x))
1281//==============================================================================================================================
1282 #if defined(A_HLSL_6_2) && !defined(A_NO_16_BIT_CAST)
1283 #define AW1_AH1(x) asuint16(x)
1284 #define AW2_AH2(x) asuint16(x)
1285 #define AW3_AH3(x) asuint16(x)
1286 #define AW4_AH4(x) asuint16(x)
1287 #else
1288 #define AW1_AH1(a) AW1(f32tof16(AF1(a)))
1289 #define AW2_AH2(a) AW2(AW1_AH1((a).x),AW1_AH1((a).y))
1290 #define AW3_AH3(a) AW3(AW1_AH1((a).x),AW1_AH1((a).y),AW1_AH1((a).z))
1291 #define AW4_AH4(a) AW4(AW1_AH1((a).x),AW1_AH1((a).y),AW1_AH1((a).z),AW1_AH1((a).w))
1292 #endif
1293//------------------------------------------------------------------------------------------------------------------------------
1294 #if defined(A_HLSL_6_2) && !defined(A_NO_16_BIT_CAST)
1295 #define AH1_AW1(x) asfloat16(x)
1296 #define AH2_AW2(x) asfloat16(x)
1297 #define AH3_AW3(x) asfloat16(x)
1298 #define AH4_AW4(x) asfloat16(x)
1299 #else
1300 #define AH1_AW1(a) AH1(f16tof32(AU1(a)))
1301 #define AH2_AW2(a) AH2(AH1_AW1((a).x),AH1_AW1((a).y))
1302 #define AH3_AW3(a) AH3(AH1_AW1((a).x),AH1_AW1((a).y),AH1_AW1((a).z))
1303 #define AH4_AW4(a) AH4(AH1_AW1((a).x),AH1_AW1((a).y),AH1_AW1((a).z),AH1_AW1((a).w))
1304 #endif
1305//==============================================================================================================================
1306 AH1 AH1_x(AH1 a){return AH1(a);}
1307 AH2 AH2_x(AH1 a){return AH2(a,a);}
1308 AH3 AH3_x(AH1 a){return AH3(a,a,a);}
1309 AH4 AH4_x(AH1 a){return AH4(a,a,a,a);}
1310 #define AH1_(a) AH1_x(AH1(a))
1311 #define AH2_(a) AH2_x(AH1(a))
1312 #define AH3_(a) AH3_x(AH1(a))
1313 #define AH4_(a) AH4_x(AH1(a))
1314//------------------------------------------------------------------------------------------------------------------------------
1315 AW1 AW1_x(AW1 a){return AW1(a);}
1316 AW2 AW2_x(AW1 a){return AW2(a,a);}
1317 AW3 AW3_x(AW1 a){return AW3(a,a,a);}
1318 AW4 AW4_x(AW1 a){return AW4(a,a,a,a);}
1319 #define AW1_(a) AW1_x(AW1(a))
1320 #define AW2_(a) AW2_x(AW1(a))
1321 #define AW3_(a) AW3_x(AW1(a))
1322 #define AW4_(a) AW4_x(AW1(a))
1323//==============================================================================================================================
1324 AW1 AAbsSW1(AW1 a){return AW1(abs(ASW1(a)));}
1325 AW2 AAbsSW2(AW2 a){return AW2(abs(ASW2(a)));}
1326 AW3 AAbsSW3(AW3 a){return AW3(abs(ASW3(a)));}
1327 AW4 AAbsSW4(AW4 a){return AW4(abs(ASW4(a)));}
1328//------------------------------------------------------------------------------------------------------------------------------
1329 AH1 AClampH1(AH1 x,AH1 n,AH1 m){return max(n,min(x,m));}
1330 AH2 AClampH2(AH2 x,AH2 n,AH2 m){return max(n,min(x,m));}
1331 AH3 AClampH3(AH3 x,AH3 n,AH3 m){return max(n,min(x,m));}
1332 AH4 AClampH4(AH4 x,AH4 n,AH4 m){return max(n,min(x,m));}
1333//------------------------------------------------------------------------------------------------------------------------------
1334 // V_FRACT_F16 (note DX frac() is different).
1335 AH1 AFractH1(AH1 x){return x-floor(x);}
1336 AH2 AFractH2(AH2 x){return x-floor(x);}
1337 AH3 AFractH3(AH3 x){return x-floor(x);}
1338 AH4 AFractH4(AH4 x){return x-floor(x);}
1339//------------------------------------------------------------------------------------------------------------------------------
1340 AH1 ALerpH1(AH1 x,AH1 y,AH1 a){return lerp(x,y,a);}
1341 AH2 ALerpH2(AH2 x,AH2 y,AH2 a){return lerp(x,y,a);}
1342 AH3 ALerpH3(AH3 x,AH3 y,AH3 a){return lerp(x,y,a);}
1343 AH4 ALerpH4(AH4 x,AH4 y,AH4 a){return lerp(x,y,a);}
1344//------------------------------------------------------------------------------------------------------------------------------
1345 AH1 AMax3H1(AH1 x,AH1 y,AH1 z){return max(x,max(y,z));}
1346 AH2 AMax3H2(AH2 x,AH2 y,AH2 z){return max(x,max(y,z));}
1347 AH3 AMax3H3(AH3 x,AH3 y,AH3 z){return max(x,max(y,z));}
1348 AH4 AMax3H4(AH4 x,AH4 y,AH4 z){return max(x,max(y,z));}
1349//------------------------------------------------------------------------------------------------------------------------------
1350 AW1 AMaxSW1(AW1 a,AW1 b){return AW1(max(ASU1(a),ASU1(b)));}
1351 AW2 AMaxSW2(AW2 a,AW2 b){return AW2(max(ASU2(a),ASU2(b)));}
1352 AW3 AMaxSW3(AW3 a,AW3 b){return AW3(max(ASU3(a),ASU3(b)));}
1353 AW4 AMaxSW4(AW4 a,AW4 b){return AW4(max(ASU4(a),ASU4(b)));}
1354//------------------------------------------------------------------------------------------------------------------------------
1355 AH1 AMin3H1(AH1 x,AH1 y,AH1 z){return min(x,min(y,z));}
1356 AH2 AMin3H2(AH2 x,AH2 y,AH2 z){return min(x,min(y,z));}
1357 AH3 AMin3H3(AH3 x,AH3 y,AH3 z){return min(x,min(y,z));}
1358 AH4 AMin3H4(AH4 x,AH4 y,AH4 z){return min(x,min(y,z));}
1359//------------------------------------------------------------------------------------------------------------------------------
1360 AW1 AMinSW1(AW1 a,AW1 b){return AW1(min(ASU1(a),ASU1(b)));}
1361 AW2 AMinSW2(AW2 a,AW2 b){return AW2(min(ASU2(a),ASU2(b)));}
1362 AW3 AMinSW3(AW3 a,AW3 b){return AW3(min(ASU3(a),ASU3(b)));}
1363 AW4 AMinSW4(AW4 a,AW4 b){return AW4(min(ASU4(a),ASU4(b)));}
1364//------------------------------------------------------------------------------------------------------------------------------
1365 AH1 ARcpH1(AH1 x){return rcp(x);}
1366 AH2 ARcpH2(AH2 x){return rcp(x);}
1367 AH3 ARcpH3(AH3 x){return rcp(x);}
1368 AH4 ARcpH4(AH4 x){return rcp(x);}
1369//------------------------------------------------------------------------------------------------------------------------------
1370 AH1 ARsqH1(AH1 x){return rsqrt(x);}
1371 AH2 ARsqH2(AH2 x){return rsqrt(x);}
1372 AH3 ARsqH3(AH3 x){return rsqrt(x);}
1373 AH4 ARsqH4(AH4 x){return rsqrt(x);}
1374//------------------------------------------------------------------------------------------------------------------------------
1375 AH1 ASatH1(AH1 x){return saturate(x);}
1376 AH2 ASatH2(AH2 x){return saturate(x);}
1377 AH3 ASatH3(AH3 x){return saturate(x);}
1378 AH4 ASatH4(AH4 x){return saturate(x);}
1379//------------------------------------------------------------------------------------------------------------------------------
1380 AW1 AShrSW1(AW1 a,AW1 b){return AW1(ASW1(a)>>ASW1(b));}
1381 AW2 AShrSW2(AW2 a,AW2 b){return AW2(ASW2(a)>>ASW2(b));}
1382 AW3 AShrSW3(AW3 a,AW3 b){return AW3(ASW3(a)>>ASW3(b));}
1383 AW4 AShrSW4(AW4 a,AW4 b){return AW4(ASW4(a)>>ASW4(b));}
1384 #endif
1385////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1386////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1387//_____________________________________________________________/\_______________________________________________________________
1388//==============================================================================================================================
1389// HLSL DOUBLE
1390//==============================================================================================================================
1391 #ifdef A_DUBL
1392 #ifdef A_HLSL_6_2
1393 #define AD1 float64_t
1394 #define AD2 float64_t2
1395 #define AD3 float64_t3
1396 #define AD4 float64_t4
1397 #else
1398 #define AD1 double
1399 #define AD2 double2
1400 #define AD3 double3
1401 #define AD4 double4
1402 #endif
1403//------------------------------------------------------------------------------------------------------------------------------
1404 AD1 AD1_x(AD1 a){return AD1(a);}
1405 AD2 AD2_x(AD1 a){return AD2(a,a);}
1406 AD3 AD3_x(AD1 a){return AD3(a,a,a);}
1407 AD4 AD4_x(AD1 a){return AD4(a,a,a,a);}
1408 #define AD1_(a) AD1_x(AD1(a))
1409 #define AD2_(a) AD2_x(AD1(a))
1410 #define AD3_(a) AD3_x(AD1(a))
1411 #define AD4_(a) AD4_x(AD1(a))
1412//==============================================================================================================================
1413 AD1 AFractD1(AD1 a){return a-floor(a);}
1414 AD2 AFractD2(AD2 a){return a-floor(a);}
1415 AD3 AFractD3(AD3 a){return a-floor(a);}
1416 AD4 AFractD4(AD4 a){return a-floor(a);}
1417//------------------------------------------------------------------------------------------------------------------------------
1418 AD1 ALerpD1(AD1 x,AD1 y,AD1 a){return lerp(x,y,a);}
1419 AD2 ALerpD2(AD2 x,AD2 y,AD2 a){return lerp(x,y,a);}
1420 AD3 ALerpD3(AD3 x,AD3 y,AD3 a){return lerp(x,y,a);}
1421 AD4 ALerpD4(AD4 x,AD4 y,AD4 a){return lerp(x,y,a);}
1422//------------------------------------------------------------------------------------------------------------------------------
1423 AD1 ARcpD1(AD1 x){return rcp(x);}
1424 AD2 ARcpD2(AD2 x){return rcp(x);}
1425 AD3 ARcpD3(AD3 x){return rcp(x);}
1426 AD4 ARcpD4(AD4 x){return rcp(x);}
1427//------------------------------------------------------------------------------------------------------------------------------
1428 AD1 ARsqD1(AD1 x){return rsqrt(x);}
1429 AD2 ARsqD2(AD2 x){return rsqrt(x);}
1430 AD3 ARsqD3(AD3 x){return rsqrt(x);}
1431 AD4 ARsqD4(AD4 x){return rsqrt(x);}
1432//------------------------------------------------------------------------------------------------------------------------------
1433 AD1 ASatD1(AD1 x){return saturate(x);}
1434 AD2 ASatD2(AD2 x){return saturate(x);}
1435 AD3 ASatD3(AD3 x){return saturate(x);}
1436 AD4 ASatD4(AD4 x){return saturate(x);}
1437 #endif
1438//==============================================================================================================================
1439// HLSL WAVE
1440//==============================================================================================================================
1441 #ifdef A_WAVE
1442 // Where 'x' must be a compile time literal.
1443 AF1 AWaveXorF1(AF1 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
1444 AF2 AWaveXorF2(AF2 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
1445 AF3 AWaveXorF3(AF3 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
1446 AF4 AWaveXorF4(AF4 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
1447 AU1 AWaveXorU1(AU1 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
1448 AU2 AWaveXorU1(AU2 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
1449 AU3 AWaveXorU1(AU3 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
1450 AU4 AWaveXorU1(AU4 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
1451//------------------------------------------------------------------------------------------------------------------------------
1452 #ifdef A_HALF
1453 AH2 AWaveXorH2(AH2 v,AU1 x){return AH2_AU1(WaveReadLaneAt(AU1_AH2(v),WaveGetLaneIndex()^x));}
1454 AH4 AWaveXorH4(AH4 v,AU1 x){return AH4_AU2(WaveReadLaneAt(AU2_AH4(v),WaveGetLaneIndex()^x));}
1455 AW2 AWaveXorW2(AW2 v,AU1 x){return AW2_AU1(WaveReadLaneAt(AU1_AW2(v),WaveGetLaneIndex()^x));}
1456 AW4 AWaveXorW4(AW4 v,AU1 x){return AW4_AU1(WaveReadLaneAt(AU1_AW4(v),WaveGetLaneIndex()^x));}
1457 #endif
1458 #endif
1459//==============================================================================================================================
1460#endif
1461////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1462////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1463////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1464////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1465////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1466////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1467//_____________________________________________________________/\_______________________________________________________________
1468//==============================================================================================================================
1469//
1470//
1471// GPU COMMON
1472//
1473//
1474//==============================================================================================================================
1475#ifdef A_GPU
1476 // Negative and positive infinity.
1477 #define A_INFP_F AF1_AU1(0x7f800000u)
1478 #define A_INFN_F AF1_AU1(0xff800000u)
1479//------------------------------------------------------------------------------------------------------------------------------
1480 // Copy sign from 's' to positive 'd'.
1481 AF1 ACpySgnF1(AF1 d,AF1 s){return AF1_AU1(AU1_AF1(d)|(AU1_AF1(s)&AU1_(0x80000000u)));}
1482 AF2 ACpySgnF2(AF2 d,AF2 s){return AF2_AU2(AU2_AF2(d)|(AU2_AF2(s)&AU2_(0x80000000u)));}
1483 AF3 ACpySgnF3(AF3 d,AF3 s){return AF3_AU3(AU3_AF3(d)|(AU3_AF3(s)&AU3_(0x80000000u)));}
1484 AF4 ACpySgnF4(AF4 d,AF4 s){return AF4_AU4(AU4_AF4(d)|(AU4_AF4(s)&AU4_(0x80000000u)));}
1485//------------------------------------------------------------------------------------------------------------------------------
1486 // Single operation to return (useful to create a mask to use in lerp for branch free logic),
1487 // m=NaN := 0
1488 // m>=0 := 0
1489 // m<0 := 1
1490 // Uses the following useful floating point logic,
1491 // saturate(+a*(-INF)==-INF) := 0
1492 // saturate( 0*(-INF)== NaN) := 0
1493 // saturate(-a*(-INF)==+INF) := 1
1494 AF1 ASignedF1(AF1 m){return ASatF1(m*AF1_(A_INFN_F));}
1495 AF2 ASignedF2(AF2 m){return ASatF2(m*AF2_(A_INFN_F));}
1496 AF3 ASignedF3(AF3 m){return ASatF3(m*AF3_(A_INFN_F));}
1497 AF4 ASignedF4(AF4 m){return ASatF4(m*AF4_(A_INFN_F));}
1498//------------------------------------------------------------------------------------------------------------------------------
1499 AF1 AGtZeroF1(AF1 m){return ASatF1(m*AF1_(A_INFP_F));}
1500 AF2 AGtZeroF2(AF2 m){return ASatF2(m*AF2_(A_INFP_F));}
1501 AF3 AGtZeroF3(AF3 m){return ASatF3(m*AF3_(A_INFP_F));}
1502 AF4 AGtZeroF4(AF4 m){return ASatF4(m*AF4_(A_INFP_F));}
1503//==============================================================================================================================
1504 #ifdef A_HALF
1505 #ifdef A_HLSL_6_2
1506 #define A_INFP_H AH1_AW1((uint16_t)0x7c00u)
1507 #define A_INFN_H AH1_AW1((uint16_t)0xfc00u)
1508 #else
1509 #define A_INFP_H AH1_AW1(0x7c00u)
1510 #define A_INFN_H AH1_AW1(0xfc00u)
1511 #endif
1512
1513//------------------------------------------------------------------------------------------------------------------------------
1514 AH1 ACpySgnH1(AH1 d,AH1 s){return AH1_AW1(AW1_AH1(d)|(AW1_AH1(s)&AW1_(0x8000u)));}
1515 AH2 ACpySgnH2(AH2 d,AH2 s){return AH2_AW2(AW2_AH2(d)|(AW2_AH2(s)&AW2_(0x8000u)));}
1516 AH3 ACpySgnH3(AH3 d,AH3 s){return AH3_AW3(AW3_AH3(d)|(AW3_AH3(s)&AW3_(0x8000u)));}
1517 AH4 ACpySgnH4(AH4 d,AH4 s){return AH4_AW4(AW4_AH4(d)|(AW4_AH4(s)&AW4_(0x8000u)));}
1518//------------------------------------------------------------------------------------------------------------------------------
1519 AH1 ASignedH1(AH1 m){return ASatH1(m*AH1_(A_INFN_H));}
1520 AH2 ASignedH2(AH2 m){return ASatH2(m*AH2_(A_INFN_H));}
1521 AH3 ASignedH3(AH3 m){return ASatH3(m*AH3_(A_INFN_H));}
1522 AH4 ASignedH4(AH4 m){return ASatH4(m*AH4_(A_INFN_H));}
1523//------------------------------------------------------------------------------------------------------------------------------
1524 AH1 AGtZeroH1(AH1 m){return ASatH1(m*AH1_(A_INFP_H));}
1525 AH2 AGtZeroH2(AH2 m){return ASatH2(m*AH2_(A_INFP_H));}
1526 AH3 AGtZeroH3(AH3 m){return ASatH3(m*AH3_(A_INFP_H));}
1527 AH4 AGtZeroH4(AH4 m){return ASatH4(m*AH4_(A_INFP_H));}
1528 #endif
1529////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1530////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1531//_____________________________________________________________/\_______________________________________________________________
1532//==============================================================================================================================
1533// [FIS] FLOAT INTEGER SORTABLE
1534//------------------------------------------------------------------------------------------------------------------------------
1535// Float to integer sortable.
1536// - If sign bit=0, flip the sign bit (positives).
1537// - If sign bit=1, flip all bits (negatives).
1538// Integer sortable to float.
1539// - If sign bit=1, flip the sign bit (positives).
1540// - If sign bit=0, flip all bits (negatives).
1541// Has nice side effects.
1542// - Larger integers are more positive values.
1543// - Float zero is mapped to center of integers (so clear to integer zero is a nice default for atomic max usage).
1544// Burns 3 ops for conversion {shift,or,xor}.
1545//==============================================================================================================================
1546 AU1 AFisToU1(AU1 x){return x^(( AShrSU1(x,AU1_(31)))|AU1_(0x80000000));}
1547 AU1 AFisFromU1(AU1 x){return x^((~AShrSU1(x,AU1_(31)))|AU1_(0x80000000));}
1548//------------------------------------------------------------------------------------------------------------------------------
1549 // Just adjust high 16-bit value (useful when upper part of 32-bit word is a 16-bit float value).
1550 AU1 AFisToHiU1(AU1 x){return x^(( AShrSU1(x,AU1_(15)))|AU1_(0x80000000));}
1551 AU1 AFisFromHiU1(AU1 x){return x^((~AShrSU1(x,AU1_(15)))|AU1_(0x80000000));}
1552//------------------------------------------------------------------------------------------------------------------------------
1553 #ifdef A_HALF
1554 AW1 AFisToW1(AW1 x){return x^(( AShrSW1(x,AW1_(15)))|AW1_(0x8000));}
1555 AW1 AFisFromW1(AW1 x){return x^((~AShrSW1(x,AW1_(15)))|AW1_(0x8000));}
1556//------------------------------------------------------------------------------------------------------------------------------
1557 AW2 AFisToW2(AW2 x){return x^(( AShrSW2(x,AW2_(15)))|AW2_(0x8000));}
1558 AW2 AFisFromW2(AW2 x){return x^((~AShrSW2(x,AW2_(15)))|AW2_(0x8000));}
1559 #endif
1560////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1561////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1562//_____________________________________________________________/\_______________________________________________________________
1563//==============================================================================================================================
1564// [PERM] V_PERM_B32
1565//------------------------------------------------------------------------------------------------------------------------------
1566// Support for V_PERM_B32 started in the 3rd generation of GCN.
1567//------------------------------------------------------------------------------------------------------------------------------
1568// yyyyxxxx - The 'i' input.
1569// 76543210
1570// ========
1571// HGFEDCBA - Naming on permutation.
1572//------------------------------------------------------------------------------------------------------------------------------
1573// TODO
1574// ====
1575// - Make sure compiler optimizes this.
1576//==============================================================================================================================
1577 #ifdef A_HALF
1578 AU1 APerm0E0A(AU2 i){return((i.x )&0xffu)|((i.y<<16)&0xff0000u);}
1579 AU1 APerm0F0B(AU2 i){return((i.x>> 8)&0xffu)|((i.y<< 8)&0xff0000u);}
1580 AU1 APerm0G0C(AU2 i){return((i.x>>16)&0xffu)|((i.y )&0xff0000u);}
1581 AU1 APerm0H0D(AU2 i){return((i.x>>24)&0xffu)|((i.y>> 8)&0xff0000u);}
1582//------------------------------------------------------------------------------------------------------------------------------
1583 AU1 APermHGFA(AU2 i){return((i.x )&0x000000ffu)|(i.y&0xffffff00u);}
1584 AU1 APermHGFC(AU2 i){return((i.x>>16)&0x000000ffu)|(i.y&0xffffff00u);}
1585 AU1 APermHGAE(AU2 i){return((i.x<< 8)&0x0000ff00u)|(i.y&0xffff00ffu);}
1586 AU1 APermHGCE(AU2 i){return((i.x>> 8)&0x0000ff00u)|(i.y&0xffff00ffu);}
1587 AU1 APermHAFE(AU2 i){return((i.x<<16)&0x00ff0000u)|(i.y&0xff00ffffu);}
1588 AU1 APermHCFE(AU2 i){return((i.x )&0x00ff0000u)|(i.y&0xff00ffffu);}
1589 AU1 APermAGFE(AU2 i){return((i.x<<24)&0xff000000u)|(i.y&0x00ffffffu);}
1590 AU1 APermCGFE(AU2 i){return((i.x<< 8)&0xff000000u)|(i.y&0x00ffffffu);}
1591//------------------------------------------------------------------------------------------------------------------------------
1592 AU1 APermGCEA(AU2 i){return((i.x)&0x00ff00ffu)|((i.y<<8)&0xff00ff00u);}
1593 AU1 APermGECA(AU2 i){return(((i.x)&0xffu)|((i.x>>8)&0xff00u)|((i.y<<16)&0xff0000u)|((i.y<<8)&0xff000000u));}
1594 #endif
1595////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1596////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1597//_____________________________________________________________/\_______________________________________________________________
1598//==============================================================================================================================
1599// [BUC] BYTE UNSIGNED CONVERSION
1600//------------------------------------------------------------------------------------------------------------------------------
1601// Designed to use the optimal conversion, enables the scaling to possibly be factored into other computation.
1602// Works on a range of {0 to A_BUC_<32,16>}, for <32-bit, and 16-bit> respectively.
1603//------------------------------------------------------------------------------------------------------------------------------
1604// OPCODE NOTES
1605// ============
1606// GCN does not do UNORM or SNORM for bytes in opcodes.
1607// - V_CVT_F32_UBYTE{0,1,2,3} - Unsigned byte to float.
1608// - V_CVT_PKACC_U8_F32 - Float to unsigned byte (does bit-field insert into 32-bit integer).
1609// V_PERM_B32 does byte packing with ability to zero fill bytes as well.
1610// - Can pull out byte values from two sources, and zero fill upper 8-bits of packed hi and lo.
1611//------------------------------------------------------------------------------------------------------------------------------
1612// BYTE : FLOAT - ABuc{0,1,2,3}{To,From}U1() - Designed for V_CVT_F32_UBYTE* and V_CVT_PKACCUM_U8_F32 ops.
1613// ==== =====
1614// 0 : 0
1615// 1 : 1
1616// ...
1617// 255 : 255
1618// : 256 (just outside the encoding range)
1619//------------------------------------------------------------------------------------------------------------------------------
1620// BYTE : FLOAT - ABuc{0,1,2,3}{To,From}U2() - Designed for 16-bit denormal tricks and V_PERM_B32.
1621// ==== =====
1622// 0 : 0
1623// 1 : 1/512
1624// 2 : 1/256
1625// ...
1626// 64 : 1/8
1627// 128 : 1/4
1628// 255 : 255/512
1629// : 1/2 (just outside the encoding range)
1630//------------------------------------------------------------------------------------------------------------------------------
1631// OPTIMAL IMPLEMENTATIONS ON AMD ARCHITECTURES
1632// ============================================
1633// r=ABuc0FromU1(i)
1634// V_CVT_F32_UBYTE0 r,i
1635// --------------------------------------------
1636// r=ABuc0ToU1(d,i)
1637// V_CVT_PKACCUM_U8_F32 r,i,0,d
1638// --------------------------------------------
1639// d=ABuc0FromU2(i)
1640// Where 'k0' is an SGPR with 0x0E0A
1641// Where 'k1' is an SGPR with {32768.0} packed into the lower 16-bits
1642// V_PERM_B32 d,i.x,i.y,k0
1643// V_PK_FMA_F16 d,d,k1.x,0
1644// --------------------------------------------
1645// r=ABuc0ToU2(d,i)
1646// Where 'k0' is an SGPR with {1.0/32768.0} packed into the lower 16-bits
1647// Where 'k1' is an SGPR with 0x????
1648// Where 'k2' is an SGPR with 0x????
1649// V_PK_FMA_F16 i,i,k0.x,0
1650// V_PERM_B32 r.x,i,i,k1
1651// V_PERM_B32 r.y,i,i,k2
1652//==============================================================================================================================
1653 // Peak range for 32-bit and 16-bit operations.
1654 #define A_BUC_32 (255.0)
1655 #define A_BUC_16 (255.0/512.0)
1656//==============================================================================================================================
1657 #if 1
1658 // Designed to be one V_CVT_PKACCUM_U8_F32.
1659 // The extra min is required to pattern match to V_CVT_PKACCUM_U8_F32.
1660 AU1 ABuc0ToU1(AU1 d,AF1 i){return (d&0xffffff00u)|((min(AU1(i),255u) )&(0x000000ffu));}
1661 AU1 ABuc1ToU1(AU1 d,AF1 i){return (d&0xffff00ffu)|((min(AU1(i),255u)<< 8)&(0x0000ff00u));}
1662 AU1 ABuc2ToU1(AU1 d,AF1 i){return (d&0xff00ffffu)|((min(AU1(i),255u)<<16)&(0x00ff0000u));}
1663 AU1 ABuc3ToU1(AU1 d,AF1 i){return (d&0x00ffffffu)|((min(AU1(i),255u)<<24)&(0xff000000u));}
1664//------------------------------------------------------------------------------------------------------------------------------
1665 // Designed to be one V_CVT_F32_UBYTE*.
1666 AF1 ABuc0FromU1(AU1 i){return AF1((i )&255u);}
1667 AF1 ABuc1FromU1(AU1 i){return AF1((i>> 8)&255u);}
1668 AF1 ABuc2FromU1(AU1 i){return AF1((i>>16)&255u);}
1669 AF1 ABuc3FromU1(AU1 i){return AF1((i>>24)&255u);}
1670 #endif
1671//==============================================================================================================================
1672 #ifdef A_HALF
1673 // Takes {x0,x1} and {y0,y1} and builds {{x0,y0},{x1,y1}}.
1674 AW2 ABuc01ToW2(AH2 x,AH2 y){x*=AH2_(1.0/32768.0);y*=AH2_(1.0/32768.0);
1675 return AW2_AU1(APermGCEA(AU2(AU1_AW2(AW2_AH2(x)),AU1_AW2(AW2_AH2(y)))));}
1676//------------------------------------------------------------------------------------------------------------------------------
1677 // Designed for 3 ops to do SOA to AOS and conversion.
1678 AU2 ABuc0ToU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)));
1679 return AU2(APermHGFA(AU2(d.x,b)),APermHGFC(AU2(d.y,b)));}
1680 AU2 ABuc1ToU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)));
1681 return AU2(APermHGAE(AU2(d.x,b)),APermHGCE(AU2(d.y,b)));}
1682 AU2 ABuc2ToU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)));
1683 return AU2(APermHAFE(AU2(d.x,b)),APermHCFE(AU2(d.y,b)));}
1684 AU2 ABuc3ToU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)));
1685 return AU2(APermAGFE(AU2(d.x,b)),APermCGFE(AU2(d.y,b)));}
1686//------------------------------------------------------------------------------------------------------------------------------
1687 // Designed for 2 ops to do both AOS to SOA, and conversion.
1688 AH2 ABuc0FromU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0E0A(i)))*AH2_(32768.0);}
1689 AH2 ABuc1FromU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0F0B(i)))*AH2_(32768.0);}
1690 AH2 ABuc2FromU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0G0C(i)))*AH2_(32768.0);}
1691 AH2 ABuc3FromU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0H0D(i)))*AH2_(32768.0);}
1692 #endif
1693////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1694////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1695//_____________________________________________________________/\_______________________________________________________________
1696//==============================================================================================================================
1697// [BSC] BYTE SIGNED CONVERSION
1698//------------------------------------------------------------------------------------------------------------------------------
1699// Similar to [BUC].
1700// Works on a range of {-/+ A_BSC_<32,16>}, for <32-bit, and 16-bit> respectively.
1701//------------------------------------------------------------------------------------------------------------------------------
1702// ENCODING (without zero-based encoding)
1703// ========
1704// 0 = unused (can be used to mean something else)
1705// 1 = lowest value
1706// 128 = exact zero center (zero based encoding
1707// 255 = highest value
1708//------------------------------------------------------------------------------------------------------------------------------
1709// Zero-based [Zb] flips the MSB bit of the byte (making 128 "exact zero" actually zero).
1710// This is useful if there is a desire for cleared values to decode as zero.
1711//------------------------------------------------------------------------------------------------------------------------------
1712// BYTE : FLOAT - ABsc{0,1,2,3}{To,From}U2() - Designed for 16-bit denormal tricks and V_PERM_B32.
1713// ==== =====
1714// 0 : -127/512 (unused)
1715// 1 : -126/512
1716// 2 : -125/512
1717// ...
1718// 128 : 0
1719// ...
1720// 255 : 127/512
1721// : 1/4 (just outside the encoding range)
1722//==============================================================================================================================
1723 // Peak range for 32-bit and 16-bit operations.
1724 #define A_BSC_32 (127.0)
1725 #define A_BSC_16 (127.0/512.0)
1726//==============================================================================================================================
1727 #if 1
1728 AU1 ABsc0ToU1(AU1 d,AF1 i){return (d&0xffffff00u)|((min(AU1(i+128.0),255u) )&(0x000000ffu));}
1729 AU1 ABsc1ToU1(AU1 d,AF1 i){return (d&0xffff00ffu)|((min(AU1(i+128.0),255u)<< 8)&(0x0000ff00u));}
1730 AU1 ABsc2ToU1(AU1 d,AF1 i){return (d&0xff00ffffu)|((min(AU1(i+128.0),255u)<<16)&(0x00ff0000u));}
1731 AU1 ABsc3ToU1(AU1 d,AF1 i){return (d&0x00ffffffu)|((min(AU1(i+128.0),255u)<<24)&(0xff000000u));}
1732//------------------------------------------------------------------------------------------------------------------------------
1733 AU1 ABsc0ToZbU1(AU1 d,AF1 i){return ((d&0xffffff00u)|((min(AU1(trunc(i)+128.0),255u) )&(0x000000ffu)))^0x00000080u;}
1734 AU1 ABsc1ToZbU1(AU1 d,AF1 i){return ((d&0xffff00ffu)|((min(AU1(trunc(i)+128.0),255u)<< 8)&(0x0000ff00u)))^0x00008000u;}
1735 AU1 ABsc2ToZbU1(AU1 d,AF1 i){return ((d&0xff00ffffu)|((min(AU1(trunc(i)+128.0),255u)<<16)&(0x00ff0000u)))^0x00800000u;}
1736 AU1 ABsc3ToZbU1(AU1 d,AF1 i){return ((d&0x00ffffffu)|((min(AU1(trunc(i)+128.0),255u)<<24)&(0xff000000u)))^0x80000000u;}
1737//------------------------------------------------------------------------------------------------------------------------------
1738 AF1 ABsc0FromU1(AU1 i){return AF1((i )&255u)-128.0;}
1739 AF1 ABsc1FromU1(AU1 i){return AF1((i>> 8)&255u)-128.0;}
1740 AF1 ABsc2FromU1(AU1 i){return AF1((i>>16)&255u)-128.0;}
1741 AF1 ABsc3FromU1(AU1 i){return AF1((i>>24)&255u)-128.0;}
1742//------------------------------------------------------------------------------------------------------------------------------
1743 AF1 ABsc0FromZbU1(AU1 i){return AF1(((i )&255u)^0x80u)-128.0;}
1744 AF1 ABsc1FromZbU1(AU1 i){return AF1(((i>> 8)&255u)^0x80u)-128.0;}
1745 AF1 ABsc2FromZbU1(AU1 i){return AF1(((i>>16)&255u)^0x80u)-128.0;}
1746 AF1 ABsc3FromZbU1(AU1 i){return AF1(((i>>24)&255u)^0x80u)-128.0;}
1747 #endif
1748//==============================================================================================================================
1749 #ifdef A_HALF
1750 // Takes {x0,x1} and {y0,y1} and builds {{x0,y0},{x1,y1}}.
1751 AW2 ABsc01ToW2(AH2 x,AH2 y){x=x*AH2_(1.0/32768.0)+AH2_(0.25/32768.0);y=y*AH2_(1.0/32768.0)+AH2_(0.25/32768.0);
1752 return AW2_AU1(APermGCEA(AU2(AU1_AW2(AW2_AH2(x)),AU1_AW2(AW2_AH2(y)))));}
1753//------------------------------------------------------------------------------------------------------------------------------
1754 AU2 ABsc0ToU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)+AH2_(0.25/32768.0)));
1755 return AU2(APermHGFA(AU2(d.x,b)),APermHGFC(AU2(d.y,b)));}
1756 AU2 ABsc1ToU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)+AH2_(0.25/32768.0)));
1757 return AU2(APermHGAE(AU2(d.x,b)),APermHGCE(AU2(d.y,b)));}
1758 AU2 ABsc2ToU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)+AH2_(0.25/32768.0)));
1759 return AU2(APermHAFE(AU2(d.x,b)),APermHCFE(AU2(d.y,b)));}
1760 AU2 ABsc3ToU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)+AH2_(0.25/32768.0)));
1761 return AU2(APermAGFE(AU2(d.x,b)),APermCGFE(AU2(d.y,b)));}
1762//------------------------------------------------------------------------------------------------------------------------------
1763 AU2 ABsc0ToZbU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)+AH2_(0.25/32768.0)))^0x00800080u;
1764 return AU2(APermHGFA(AU2(d.x,b)),APermHGFC(AU2(d.y,b)));}
1765 AU2 ABsc1ToZbU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)+AH2_(0.25/32768.0)))^0x00800080u;
1766 return AU2(APermHGAE(AU2(d.x,b)),APermHGCE(AU2(d.y,b)));}
1767 AU2 ABsc2ToZbU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)+AH2_(0.25/32768.0)))^0x00800080u;
1768 return AU2(APermHAFE(AU2(d.x,b)),APermHCFE(AU2(d.y,b)));}
1769 AU2 ABsc3ToZbU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)+AH2_(0.25/32768.0)))^0x00800080u;
1770 return AU2(APermAGFE(AU2(d.x,b)),APermCGFE(AU2(d.y,b)));}
1771//------------------------------------------------------------------------------------------------------------------------------
1772 AH2 ABsc0FromU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0E0A(i)))*AH2_(32768.0)-AH2_(0.25);}
1773 AH2 ABsc1FromU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0F0B(i)))*AH2_(32768.0)-AH2_(0.25);}
1774 AH2 ABsc2FromU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0G0C(i)))*AH2_(32768.0)-AH2_(0.25);}
1775 AH2 ABsc3FromU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0H0D(i)))*AH2_(32768.0)-AH2_(0.25);}
1776//------------------------------------------------------------------------------------------------------------------------------
1777 AH2 ABsc0FromZbU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0E0A(i)^0x00800080u))*AH2_(32768.0)-AH2_(0.25);}
1778 AH2 ABsc1FromZbU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0F0B(i)^0x00800080u))*AH2_(32768.0)-AH2_(0.25);}
1779 AH2 ABsc2FromZbU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0G0C(i)^0x00800080u))*AH2_(32768.0)-AH2_(0.25);}
1780 AH2 ABsc3FromZbU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0H0D(i)^0x00800080u))*AH2_(32768.0)-AH2_(0.25);}
1781 #endif
1782////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1783////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1784//_____________________________________________________________/\_______________________________________________________________
1785//==============================================================================================================================
1786// HALF APPROXIMATIONS
1787//------------------------------------------------------------------------------------------------------------------------------
1788// These support only positive inputs.
1789// Did not see value yet in specialization for range.
1790// Using quick testing, ended up mostly getting the same "best" approximation for various ranges.
1791// With hardware that can co-execute transcendentals, the value in approximations could be less than expected.
1792// However from a latency perspective, if execution of a transcendental is 4 clk, with no packed support, -> 8 clk total.
1793// And co-execution would require a compiler interleaving a lot of independent work for packed usage.
1794//------------------------------------------------------------------------------------------------------------------------------
1795// The one Newton Raphson iteration form of rsq() was skipped (requires 6 ops total).
1796// Same with sqrt(), as this could be x*rsq() (7 ops).
1797//==============================================================================================================================
1798 #ifdef A_HALF
1799 // Minimize squared error across full positive range, 2 ops.
1800 // The 0x1de2 based approximation maps {0 to 1} input maps to < 1 output.
1801 AH1 APrxLoSqrtH1(AH1 a){return AH1_AW1((AW1_AH1(a)>>AW1_(1))+AW1_(0x1de2));}
1802 AH2 APrxLoSqrtH2(AH2 a){return AH2_AW2((AW2_AH2(a)>>AW2_(1))+AW2_(0x1de2));}
1803 AH3 APrxLoSqrtH3(AH3 a){return AH3_AW3((AW3_AH3(a)>>AW3_(1))+AW3_(0x1de2));}
1804 AH4 APrxLoSqrtH4(AH4 a){return AH4_AW4((AW4_AH4(a)>>AW4_(1))+AW4_(0x1de2));}
1805//------------------------------------------------------------------------------------------------------------------------------
1806 // Lower precision estimation, 1 op.
1807 // Minimize squared error across {smallest normal to 16384.0}.
1808 AH1 APrxLoRcpH1(AH1 a){return AH1_AW1(AW1_(0x7784)-AW1_AH1(a));}
1809 AH2 APrxLoRcpH2(AH2 a){return AH2_AW2(AW2_(0x7784)-AW2_AH2(a));}
1810 AH3 APrxLoRcpH3(AH3 a){return AH3_AW3(AW3_(0x7784)-AW3_AH3(a));}
1811 AH4 APrxLoRcpH4(AH4 a){return AH4_AW4(AW4_(0x7784)-AW4_AH4(a));}
1812//------------------------------------------------------------------------------------------------------------------------------
1813 // Medium precision estimation, one Newton Raphson iteration, 3 ops.
1814 AH1 APrxMedRcpH1(AH1 a){AH1 b=AH1_AW1(AW1_(0x778d)-AW1_AH1(a));return b*(-b*a+AH1_(2.0));}
1815 AH2 APrxMedRcpH2(AH2 a){AH2 b=AH2_AW2(AW2_(0x778d)-AW2_AH2(a));return b*(-b*a+AH2_(2.0));}
1816 AH3 APrxMedRcpH3(AH3 a){AH3 b=AH3_AW3(AW3_(0x778d)-AW3_AH3(a));return b*(-b*a+AH3_(2.0));}
1817 AH4 APrxMedRcpH4(AH4 a){AH4 b=AH4_AW4(AW4_(0x778d)-AW4_AH4(a));return b*(-b*a+AH4_(2.0));}
1818//------------------------------------------------------------------------------------------------------------------------------
1819 // Minimize squared error across {smallest normal to 16384.0}, 2 ops.
1820 AH1 APrxLoRsqH1(AH1 a){return AH1_AW1(AW1_(0x59a3)-(AW1_AH1(a)>>AW1_(1)));}
1821 AH2 APrxLoRsqH2(AH2 a){return AH2_AW2(AW2_(0x59a3)-(AW2_AH2(a)>>AW2_(1)));}
1822 AH3 APrxLoRsqH3(AH3 a){return AH3_AW3(AW3_(0x59a3)-(AW3_AH3(a)>>AW3_(1)));}
1823 AH4 APrxLoRsqH4(AH4 a){return AH4_AW4(AW4_(0x59a3)-(AW4_AH4(a)>>AW4_(1)));}
1824 #endif
1825////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1826////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1827//_____________________________________________________________/\_______________________________________________________________
1828//==============================================================================================================================
1829// FLOAT APPROXIMATIONS
1830//------------------------------------------------------------------------------------------------------------------------------
1831// Michal Drobot has an excellent presentation on these: "Low Level Optimizations For GCN",
1832// - Idea dates back to SGI, then to Quake 3, etc.
1833// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
1834// - sqrt(x)=rsqrt(x)*x
1835// - rcp(x)=rsqrt(x)*rsqrt(x) for positive x
1836// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
1837//------------------------------------------------------------------------------------------------------------------------------
1838// These below are from perhaps less complete searching for optimal.
1839// Used FP16 normal range for testing with +4096 32-bit step size for sampling error.
1840// So these match up well with the half approximations.
1841//==============================================================================================================================
1842 AF1 APrxLoSqrtF1(AF1 a){return AF1_AU1((AU1_AF1(a)>>AU1_(1))+AU1_(0x1fbc4639));}
1843 AF1 APrxLoRcpF1(AF1 a){return AF1_AU1(AU1_(0x7ef07ebb)-AU1_AF1(a));}
1844 AF1 APrxMedRcpF1(AF1 a){AF1 b=AF1_AU1(AU1_(0x7ef19fff)-AU1_AF1(a));return b*(-b*a+AF1_(2.0));}
1845 AF1 APrxLoRsqF1(AF1 a){return AF1_AU1(AU1_(0x5f347d74)-(AU1_AF1(a)>>AU1_(1)));}
1846//------------------------------------------------------------------------------------------------------------------------------
1847 AF2 APrxLoSqrtF2(AF2 a){return AF2_AU2((AU2_AF2(a)>>AU2_(1))+AU2_(0x1fbc4639));}
1848 AF2 APrxLoRcpF2(AF2 a){return AF2_AU2(AU2_(0x7ef07ebb)-AU2_AF2(a));}
1849 AF2 APrxMedRcpF2(AF2 a){AF2 b=AF2_AU2(AU2_(0x7ef19fff)-AU2_AF2(a));return b*(-b*a+AF2_(2.0));}
1850 AF2 APrxLoRsqF2(AF2 a){return AF2_AU2(AU2_(0x5f347d74)-(AU2_AF2(a)>>AU2_(1)));}
1851//------------------------------------------------------------------------------------------------------------------------------
1852 AF3 APrxLoSqrtF3(AF3 a){return AF3_AU3((AU3_AF3(a)>>AU3_(1))+AU3_(0x1fbc4639));}
1853 AF3 APrxLoRcpF3(AF3 a){return AF3_AU3(AU3_(0x7ef07ebb)-AU3_AF3(a));}
1854 AF3 APrxMedRcpF3(AF3 a){AF3 b=AF3_AU3(AU3_(0x7ef19fff)-AU3_AF3(a));return b*(-b*a+AF3_(2.0));}
1855 AF3 APrxLoRsqF3(AF3 a){return AF3_AU3(AU3_(0x5f347d74)-(AU3_AF3(a)>>AU3_(1)));}
1856//------------------------------------------------------------------------------------------------------------------------------
1857 AF4 APrxLoSqrtF4(AF4 a){return AF4_AU4((AU4_AF4(a)>>AU4_(1))+AU4_(0x1fbc4639));}
1858 AF4 APrxLoRcpF4(AF4 a){return AF4_AU4(AU4_(0x7ef07ebb)-AU4_AF4(a));}
1859 AF4 APrxMedRcpF4(AF4 a){AF4 b=AF4_AU4(AU4_(0x7ef19fff)-AU4_AF4(a));return b*(-b*a+AF4_(2.0));}
1860 AF4 APrxLoRsqF4(AF4 a){return AF4_AU4(AU4_(0x5f347d74)-(AU4_AF4(a)>>AU4_(1)));}
1861////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1862////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1863//_____________________________________________________________/\_______________________________________________________________
1864//==============================================================================================================================
1865// PQ APPROXIMATIONS
1866//------------------------------------------------------------------------------------------------------------------------------
1867// PQ is very close to x^(1/8). The functions below Use the fast float approximation method to do
1868// PQ<~>Gamma2 (4th power and fast 4th root) and PQ<~>Linear (8th power and fast 8th root). Maximum error is ~0.2%.
1869//==============================================================================================================================
1870// Helpers
1871 AF1 Quart(AF1 a) { a = a * a; return a * a;}
1872 AF1 Oct(AF1 a) { a = a * a; a = a * a; return a * a; }
1873 AF2 Quart(AF2 a) { a = a * a; return a * a; }
1874 AF2 Oct(AF2 a) { a = a * a; a = a * a; return a * a; }
1875 AF3 Quart(AF3 a) { a = a * a; return a * a; }
1876 AF3 Oct(AF3 a) { a = a * a; a = a * a; return a * a; }
1877 AF4 Quart(AF4 a) { a = a * a; return a * a; }
1878 AF4 Oct(AF4 a) { a = a * a; a = a * a; return a * a; }
1879 //------------------------------------------------------------------------------------------------------------------------------
1880 AF1 APrxPQToGamma2(AF1 a) { return Quart(a); }
1881 AF1 APrxPQToLinear(AF1 a) { return Oct(a); }
1882 AF1 APrxLoGamma2ToPQ(AF1 a) { return AF1_AU1((AU1_AF1(a) >> AU1_(2)) + AU1_(0x2F9A4E46)); }
1883 AF1 APrxMedGamma2ToPQ(AF1 a) { AF1 b = AF1_AU1((AU1_AF1(a) >> AU1_(2)) + AU1_(0x2F9A4E46)); AF1 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); }
1884 AF1 APrxHighGamma2ToPQ(AF1 a) { return sqrt(sqrt(a)); }
1885 AF1 APrxLoLinearToPQ(AF1 a) { return AF1_AU1((AU1_AF1(a) >> AU1_(3)) + AU1_(0x378D8723)); }
1886 AF1 APrxMedLinearToPQ(AF1 a) { AF1 b = AF1_AU1((AU1_AF1(a) >> AU1_(3)) + AU1_(0x378D8723)); AF1 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); }
1887 AF1 APrxHighLinearToPQ(AF1 a) { return sqrt(sqrt(sqrt(a))); }
1888 //------------------------------------------------------------------------------------------------------------------------------
1889 AF2 APrxPQToGamma2(AF2 a) { return Quart(a); }
1890 AF2 APrxPQToLinear(AF2 a) { return Oct(a); }
1891 AF2 APrxLoGamma2ToPQ(AF2 a) { return AF2_AU2((AU2_AF2(a) >> AU2_(2)) + AU2_(0x2F9A4E46)); }
1892 AF2 APrxMedGamma2ToPQ(AF2 a) { AF2 b = AF2_AU2((AU2_AF2(a) >> AU2_(2)) + AU2_(0x2F9A4E46)); AF2 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); }
1893 AF2 APrxHighGamma2ToPQ(AF2 a) { return sqrt(sqrt(a)); }
1894 AF2 APrxLoLinearToPQ(AF2 a) { return AF2_AU2((AU2_AF2(a) >> AU2_(3)) + AU2_(0x378D8723)); }
1895 AF2 APrxMedLinearToPQ(AF2 a) { AF2 b = AF2_AU2((AU2_AF2(a) >> AU2_(3)) + AU2_(0x378D8723)); AF2 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); }
1896 AF2 APrxHighLinearToPQ(AF2 a) { return sqrt(sqrt(sqrt(a))); }
1897 //------------------------------------------------------------------------------------------------------------------------------
1898 AF3 APrxPQToGamma2(AF3 a) { return Quart(a); }
1899 AF3 APrxPQToLinear(AF3 a) { return Oct(a); }
1900 AF3 APrxLoGamma2ToPQ(AF3 a) { return AF3_AU3((AU3_AF3(a) >> AU3_(2)) + AU3_(0x2F9A4E46)); }
1901 AF3 APrxMedGamma2ToPQ(AF3 a) { AF3 b = AF3_AU3((AU3_AF3(a) >> AU3_(2)) + AU3_(0x2F9A4E46)); AF3 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); }
1902 AF3 APrxHighGamma2ToPQ(AF3 a) { return sqrt(sqrt(a)); }
1903 AF3 APrxLoLinearToPQ(AF3 a) { return AF3_AU3((AU3_AF3(a) >> AU3_(3)) + AU3_(0x378D8723)); }
1904 AF3 APrxMedLinearToPQ(AF3 a) { AF3 b = AF3_AU3((AU3_AF3(a) >> AU3_(3)) + AU3_(0x378D8723)); AF3 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); }
1905 AF3 APrxHighLinearToPQ(AF3 a) { return sqrt(sqrt(sqrt(a))); }
1906 //------------------------------------------------------------------------------------------------------------------------------
1907 AF4 APrxPQToGamma2(AF4 a) { return Quart(a); }
1908 AF4 APrxPQToLinear(AF4 a) { return Oct(a); }
1909 AF4 APrxLoGamma2ToPQ(AF4 a) { return AF4_AU4((AU4_AF4(a) >> AU4_(2)) + AU4_(0x2F9A4E46)); }
1910 AF4 APrxMedGamma2ToPQ(AF4 a) { AF4 b = AF4_AU4((AU4_AF4(a) >> AU4_(2)) + AU4_(0x2F9A4E46)); AF4 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); }
1911 AF4 APrxHighGamma2ToPQ(AF4 a) { return sqrt(sqrt(a)); }
1912 AF4 APrxLoLinearToPQ(AF4 a) { return AF4_AU4((AU4_AF4(a) >> AU4_(3)) + AU4_(0x378D8723)); }
1913 AF4 APrxMedLinearToPQ(AF4 a) { AF4 b = AF4_AU4((AU4_AF4(a) >> AU4_(3)) + AU4_(0x378D8723)); AF4 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); }
1914 AF4 APrxHighLinearToPQ(AF4 a) { return sqrt(sqrt(sqrt(a))); }
1915////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1916////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1917//_____________________________________________________________/\_______________________________________________________________
1918//==============================================================================================================================
1919// PARABOLIC SIN & COS
1920//------------------------------------------------------------------------------------------------------------------------------
1921// Approximate answers to transcendental questions.
1922//------------------------------------------------------------------------------------------------------------------------------
1923//==============================================================================================================================
1924 #if 1
1925 // Valid input range is {-1 to 1} representing {0 to 2 pi}.
1926 // Output range is {-1/4 to 1/4} representing {-1 to 1}.
1927 AF1 APSinF1(AF1 x){return x*abs(x)-x;} // MAD.
1928 AF2 APSinF2(AF2 x){return x*abs(x)-x;}
1929 AF1 APCosF1(AF1 x){x=AFractF1(x*AF1_(0.5)+AF1_(0.75));x=x*AF1_(2.0)-AF1_(1.0);return APSinF1(x);} // 3x MAD, FRACT
1930 AF2 APCosF2(AF2 x){x=AFractF2(x*AF2_(0.5)+AF2_(0.75));x=x*AF2_(2.0)-AF2_(1.0);return APSinF2(x);}
1931 AF2 APSinCosF1(AF1 x){AF1 y=AFractF1(x*AF1_(0.5)+AF1_(0.75));y=y*AF1_(2.0)-AF1_(1.0);return APSinF2(AF2(x,y));}
1932 #endif
1933//------------------------------------------------------------------------------------------------------------------------------
1934 #ifdef A_HALF
1935 // For a packed {sin,cos} pair,
1936 // - Native takes 16 clocks and 4 issue slots (no packed transcendentals).
1937 // - Parabolic takes 8 clocks and 8 issue slots (only fract is non-packed).
1938 AH1 APSinH1(AH1 x){return x*abs(x)-x;}
1939 AH2 APSinH2(AH2 x){return x*abs(x)-x;} // AND,FMA
1940 AH1 APCosH1(AH1 x){x=AFractH1(x*AH1_(0.5)+AH1_(0.75));x=x*AH1_(2.0)-AH1_(1.0);return APSinH1(x);}
1941 AH2 APCosH2(AH2 x){x=AFractH2(x*AH2_(0.5)+AH2_(0.75));x=x*AH2_(2.0)-AH2_(1.0);return APSinH2(x);} // 3x FMA, 2xFRACT, AND
1942 AH2 APSinCosH1(AH1 x){AH1 y=AFractH1(x*AH1_(0.5)+AH1_(0.75));y=y*AH1_(2.0)-AH1_(1.0);return APSinH2(AH2(x,y));}
1943 #endif
1944////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1945////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1946//_____________________________________________________________/\_______________________________________________________________
1947//==============================================================================================================================
1948// [ZOL] ZERO ONE LOGIC
1949//------------------------------------------------------------------------------------------------------------------------------
1950// Conditional free logic designed for easy 16-bit packing, and backwards porting to 32-bit.
1951//------------------------------------------------------------------------------------------------------------------------------
1952// 0 := false
1953// 1 := true
1954//------------------------------------------------------------------------------------------------------------------------------
1955// AndNot(x,y) -> !(x&y) .... One op.
1956// AndOr(x,y,z) -> (x&y)|z ... One op.
1957// GtZero(x) -> x>0.0 ..... One op.
1958// Sel(x,y,z) -> x?y:z ..... Two ops, has no precision loss.
1959// Signed(x) -> x<0.0 ..... One op.
1960// ZeroPass(x,y) -> x?0:y ..... Two ops, 'y' is a pass through safe for aliasing as integer.
1961//------------------------------------------------------------------------------------------------------------------------------
1962// OPTIMIZATION NOTES
1963// ==================
1964// - On Vega to use 2 constants in a packed op, pass in as one AW2 or one AH2 'k.xy' and use as 'k.xx' and 'k.yy'.
1965// For example 'a.xy*k.xx+k.yy'.
1966//==============================================================================================================================
1967 #if 1
1968 AU1 AZolAndU1(AU1 x,AU1 y){return min(x,y);}
1969 AU2 AZolAndU2(AU2 x,AU2 y){return min(x,y);}
1970 AU3 AZolAndU3(AU3 x,AU3 y){return min(x,y);}
1971 AU4 AZolAndU4(AU4 x,AU4 y){return min(x,y);}
1972//------------------------------------------------------------------------------------------------------------------------------
1973 AU1 AZolNotU1(AU1 x){return x^AU1_(1);}
1974 AU2 AZolNotU2(AU2 x){return x^AU2_(1);}
1975 AU3 AZolNotU3(AU3 x){return x^AU3_(1);}
1976 AU4 AZolNotU4(AU4 x){return x^AU4_(1);}
1977//------------------------------------------------------------------------------------------------------------------------------
1978 AU1 AZolOrU1(AU1 x,AU1 y){return max(x,y);}
1979 AU2 AZolOrU2(AU2 x,AU2 y){return max(x,y);}
1980 AU3 AZolOrU3(AU3 x,AU3 y){return max(x,y);}
1981 AU4 AZolOrU4(AU4 x,AU4 y){return max(x,y);}
1982//==============================================================================================================================
1983 AU1 AZolF1ToU1(AF1 x){return AU1(x);}
1984 AU2 AZolF2ToU2(AF2 x){return AU2(x);}
1985 AU3 AZolF3ToU3(AF3 x){return AU3(x);}
1986 AU4 AZolF4ToU4(AF4 x){return AU4(x);}
1987//------------------------------------------------------------------------------------------------------------------------------
1988 // 2 ops, denormals don't work in 32-bit on PC (and if they are enabled, OMOD is disabled).
1989 AU1 AZolNotF1ToU1(AF1 x){return AU1(AF1_(1.0)-x);}
1990 AU2 AZolNotF2ToU2(AF2 x){return AU2(AF2_(1.0)-x);}
1991 AU3 AZolNotF3ToU3(AF3 x){return AU3(AF3_(1.0)-x);}
1992 AU4 AZolNotF4ToU4(AF4 x){return AU4(AF4_(1.0)-x);}
1993//------------------------------------------------------------------------------------------------------------------------------
1994 AF1 AZolU1ToF1(AU1 x){return AF1(x);}
1995 AF2 AZolU2ToF2(AU2 x){return AF2(x);}
1996 AF3 AZolU3ToF3(AU3 x){return AF3(x);}
1997 AF4 AZolU4ToF4(AU4 x){return AF4(x);}
1998//==============================================================================================================================
1999 AF1 AZolAndF1(AF1 x,AF1 y){return min(x,y);}
2000 AF2 AZolAndF2(AF2 x,AF2 y){return min(x,y);}
2001 AF3 AZolAndF3(AF3 x,AF3 y){return min(x,y);}
2002 AF4 AZolAndF4(AF4 x,AF4 y){return min(x,y);}
2003//------------------------------------------------------------------------------------------------------------------------------
2004 AF1 ASolAndNotF1(AF1 x,AF1 y){return (-x)*y+AF1_(1.0);}
2005 AF2 ASolAndNotF2(AF2 x,AF2 y){return (-x)*y+AF2_(1.0);}
2006 AF3 ASolAndNotF3(AF3 x,AF3 y){return (-x)*y+AF3_(1.0);}
2007 AF4 ASolAndNotF4(AF4 x,AF4 y){return (-x)*y+AF4_(1.0);}
2008//------------------------------------------------------------------------------------------------------------------------------
2009 AF1 AZolAndOrF1(AF1 x,AF1 y,AF1 z){return ASatF1(x*y+z);}
2010 AF2 AZolAndOrF2(AF2 x,AF2 y,AF2 z){return ASatF2(x*y+z);}
2011 AF3 AZolAndOrF3(AF3 x,AF3 y,AF3 z){return ASatF3(x*y+z);}
2012 AF4 AZolAndOrF4(AF4 x,AF4 y,AF4 z){return ASatF4(x*y+z);}
2013//------------------------------------------------------------------------------------------------------------------------------
2014 AF1 AZolGtZeroF1(AF1 x){return ASatF1(x*AF1_(A_INFP_F));}
2015 AF2 AZolGtZeroF2(AF2 x){return ASatF2(x*AF2_(A_INFP_F));}
2016 AF3 AZolGtZeroF3(AF3 x){return ASatF3(x*AF3_(A_INFP_F));}
2017 AF4 AZolGtZeroF4(AF4 x){return ASatF4(x*AF4_(A_INFP_F));}
2018//------------------------------------------------------------------------------------------------------------------------------
2019 AF1 AZolNotF1(AF1 x){return AF1_(1.0)-x;}
2020 AF2 AZolNotF2(AF2 x){return AF2_(1.0)-x;}
2021 AF3 AZolNotF3(AF3 x){return AF3_(1.0)-x;}
2022 AF4 AZolNotF4(AF4 x){return AF4_(1.0)-x;}
2023//------------------------------------------------------------------------------------------------------------------------------
2024 AF1 AZolOrF1(AF1 x,AF1 y){return max(x,y);}
2025 AF2 AZolOrF2(AF2 x,AF2 y){return max(x,y);}
2026 AF3 AZolOrF3(AF3 x,AF3 y){return max(x,y);}
2027 AF4 AZolOrF4(AF4 x,AF4 y){return max(x,y);}
2028//------------------------------------------------------------------------------------------------------------------------------
2029 AF1 AZolSelF1(AF1 x,AF1 y,AF1 z){AF1 r=(-x)*z+z;return x*y+r;}
2030 AF2 AZolSelF2(AF2 x,AF2 y,AF2 z){AF2 r=(-x)*z+z;return x*y+r;}
2031 AF3 AZolSelF3(AF3 x,AF3 y,AF3 z){AF3 r=(-x)*z+z;return x*y+r;}
2032 AF4 AZolSelF4(AF4 x,AF4 y,AF4 z){AF4 r=(-x)*z+z;return x*y+r;}
2033//------------------------------------------------------------------------------------------------------------------------------
2034 AF1 AZolSignedF1(AF1 x){return ASatF1(x*AF1_(A_INFN_F));}
2035 AF2 AZolSignedF2(AF2 x){return ASatF2(x*AF2_(A_INFN_F));}
2036 AF3 AZolSignedF3(AF3 x){return ASatF3(x*AF3_(A_INFN_F));}
2037 AF4 AZolSignedF4(AF4 x){return ASatF4(x*AF4_(A_INFN_F));}
2038//------------------------------------------------------------------------------------------------------------------------------
2039 AF1 AZolZeroPassF1(AF1 x,AF1 y){return AF1_AU1((AU1_AF1(x)!=AU1_(0))?AU1_(0):AU1_AF1(y));}
2040 AF2 AZolZeroPassF2(AF2 x,AF2 y){return AF2_AU2((AU2_AF2(x)!=AU2_(0))?AU2_(0):AU2_AF2(y));}
2041 AF3 AZolZeroPassF3(AF3 x,AF3 y){return AF3_AU3((AU3_AF3(x)!=AU3_(0))?AU3_(0):AU3_AF3(y));}
2042 AF4 AZolZeroPassF4(AF4 x,AF4 y){return AF4_AU4((AU4_AF4(x)!=AU4_(0))?AU4_(0):AU4_AF4(y));}
2043 #endif
2044//==============================================================================================================================
2045 #ifdef A_HALF
2046 AW1 AZolAndW1(AW1 x,AW1 y){return min(x,y);}
2047 AW2 AZolAndW2(AW2 x,AW2 y){return min(x,y);}
2048 AW3 AZolAndW3(AW3 x,AW3 y){return min(x,y);}
2049 AW4 AZolAndW4(AW4 x,AW4 y){return min(x,y);}
2050//------------------------------------------------------------------------------------------------------------------------------
2051 AW1 AZolNotW1(AW1 x){return x^AW1_(1);}
2052 AW2 AZolNotW2(AW2 x){return x^AW2_(1);}
2053 AW3 AZolNotW3(AW3 x){return x^AW3_(1);}
2054 AW4 AZolNotW4(AW4 x){return x^AW4_(1);}
2055//------------------------------------------------------------------------------------------------------------------------------
2056 AW1 AZolOrW1(AW1 x,AW1 y){return max(x,y);}
2057 AW2 AZolOrW2(AW2 x,AW2 y){return max(x,y);}
2058 AW3 AZolOrW3(AW3 x,AW3 y){return max(x,y);}
2059 AW4 AZolOrW4(AW4 x,AW4 y){return max(x,y);}
2060//==============================================================================================================================
2061 // Uses denormal trick.
2062 AW1 AZolH1ToW1(AH1 x){return AW1_AH1(x*AH1_AW1(AW1_(1)));}
2063 AW2 AZolH2ToW2(AH2 x){return AW2_AH2(x*AH2_AW2(AW2_(1)));}
2064 AW3 AZolH3ToW3(AH3 x){return AW3_AH3(x*AH3_AW3(AW3_(1)));}
2065 AW4 AZolH4ToW4(AH4 x){return AW4_AH4(x*AH4_AW4(AW4_(1)));}
2066//------------------------------------------------------------------------------------------------------------------------------
2067 // AMD arch lacks a packed conversion opcode.
2068 AH1 AZolW1ToH1(AW1 x){return AH1_AW1(x*AW1_AH1(AH1_(1.0)));}
2069 AH2 AZolW2ToH2(AW2 x){return AH2_AW2(x*AW2_AH2(AH2_(1.0)));}
2070 AH3 AZolW1ToH3(AW3 x){return AH3_AW3(x*AW3_AH3(AH3_(1.0)));}
2071 AH4 AZolW2ToH4(AW4 x){return AH4_AW4(x*AW4_AH4(AH4_(1.0)));}
2072//==============================================================================================================================
2073 AH1 AZolAndH1(AH1 x,AH1 y){return min(x,y);}
2074 AH2 AZolAndH2(AH2 x,AH2 y){return min(x,y);}
2075 AH3 AZolAndH3(AH3 x,AH3 y){return min(x,y);}
2076 AH4 AZolAndH4(AH4 x,AH4 y){return min(x,y);}
2077//------------------------------------------------------------------------------------------------------------------------------
2078 AH1 ASolAndNotH1(AH1 x,AH1 y){return (-x)*y+AH1_(1.0);}
2079 AH2 ASolAndNotH2(AH2 x,AH2 y){return (-x)*y+AH2_(1.0);}
2080 AH3 ASolAndNotH3(AH3 x,AH3 y){return (-x)*y+AH3_(1.0);}
2081 AH4 ASolAndNotH4(AH4 x,AH4 y){return (-x)*y+AH4_(1.0);}
2082//------------------------------------------------------------------------------------------------------------------------------
2083 AH1 AZolAndOrH1(AH1 x,AH1 y,AH1 z){return ASatH1(x*y+z);}
2084 AH2 AZolAndOrH2(AH2 x,AH2 y,AH2 z){return ASatH2(x*y+z);}
2085 AH3 AZolAndOrH3(AH3 x,AH3 y,AH3 z){return ASatH3(x*y+z);}
2086 AH4 AZolAndOrH4(AH4 x,AH4 y,AH4 z){return ASatH4(x*y+z);}
2087//------------------------------------------------------------------------------------------------------------------------------
2088 AH1 AZolGtZeroH1(AH1 x){return ASatH1(x*AH1_(A_INFP_H));}
2089 AH2 AZolGtZeroH2(AH2 x){return ASatH2(x*AH2_(A_INFP_H));}
2090 AH3 AZolGtZeroH3(AH3 x){return ASatH3(x*AH3_(A_INFP_H));}
2091 AH4 AZolGtZeroH4(AH4 x){return ASatH4(x*AH4_(A_INFP_H));}
2092//------------------------------------------------------------------------------------------------------------------------------
2093 AH1 AZolNotH1(AH1 x){return AH1_(1.0)-x;}
2094 AH2 AZolNotH2(AH2 x){return AH2_(1.0)-x;}
2095 AH3 AZolNotH3(AH3 x){return AH3_(1.0)-x;}
2096 AH4 AZolNotH4(AH4 x){return AH4_(1.0)-x;}
2097//------------------------------------------------------------------------------------------------------------------------------
2098 AH1 AZolOrH1(AH1 x,AH1 y){return max(x,y);}
2099 AH2 AZolOrH2(AH2 x,AH2 y){return max(x,y);}
2100 AH3 AZolOrH3(AH3 x,AH3 y){return max(x,y);}
2101 AH4 AZolOrH4(AH4 x,AH4 y){return max(x,y);}
2102//------------------------------------------------------------------------------------------------------------------------------
2103 AH1 AZolSelH1(AH1 x,AH1 y,AH1 z){AH1 r=(-x)*z+z;return x*y+r;}
2104 AH2 AZolSelH2(AH2 x,AH2 y,AH2 z){AH2 r=(-x)*z+z;return x*y+r;}
2105 AH3 AZolSelH3(AH3 x,AH3 y,AH3 z){AH3 r=(-x)*z+z;return x*y+r;}
2106 AH4 AZolSelH4(AH4 x,AH4 y,AH4 z){AH4 r=(-x)*z+z;return x*y+r;}
2107//------------------------------------------------------------------------------------------------------------------------------
2108 AH1 AZolSignedH1(AH1 x){return ASatH1(x*AH1_(A_INFN_H));}
2109 AH2 AZolSignedH2(AH2 x){return ASatH2(x*AH2_(A_INFN_H));}
2110 AH3 AZolSignedH3(AH3 x){return ASatH3(x*AH3_(A_INFN_H));}
2111 AH4 AZolSignedH4(AH4 x){return ASatH4(x*AH4_(A_INFN_H));}
2112 #endif
2113////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2114////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2115//_____________________________________________________________/\_______________________________________________________________
2116//==============================================================================================================================
2117// COLOR CONVERSIONS
2118//------------------------------------------------------------------------------------------------------------------------------
2119// These are all linear to/from some other space (where 'linear' has been shortened out of the function name).
2120// So 'ToGamma' is 'LinearToGamma', and 'FromGamma' is 'LinearFromGamma'.
2121// These are branch free implementations.
2122// The AToSrgbF1() function is useful for stores for compute shaders for GPUs without hardware linear->sRGB store conversion.
2123//------------------------------------------------------------------------------------------------------------------------------
2124// TRANSFER FUNCTIONS
2125// ==================
2126// 709 ..... Rec709 used for some HDTVs
2127// Gamma ... Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native
2128// Pq ...... PQ native for HDR10
2129// Srgb .... The sRGB output, typical of PC displays, useful for 10-bit output, or storing to 8-bit UNORM without SRGB type
2130// Two ..... Gamma 2.0, fastest conversion (useful for intermediate pass approximations)
2131// Three ... Gamma 3.0, less fast, but good for HDR.
2132//------------------------------------------------------------------------------------------------------------------------------
2133// KEEPING TO SPEC
2134// ===============
2135// Both Rec.709 and sRGB have a linear segment which as spec'ed would intersect the curved segment 2 times.
2136// (a.) For 8-bit sRGB, steps {0 to 10.3} are in the linear region (4% of the encoding range).
2137// (b.) For 8-bit 709, steps {0 to 20.7} are in the linear region (8% of the encoding range).
2138// Also there is a slight step in the transition regions.
2139// Precision of the coefficients in the spec being the likely cause.
2140// Main usage case of the sRGB code is to do the linear->sRGB converstion in a compute shader before store.
2141// This is to work around lack of hardware (typically only ROP does the conversion for free).
2142// To "correct" the linear segment, would be to introduce error, because hardware decode of sRGB->linear is fixed (and free).
2143// So this header keeps with the spec.
2144// For linear->sRGB transforms, the linear segment in some respects reduces error, because rounding in that region is linear.
2145// Rounding in the curved region in hardware (and fast software code) introduces error due to rounding in non-linear.
2146//------------------------------------------------------------------------------------------------------------------------------
2147// FOR PQ
2148// ======
2149// Both input and output is {0.0-1.0}, and where output 1.0 represents 10000.0 cd/m^2.
2150// All constants are only specified to FP32 precision.
2151// External PQ source reference,
2152// - https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESlib.Utilities_Color.a1.0.1.ctl
2153//------------------------------------------------------------------------------------------------------------------------------
2154// PACKED VERSIONS
2155// ===============
2156// These are the A*H2() functions.
2157// There is no PQ functions as FP16 seemed to not have enough precision for the conversion.
2158// The remaining functions are "good enough" for 8-bit, and maybe 10-bit if not concerned about a few 1-bit errors.
2159// Precision is lowest in the 709 conversion, higher in sRGB, higher still in Two and Gamma (when using 2.2 at least).
2160//------------------------------------------------------------------------------------------------------------------------------
2161// NOTES
2162// =====
2163// Could be faster for PQ conversions to be in ALU or a texture lookup depending on usage case.
2164//==============================================================================================================================
2165 #if 1
2166 AF1 ATo709F1(AF1 c){AF3 j=AF3(0.018*4.5,4.5,0.45);AF2 k=AF2(1.099,-0.099);
2167 return clamp(j.x ,c*j.y ,pow(c,j.z )*k.x +k.y );}
2168 AF2 ATo709F2(AF2 c){AF3 j=AF3(0.018*4.5,4.5,0.45);AF2 k=AF2(1.099,-0.099);
2169 return clamp(j.xx ,c*j.yy ,pow(c,j.zz )*k.xx +k.yy );}
2170 AF3 ATo709F3(AF3 c){AF3 j=AF3(0.018*4.5,4.5,0.45);AF2 k=AF2(1.099,-0.099);
2171 return clamp(j.xxx,c*j.yyy,pow(c,j.zzz)*k.xxx+k.yyy);}
2172//------------------------------------------------------------------------------------------------------------------------------
2173 // Note 'rcpX' is '1/x', where the 'x' is what would be used in AFromGamma().
2174 AF1 AToGammaF1(AF1 c,AF1 rcpX){return pow(c,AF1_(rcpX));}
2175 AF2 AToGammaF2(AF2 c,AF1 rcpX){return pow(c,AF2_(rcpX));}
2176 AF3 AToGammaF3(AF3 c,AF1 rcpX){return pow(c,AF3_(rcpX));}
2177//------------------------------------------------------------------------------------------------------------------------------
2178 AF1 AToPqF1(AF1 x){AF1 p=pow(x,AF1_(0.159302));
2179 return pow((AF1_(0.835938)+AF1_(18.8516)*p)/(AF1_(1.0)+AF1_(18.6875)*p),AF1_(78.8438));}
2180 AF2 AToPqF1(AF2 x){AF2 p=pow(x,AF2_(0.159302));
2181 return pow((AF2_(0.835938)+AF2_(18.8516)*p)/(AF2_(1.0)+AF2_(18.6875)*p),AF2_(78.8438));}
2182 AF3 AToPqF1(AF3 x){AF3 p=pow(x,AF3_(0.159302));
2183 return pow((AF3_(0.835938)+AF3_(18.8516)*p)/(AF3_(1.0)+AF3_(18.6875)*p),AF3_(78.8438));}
2184//------------------------------------------------------------------------------------------------------------------------------
2185 AF1 AToSrgbF1(AF1 c){AF3 j=AF3(0.0031308*12.92,12.92,1.0/2.4);AF2 k=AF2(1.055,-0.055);
2186 return clamp(j.x ,c*j.y ,pow(c,j.z )*k.x +k.y );}
2187 AF2 AToSrgbF2(AF2 c){AF3 j=AF3(0.0031308*12.92,12.92,1.0/2.4);AF2 k=AF2(1.055,-0.055);
2188 return clamp(j.xx ,c*j.yy ,pow(c,j.zz )*k.xx +k.yy );}
2189 AF3 AToSrgbF3(AF3 c){AF3 j=AF3(0.0031308*12.92,12.92,1.0/2.4);AF2 k=AF2(1.055,-0.055);
2190 return clamp(j.xxx,c*j.yyy,pow(c,j.zzz)*k.xxx+k.yyy);}
2191//------------------------------------------------------------------------------------------------------------------------------
2192 AF1 AToTwoF1(AF1 c){return sqrt(c);}
2193 AF2 AToTwoF2(AF2 c){return sqrt(c);}
2194 AF3 AToTwoF3(AF3 c){return sqrt(c);}
2195//------------------------------------------------------------------------------------------------------------------------------
2196 AF1 AToThreeF1(AF1 c){return pow(c,AF1_(1.0/3.0));}
2197 AF2 AToThreeF2(AF2 c){return pow(c,AF2_(1.0/3.0));}
2198 AF3 AToThreeF3(AF3 c){return pow(c,AF3_(1.0/3.0));}
2199 #endif
2200//==============================================================================================================================
2201 #if 1
2202 // Unfortunately median won't work here.
2203 AF1 AFrom709F1(AF1 c){AF3 j=AF3(0.081/4.5,1.0/4.5,1.0/0.45);AF2 k=AF2(1.0/1.099,0.099/1.099);
2204 return AZolSelF1(AZolSignedF1(c-j.x ),c*j.y ,pow(c*k.x +k.y ,j.z ));}
2205 AF2 AFrom709F2(AF2 c){AF3 j=AF3(0.081/4.5,1.0/4.5,1.0/0.45);AF2 k=AF2(1.0/1.099,0.099/1.099);
2206 return AZolSelF2(AZolSignedF2(c-j.xx ),c*j.yy ,pow(c*k.xx +k.yy ,j.zz ));}
2207 AF3 AFrom709F3(AF3 c){AF3 j=AF3(0.081/4.5,1.0/4.5,1.0/0.45);AF2 k=AF2(1.0/1.099,0.099/1.099);
2208 return AZolSelF3(AZolSignedF3(c-j.xxx),c*j.yyy,pow(c*k.xxx+k.yyy,j.zzz));}
2209//------------------------------------------------------------------------------------------------------------------------------
2210 AF1 AFromGammaF1(AF1 c,AF1 x){return pow(c,AF1_(x));}
2211 AF2 AFromGammaF2(AF2 c,AF1 x){return pow(c,AF2_(x));}
2212 AF3 AFromGammaF3(AF3 c,AF1 x){return pow(c,AF3_(x));}
2213//------------------------------------------------------------------------------------------------------------------------------
2214 AF1 AFromPqF1(AF1 x){AF1 p=pow(x,AF1_(0.0126833));
2215 return pow(ASatF1(p-AF1_(0.835938))/(AF1_(18.8516)-AF1_(18.6875)*p),AF1_(6.27739));}
2216 AF2 AFromPqF1(AF2 x){AF2 p=pow(x,AF2_(0.0126833));
2217 return pow(ASatF2(p-AF2_(0.835938))/(AF2_(18.8516)-AF2_(18.6875)*p),AF2_(6.27739));}
2218 AF3 AFromPqF1(AF3 x){AF3 p=pow(x,AF3_(0.0126833));
2219 return pow(ASatF3(p-AF3_(0.835938))/(AF3_(18.8516)-AF3_(18.6875)*p),AF3_(6.27739));}
2220//------------------------------------------------------------------------------------------------------------------------------
2221 // Unfortunately median won't work here.
2222 AF1 AFromSrgbF1(AF1 c){AF3 j=AF3(0.04045/12.92,1.0/12.92,2.4);AF2 k=AF2(1.0/1.055,0.055/1.055);
2223 return AZolSelF1(AZolSignedF1(c-j.x ),c*j.y ,pow(c*k.x +k.y ,j.z ));}
2224 AF2 AFromSrgbF2(AF2 c){AF3 j=AF3(0.04045/12.92,1.0/12.92,2.4);AF2 k=AF2(1.0/1.055,0.055/1.055);
2225 return AZolSelF2(AZolSignedF2(c-j.xx ),c*j.yy ,pow(c*k.xx +k.yy ,j.zz ));}
2226 AF3 AFromSrgbF3(AF3 c){AF3 j=AF3(0.04045/12.92,1.0/12.92,2.4);AF2 k=AF2(1.0/1.055,0.055/1.055);
2227 return AZolSelF3(AZolSignedF3(c-j.xxx),c*j.yyy,pow(c*k.xxx+k.yyy,j.zzz));}
2228//------------------------------------------------------------------------------------------------------------------------------
2229 AF1 AFromTwoF1(AF1 c){return c*c;}
2230 AF2 AFromTwoF2(AF2 c){return c*c;}
2231 AF3 AFromTwoF3(AF3 c){return c*c;}
2232//------------------------------------------------------------------------------------------------------------------------------
2233 AF1 AFromThreeF1(AF1 c){return c*c*c;}
2234 AF2 AFromThreeF2(AF2 c){return c*c*c;}
2235 AF3 AFromThreeF3(AF3 c){return c*c*c;}
2236 #endif
2237//==============================================================================================================================
2238 #ifdef A_HALF
2239 AH1 ATo709H1(AH1 c){AH3 j=AH3(0.018*4.5,4.5,0.45);AH2 k=AH2(1.099,-0.099);
2240 return clamp(j.x ,c*j.y ,pow(c,j.z )*k.x +k.y );}
2241 AH2 ATo709H2(AH2 c){AH3 j=AH3(0.018*4.5,4.5,0.45);AH2 k=AH2(1.099,-0.099);
2242 return clamp(j.xx ,c*j.yy ,pow(c,j.zz )*k.xx +k.yy );}
2243 AH3 ATo709H3(AH3 c){AH3 j=AH3(0.018*4.5,4.5,0.45);AH2 k=AH2(1.099,-0.099);
2244 return clamp(j.xxx,c*j.yyy,pow(c,j.zzz)*k.xxx+k.yyy);}
2245//------------------------------------------------------------------------------------------------------------------------------
2246 AH1 AToGammaH1(AH1 c,AH1 rcpX){return pow(c,AH1_(rcpX));}
2247 AH2 AToGammaH2(AH2 c,AH1 rcpX){return pow(c,AH2_(rcpX));}
2248 AH3 AToGammaH3(AH3 c,AH1 rcpX){return pow(c,AH3_(rcpX));}
2249//------------------------------------------------------------------------------------------------------------------------------
2250 AH1 AToSrgbH1(AH1 c){AH3 j=AH3(0.0031308*12.92,12.92,1.0/2.4);AH2 k=AH2(1.055,-0.055);
2251 return clamp(j.x ,c*j.y ,pow(c,j.z )*k.x +k.y );}
2252 AH2 AToSrgbH2(AH2 c){AH3 j=AH3(0.0031308*12.92,12.92,1.0/2.4);AH2 k=AH2(1.055,-0.055);
2253 return clamp(j.xx ,c*j.yy ,pow(c,j.zz )*k.xx +k.yy );}
2254 AH3 AToSrgbH3(AH3 c){AH3 j=AH3(0.0031308*12.92,12.92,1.0/2.4);AH2 k=AH2(1.055,-0.055);
2255 return clamp(j.xxx,c*j.yyy,pow(c,j.zzz)*k.xxx+k.yyy);}
2256//------------------------------------------------------------------------------------------------------------------------------
2257 AH1 AToTwoH1(AH1 c){return sqrt(c);}
2258 AH2 AToTwoH2(AH2 c){return sqrt(c);}
2259 AH3 AToTwoH3(AH3 c){return sqrt(c);}
2260//------------------------------------------------------------------------------------------------------------------------------
2261 AH1 AToThreeF1(AH1 c){return pow(c,AH1_(1.0/3.0));}
2262 AH2 AToThreeF2(AH2 c){return pow(c,AH2_(1.0/3.0));}
2263 AH3 AToThreeF3(AH3 c){return pow(c,AH3_(1.0/3.0));}
2264 #endif
2265//==============================================================================================================================
2266 #ifdef A_HALF
2267 AH1 AFrom709H1(AH1 c){AH3 j=AH3(0.081/4.5,1.0/4.5,1.0/0.45);AH2 k=AH2(1.0/1.099,0.099/1.099);
2268 return AZolSelH1(AZolSignedH1(c-j.x ),c*j.y ,pow(c*k.x +k.y ,j.z ));}
2269 AH2 AFrom709H2(AH2 c){AH3 j=AH3(0.081/4.5,1.0/4.5,1.0/0.45);AH2 k=AH2(1.0/1.099,0.099/1.099);
2270 return AZolSelH2(AZolSignedH2(c-j.xx ),c*j.yy ,pow(c*k.xx +k.yy ,j.zz ));}
2271 AH3 AFrom709H3(AH3 c){AH3 j=AH3(0.081/4.5,1.0/4.5,1.0/0.45);AH2 k=AH2(1.0/1.099,0.099/1.099);
2272 return AZolSelH3(AZolSignedH3(c-j.xxx),c*j.yyy,pow(c*k.xxx+k.yyy,j.zzz));}
2273//------------------------------------------------------------------------------------------------------------------------------
2274 AH1 AFromGammaH1(AH1 c,AH1 x){return pow(c,AH1_(x));}
2275 AH2 AFromGammaH2(AH2 c,AH1 x){return pow(c,AH2_(x));}
2276 AH3 AFromGammaH3(AH3 c,AH1 x){return pow(c,AH3_(x));}
2277//------------------------------------------------------------------------------------------------------------------------------
2278 AH1 AHromSrgbF1(AH1 c){AH3 j=AH3(0.04045/12.92,1.0/12.92,2.4);AH2 k=AH2(1.0/1.055,0.055/1.055);
2279 return AZolSelH1(AZolSignedH1(c-j.x ),c*j.y ,pow(c*k.x +k.y ,j.z ));}
2280 AH2 AHromSrgbF2(AH2 c){AH3 j=AH3(0.04045/12.92,1.0/12.92,2.4);AH2 k=AH2(1.0/1.055,0.055/1.055);
2281 return AZolSelH2(AZolSignedH2(c-j.xx ),c*j.yy ,pow(c*k.xx +k.yy ,j.zz ));}
2282 AH3 AHromSrgbF3(AH3 c){AH3 j=AH3(0.04045/12.92,1.0/12.92,2.4);AH2 k=AH2(1.0/1.055,0.055/1.055);
2283 return AZolSelH3(AZolSignedH3(c-j.xxx),c*j.yyy,pow(c*k.xxx+k.yyy,j.zzz));}
2284//------------------------------------------------------------------------------------------------------------------------------
2285 AH1 AFromTwoH1(AH1 c){return c*c;}
2286 AH2 AFromTwoH2(AH2 c){return c*c;}
2287 AH3 AFromTwoH3(AH3 c){return c*c;}
2288//------------------------------------------------------------------------------------------------------------------------------
2289 AH1 AFromThreeH1(AH1 c){return c*c*c;}
2290 AH2 AFromThreeH2(AH2 c){return c*c*c;}
2291 AH3 AFromThreeH3(AH3 c){return c*c*c;}
2292 #endif
2293////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2294////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2295//_____________________________________________________________/\_______________________________________________________________
2296//==============================================================================================================================
2297// CS REMAP
2298//==============================================================================================================================
2299 // Simple remap 64x1 to 8x8 with rotated 2x2 pixel quads in quad linear.
2300 // 543210
2301 // ======
2302 // ..xxx.
2303 // yy...y
2304 AU2 ARmp8x8(AU1 a){return AU2(ABfe(a,1u,3u),ABfiM(ABfe(a,3u,3u),a,1u));}
2305//==============================================================================================================================
2306 // More complex remap 64x1 to 8x8 which is necessary for 2D wave reductions.
2307 // 543210
2308 // ======
2309 // .xx..x
2310 // y..yy.
2311 // Details,
2312 // LANE TO 8x8 MAPPING
2313 // ===================
2314 // 00 01 08 09 10 11 18 19
2315 // 02 03 0a 0b 12 13 1a 1b
2316 // 04 05 0c 0d 14 15 1c 1d
2317 // 06 07 0e 0f 16 17 1e 1f
2318 // 20 21 28 29 30 31 38 39
2319 // 22 23 2a 2b 32 33 3a 3b
2320 // 24 25 2c 2d 34 35 3c 3d
2321 // 26 27 2e 2f 36 37 3e 3f
2322 AU2 ARmpRed8x8(AU1 a){return AU2(ABfiM(ABfe(a,2u,3u),a,1u),ABfiM(ABfe(a,3u,3u),ABfe(a,1u,2u),2u));}
2323//==============================================================================================================================
2324 #ifdef A_HALF
2325 AW2 ARmp8x8H(AU1 a){return AW2(ABfe(a,1u,3u),ABfiM(ABfe(a,3u,3u),a,1u));}
2326 AW2 ARmpRed8x8H(AU1 a){return AW2(ABfiM(ABfe(a,2u,3u),a,1u),ABfiM(ABfe(a,3u,3u),ABfe(a,1u,2u),2u));}
2327 #endif
2328#endif
2329////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2330////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2331////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2332////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2333//_____________________________________________________________/\_______________________________________________________________
2334//==============================================================================================================================
2335//
2336// REFERENCE
2337//
2338//------------------------------------------------------------------------------------------------------------------------------
2339// IEEE FLOAT RULES
2340// ================
2341// - saturate(NaN)=0, saturate(-INF)=0, saturate(+INF)=1
2342// - {+/-}0 * {+/-}INF = NaN
2343// - -INF + (+INF) = NaN
2344// - {+/-}0 / {+/-}0 = NaN
2345// - {+/-}INF / {+/-}INF = NaN
2346// - a<(-0) := sqrt(a) = NaN (a=-0.0 won't NaN)
2347// - 0 == -0
2348// - 4/0 = +INF
2349// - 4/-0 = -INF
2350// - 4+INF = +INF
2351// - 4-INF = -INF
2352// - 4*(+INF) = +INF
2353// - 4*(-INF) = -INF
2354// - -4*(+INF) = -INF
2355// - sqrt(+INF) = +INF
2356//------------------------------------------------------------------------------------------------------------------------------
2357// FP16 ENCODING
2358// =============
2359// fedcba9876543210
2360// ----------------
2361// ......mmmmmmmmmm 10-bit mantissa (encodes 11-bit 0.5 to 1.0 except for denormals)
2362// .eeeee.......... 5-bit exponent
2363// .00000.......... denormals
2364// .00001.......... -14 exponent
2365// .11110.......... 15 exponent
2366// .111110000000000 infinity
2367// .11111nnnnnnnnnn NaN with n!=0
2368// s............... sign
2369//------------------------------------------------------------------------------------------------------------------------------
2370// FP16/INT16 ALIASING DENORMAL
2371// ============================
2372// 11-bit unsigned integers alias with half float denormal/normal values,
2373// 1 = 2^(-24) = 1/16777216 ....................... first denormal value
2374// 2 = 2^(-23)
2375// ...
2376// 1023 = 2^(-14)*(1-2^(-10)) = 2^(-14)*(1-1/1024) ... last denormal value
2377// 1024 = 2^(-14) = 1/16384 .......................... first normal value that still maps to integers
2378// 2047 .............................................. last normal value that still maps to integers
2379// Scaling limits,
2380// 2^15 = 32768 ...................................... largest power of 2 scaling
2381// Largest pow2 conversion mapping is at *32768,
2382// 1 : 2^(-9) = 1/512
2383// 2 : 1/256
2384// 4 : 1/128
2385// 8 : 1/64
2386// 16 : 1/32
2387// 32 : 1/16
2388// 64 : 1/8
2389// 128 : 1/4
2390// 256 : 1/2
2391// 512 : 1
2392// 1024 : 2
2393// 2047 : a little less than 4
2394//==============================================================================================================================
2395////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2396////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2397////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2398////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2399////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2400////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2401//_____________________________________________________________/\_______________________________________________________________
2402//==============================================================================================================================
2403//
2404//
2405// GPU/CPU PORTABILITY
2406//
2407//
2408//------------------------------------------------------------------------------------------------------------------------------
2409// This is the GPU implementation.
2410// See the CPU implementation for docs.
2411//==============================================================================================================================
2412#ifdef A_GPU
2413 #define A_TRUE true
2414 #define A_FALSE false
2415 #define A_STATIC
2416////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2417////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2418//_____________________________________________________________/\_______________________________________________________________
2419//==============================================================================================================================
2420// VECTOR ARGUMENT/RETURN/INITIALIZATION PORTABILITY
2421//==============================================================================================================================
2422 #define retAD2 AD2
2423 #define retAD3 AD3
2424 #define retAD4 AD4
2425 #define retAF2 AF2
2426 #define retAF3 AF3
2427 #define retAF4 AF4
2428 #define retAL2 AL2
2429 #define retAL3 AL3
2430 #define retAL4 AL4
2431 #define retAU2 AU2
2432 #define retAU3 AU3
2433 #define retAU4 AU4
2434//------------------------------------------------------------------------------------------------------------------------------
2435 #define inAD2 in AD2
2436 #define inAD3 in AD3
2437 #define inAD4 in AD4
2438 #define inAF2 in AF2
2439 #define inAF3 in AF3
2440 #define inAF4 in AF4
2441 #define inAL2 in AL2
2442 #define inAL3 in AL3
2443 #define inAL4 in AL4
2444 #define inAU2 in AU2
2445 #define inAU3 in AU3
2446 #define inAU4 in AU4
2447//------------------------------------------------------------------------------------------------------------------------------
2448 #define inoutAD2 inout AD2
2449 #define inoutAD3 inout AD3
2450 #define inoutAD4 inout AD4
2451 #define inoutAF2 inout AF2
2452 #define inoutAF3 inout AF3
2453 #define inoutAF4 inout AF4
2454 #define inoutAL2 inout AL2
2455 #define inoutAL3 inout AL3
2456 #define inoutAL4 inout AL4
2457 #define inoutAU2 inout AU2
2458 #define inoutAU3 inout AU3
2459 #define inoutAU4 inout AU4
2460//------------------------------------------------------------------------------------------------------------------------------
2461 #define outAD2 out AD2
2462 #define outAD3 out AD3
2463 #define outAD4 out AD4
2464 #define outAF2 out AF2
2465 #define outAF3 out AF3
2466 #define outAF4 out AF4
2467 #define outAL2 out AL2
2468 #define outAL3 out AL3
2469 #define outAL4 out AL4
2470 #define outAU2 out AU2
2471 #define outAU3 out AU3
2472 #define outAU4 out AU4
2473//------------------------------------------------------------------------------------------------------------------------------
2474 #define varAD2(x) AD2 x
2475 #define varAD3(x) AD3 x
2476 #define varAD4(x) AD4 x
2477 #define varAF2(x) AF2 x
2478 #define varAF3(x) AF3 x
2479 #define varAF4(x) AF4 x
2480 #define varAL2(x) AL2 x
2481 #define varAL3(x) AL3 x
2482 #define varAL4(x) AL4 x
2483 #define varAU2(x) AU2 x
2484 #define varAU3(x) AU3 x
2485 #define varAU4(x) AU4 x
2486//------------------------------------------------------------------------------------------------------------------------------
2487 #define initAD2(x,y) AD2(x,y)
2488 #define initAD3(x,y,z) AD3(x,y,z)
2489 #define initAD4(x,y,z,w) AD4(x,y,z,w)
2490 #define initAF2(x,y) AF2(x,y)
2491 #define initAF3(x,y,z) AF3(x,y,z)
2492 #define initAF4(x,y,z,w) AF4(x,y,z,w)
2493 #define initAL2(x,y) AL2(x,y)
2494 #define initAL3(x,y,z) AL3(x,y,z)
2495 #define initAL4(x,y,z,w) AL4(x,y,z,w)
2496 #define initAU2(x,y) AU2(x,y)
2497 #define initAU3(x,y,z) AU3(x,y,z)
2498 #define initAU4(x,y,z,w) AU4(x,y,z,w)
2499////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2500////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2501//_____________________________________________________________/\_______________________________________________________________
2502//==============================================================================================================================
2503// SCALAR RETURN OPS
2504//==============================================================================================================================
2505 #define AAbsD1(a) abs(AD1(a))
2506 #define AAbsF1(a) abs(AF1(a))
2507//------------------------------------------------------------------------------------------------------------------------------
2508 #define ACosD1(a) cos(AD1(a))
2509 #define ACosF1(a) cos(AF1(a))
2510//------------------------------------------------------------------------------------------------------------------------------
2511 #define ADotD2(a,b) dot(AD2(a),AD2(b))
2512 #define ADotD3(a,b) dot(AD3(a),AD3(b))
2513 #define ADotD4(a,b) dot(AD4(a),AD4(b))
2514 #define ADotF2(a,b) dot(AF2(a),AF2(b))
2515 #define ADotF3(a,b) dot(AF3(a),AF3(b))
2516 #define ADotF4(a,b) dot(AF4(a),AF4(b))
2517//------------------------------------------------------------------------------------------------------------------------------
2518 #define AExp2D1(a) exp2(AD1(a))
2519 #define AExp2F1(a) exp2(AF1(a))
2520//------------------------------------------------------------------------------------------------------------------------------
2521 #define AFloorD1(a) floor(AD1(a))
2522 #define AFloorF1(a) floor(AF1(a))
2523//------------------------------------------------------------------------------------------------------------------------------
2524 #define ALog2D1(a) log2(AD1(a))
2525 #define ALog2F1(a) log2(AF1(a))
2526//------------------------------------------------------------------------------------------------------------------------------
2527 #define AMaxD1(a,b) max(a,b)
2528 #define AMaxF1(a,b) max(a,b)
2529 #define AMaxL1(a,b) max(a,b)
2530 #define AMaxU1(a,b) max(a,b)
2531//------------------------------------------------------------------------------------------------------------------------------
2532 #define AMinD1(a,b) min(a,b)
2533 #define AMinF1(a,b) min(a,b)
2534 #define AMinL1(a,b) min(a,b)
2535 #define AMinU1(a,b) min(a,b)
2536//------------------------------------------------------------------------------------------------------------------------------
2537 #define ASinD1(a) sin(AD1(a))
2538 #define ASinF1(a) sin(AF1(a))
2539//------------------------------------------------------------------------------------------------------------------------------
2540 #define ASqrtD1(a) sqrt(AD1(a))
2541 #define ASqrtF1(a) sqrt(AF1(a))
2542////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2543////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2544//_____________________________________________________________/\_______________________________________________________________
2545//==============================================================================================================================
2546// SCALAR RETURN OPS - DEPENDENT
2547//==============================================================================================================================
2548 #define APowD1(a,b) pow(AD1(a),AF1(b))
2549 #define APowF1(a,b) pow(AF1(a),AF1(b))
2550////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2551////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2552//_____________________________________________________________/\_______________________________________________________________
2553//==============================================================================================================================
2554// VECTOR OPS
2555//------------------------------------------------------------------------------------------------------------------------------
2556// These are added as needed for production or prototyping, so not necessarily a complete set.
2557// They follow a convention of taking in a destination and also returning the destination value to increase utility.
2558//==============================================================================================================================
2559 #ifdef A_DUBL
2560 AD2 opAAbsD2(outAD2 d,inAD2 a){d=abs(a);return d;}
2561 AD3 opAAbsD3(outAD3 d,inAD3 a){d=abs(a);return d;}
2562 AD4 opAAbsD4(outAD4 d,inAD4 a){d=abs(a);return d;}
2563//------------------------------------------------------------------------------------------------------------------------------
2564 AD2 opAAddD2(outAD2 d,inAD2 a,inAD2 b){d=a+b;return d;}
2565 AD3 opAAddD3(outAD3 d,inAD3 a,inAD3 b){d=a+b;return d;}
2566 AD4 opAAddD4(outAD4 d,inAD4 a,inAD4 b){d=a+b;return d;}
2567//------------------------------------------------------------------------------------------------------------------------------
2568 AD2 opAAddOneD2(outAD2 d,inAD2 a,AD1 b){d=a+AD2_(b);return d;}
2569 AD3 opAAddOneD3(outAD3 d,inAD3 a,AD1 b){d=a+AD3_(b);return d;}
2570 AD4 opAAddOneD4(outAD4 d,inAD4 a,AD1 b){d=a+AD4_(b);return d;}
2571//------------------------------------------------------------------------------------------------------------------------------
2572 AD2 opACpyD2(outAD2 d,inAD2 a){d=a;return d;}
2573 AD3 opACpyD3(outAD3 d,inAD3 a){d=a;return d;}
2574 AD4 opACpyD4(outAD4 d,inAD4 a){d=a;return d;}
2575//------------------------------------------------------------------------------------------------------------------------------
2576 AD2 opALerpD2(outAD2 d,inAD2 a,inAD2 b,inAD2 c){d=ALerpD2(a,b,c);return d;}
2577 AD3 opALerpD3(outAD3 d,inAD3 a,inAD3 b,inAD3 c){d=ALerpD3(a,b,c);return d;}
2578 AD4 opALerpD4(outAD4 d,inAD4 a,inAD4 b,inAD4 c){d=ALerpD4(a,b,c);return d;}
2579//------------------------------------------------------------------------------------------------------------------------------
2580 AD2 opALerpOneD2(outAD2 d,inAD2 a,inAD2 b,AD1 c){d=ALerpD2(a,b,AD2_(c));return d;}
2581 AD3 opALerpOneD3(outAD3 d,inAD3 a,inAD3 b,AD1 c){d=ALerpD3(a,b,AD3_(c));return d;}
2582 AD4 opALerpOneD4(outAD4 d,inAD4 a,inAD4 b,AD1 c){d=ALerpD4(a,b,AD4_(c));return d;}
2583//------------------------------------------------------------------------------------------------------------------------------
2584 AD2 opAMaxD2(outAD2 d,inAD2 a,inAD2 b){d=max(a,b);return d;}
2585 AD3 opAMaxD3(outAD3 d,inAD3 a,inAD3 b){d=max(a,b);return d;}
2586 AD4 opAMaxD4(outAD4 d,inAD4 a,inAD4 b){d=max(a,b);return d;}
2587//------------------------------------------------------------------------------------------------------------------------------
2588 AD2 opAMinD2(outAD2 d,inAD2 a,inAD2 b){d=min(a,b);return d;}
2589 AD3 opAMinD3(outAD3 d,inAD3 a,inAD3 b){d=min(a,b);return d;}
2590 AD4 opAMinD4(outAD4 d,inAD4 a,inAD4 b){d=min(a,b);return d;}
2591//------------------------------------------------------------------------------------------------------------------------------
2592 AD2 opAMulD2(outAD2 d,inAD2 a,inAD2 b){d=a*b;return d;}
2593 AD3 opAMulD3(outAD3 d,inAD3 a,inAD3 b){d=a*b;return d;}
2594 AD4 opAMulD4(outAD4 d,inAD4 a,inAD4 b){d=a*b;return d;}
2595//------------------------------------------------------------------------------------------------------------------------------
2596 AD2 opAMulOneD2(outAD2 d,inAD2 a,AD1 b){d=a*AD2_(b);return d;}
2597 AD3 opAMulOneD3(outAD3 d,inAD3 a,AD1 b){d=a*AD3_(b);return d;}
2598 AD4 opAMulOneD4(outAD4 d,inAD4 a,AD1 b){d=a*AD4_(b);return d;}
2599//------------------------------------------------------------------------------------------------------------------------------
2600 AD2 opANegD2(outAD2 d,inAD2 a){d=-a;return d;}
2601 AD3 opANegD3(outAD3 d,inAD3 a){d=-a;return d;}
2602 AD4 opANegD4(outAD4 d,inAD4 a){d=-a;return d;}
2603//------------------------------------------------------------------------------------------------------------------------------
2604 AD2 opARcpD2(outAD2 d,inAD2 a){d=ARcpD2(a);return d;}
2605 AD3 opARcpD3(outAD3 d,inAD3 a){d=ARcpD3(a);return d;}
2606 AD4 opARcpD4(outAD4 d,inAD4 a){d=ARcpD4(a);return d;}
2607 #endif
2608//==============================================================================================================================
2609 AF2 opAAbsF2(outAF2 d,inAF2 a){d=abs(a);return d;}
2610 AF3 opAAbsF3(outAF3 d,inAF3 a){d=abs(a);return d;}
2611 AF4 opAAbsF4(outAF4 d,inAF4 a){d=abs(a);return d;}
2612//------------------------------------------------------------------------------------------------------------------------------
2613 AF2 opAAddF2(outAF2 d,inAF2 a,inAF2 b){d=a+b;return d;}
2614 AF3 opAAddF3(outAF3 d,inAF3 a,inAF3 b){d=a+b;return d;}
2615 AF4 opAAddF4(outAF4 d,inAF4 a,inAF4 b){d=a+b;return d;}
2616//------------------------------------------------------------------------------------------------------------------------------
2617 AF2 opAAddOneF2(outAF2 d,inAF2 a,AF1 b){d=a+AF2_(b);return d;}
2618 AF3 opAAddOneF3(outAF3 d,inAF3 a,AF1 b){d=a+AF3_(b);return d;}
2619 AF4 opAAddOneF4(outAF4 d,inAF4 a,AF1 b){d=a+AF4_(b);return d;}
2620//------------------------------------------------------------------------------------------------------------------------------
2621 AF2 opACpyF2(outAF2 d,inAF2 a){d=a;return d;}
2622 AF3 opACpyF3(outAF3 d,inAF3 a){d=a;return d;}
2623 AF4 opACpyF4(outAF4 d,inAF4 a){d=a;return d;}
2624//------------------------------------------------------------------------------------------------------------------------------
2625 AF2 opALerpF2(outAF2 d,inAF2 a,inAF2 b,inAF2 c){d=ALerpF2(a,b,c);return d;}
2626 AF3 opALerpF3(outAF3 d,inAF3 a,inAF3 b,inAF3 c){d=ALerpF3(a,b,c);return d;}
2627 AF4 opALerpF4(outAF4 d,inAF4 a,inAF4 b,inAF4 c){d=ALerpF4(a,b,c);return d;}
2628//------------------------------------------------------------------------------------------------------------------------------
2629 AF2 opALerpOneF2(outAF2 d,inAF2 a,inAF2 b,AF1 c){d=ALerpF2(a,b,AF2_(c));return d;}
2630 AF3 opALerpOneF3(outAF3 d,inAF3 a,inAF3 b,AF1 c){d=ALerpF3(a,b,AF3_(c));return d;}
2631 AF4 opALerpOneF4(outAF4 d,inAF4 a,inAF4 b,AF1 c){d=ALerpF4(a,b,AF4_(c));return d;}
2632//------------------------------------------------------------------------------------------------------------------------------
2633 AF2 opAMaxF2(outAF2 d,inAF2 a,inAF2 b){d=max(a,b);return d;}
2634 AF3 opAMaxF3(outAF3 d,inAF3 a,inAF3 b){d=max(a,b);return d;}
2635 AF4 opAMaxF4(outAF4 d,inAF4 a,inAF4 b){d=max(a,b);return d;}
2636//------------------------------------------------------------------------------------------------------------------------------
2637 AF2 opAMinF2(outAF2 d,inAF2 a,inAF2 b){d=min(a,b);return d;}
2638 AF3 opAMinF3(outAF3 d,inAF3 a,inAF3 b){d=min(a,b);return d;}
2639 AF4 opAMinF4(outAF4 d,inAF4 a,inAF4 b){d=min(a,b);return d;}
2640//------------------------------------------------------------------------------------------------------------------------------
2641 AF2 opAMulF2(outAF2 d,inAF2 a,inAF2 b){d=a*b;return d;}
2642 AF3 opAMulF3(outAF3 d,inAF3 a,inAF3 b){d=a*b;return d;}
2643 AF4 opAMulF4(outAF4 d,inAF4 a,inAF4 b){d=a*b;return d;}
2644//------------------------------------------------------------------------------------------------------------------------------
2645 AF2 opAMulOneF2(outAF2 d,inAF2 a,AF1 b){d=a*AF2_(b);return d;}
2646 AF3 opAMulOneF3(outAF3 d,inAF3 a,AF1 b){d=a*AF3_(b);return d;}
2647 AF4 opAMulOneF4(outAF4 d,inAF4 a,AF1 b){d=a*AF4_(b);return d;}
2648//------------------------------------------------------------------------------------------------------------------------------
2649 AF2 opANegF2(outAF2 d,inAF2 a){d=-a;return d;}
2650 AF3 opANegF3(outAF3 d,inAF3 a){d=-a;return d;}
2651 AF4 opANegF4(outAF4 d,inAF4 a){d=-a;return d;}
2652//------------------------------------------------------------------------------------------------------------------------------
2653 AF2 opARcpF2(outAF2 d,inAF2 a){d=ARcpF2(a);return d;}
2654 AF3 opARcpF3(outAF3 d,inAF3 a){d=ARcpF3(a);return d;}
2655 AF4 opARcpF4(outAF4 d,inAF4 a){d=ARcpF4(a);return d;}
2656#endif
diff --git a/externals/FidelityFX-FSR/ffx-fsr/ffx_fsr1.h b/externals/FidelityFX-FSR/ffx-fsr/ffx_fsr1.h
new file mode 100644
index 000000000..15ecfde5c
--- /dev/null
+++ b/externals/FidelityFX-FSR/ffx-fsr/ffx_fsr1.h
@@ -0,0 +1,1199 @@
1//_____________________________________________________________/\_______________________________________________________________
2//==============================================================================================================================
3//
4//
5// AMD FidelityFX SUPER RESOLUTION [FSR 1] ::: SPATIAL SCALING & EXTRAS - v1.20210629
6//
7//
8//------------------------------------------------------------------------------------------------------------------------------
9////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
10////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
11//------------------------------------------------------------------------------------------------------------------------------
12// FidelityFX Super Resolution Sample
13//
14// Copyright (c) 2021 Advanced Micro Devices, Inc. All rights reserved.
15// Permission is hereby granted, free of charge, to any person obtaining a copy
16// of this software and associated documentation files(the "Software"), to deal
17// in the Software without restriction, including without limitation the rights
18// to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
19// copies of the Software, and to permit persons to whom the Software is
20// furnished to do so, subject to the following conditions :
21// The above copyright notice and this permission notice shall be included in
22// all copies or substantial portions of the Software.
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
24// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
26// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
28// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
29// THE SOFTWARE.
30//------------------------------------------------------------------------------------------------------------------------------
31////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
32////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
33//------------------------------------------------------------------------------------------------------------------------------
34// ABOUT
35// =====
36// FSR is a collection of algorithms relating to generating a higher resolution image.
37// This specific header focuses on single-image non-temporal image scaling, and related tools.
38//
39// The core functions are EASU and RCAS:
40// [EASU] Edge Adaptive Spatial Upsampling ....... 1x to 4x area range spatial scaling, clamped adaptive elliptical filter.
41// [RCAS] Robust Contrast Adaptive Sharpening .... A non-scaling variation on CAS.
42// RCAS needs to be applied after EASU as a separate pass.
43//
44// Optional utility functions are:
45// [LFGA] Linear Film Grain Applicator ........... Tool to apply film grain after scaling.
46// [SRTM] Simple Reversible Tone-Mapper .......... Linear HDR {0 to FP16_MAX} to {0 to 1} and back.
47// [TEPD] Temporal Energy Preserving Dither ...... Temporally energy preserving dithered {0 to 1} linear to gamma 2.0 conversion.
48// See each individual sub-section for inline documentation.
49//------------------------------------------------------------------------------------------------------------------------------
50////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
51////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
52//------------------------------------------------------------------------------------------------------------------------------
53// FUNCTION PERMUTATIONS
54// =====================
55// *F() ..... Single item computation with 32-bit.
56// *H() ..... Single item computation with 16-bit, with packing (aka two 16-bit ops in parallel) when possible.
57// *Hx2() ... Processing two items in parallel with 16-bit, easier packing.
58// Not all interfaces in this file have a *Hx2() form.
59//==============================================================================================================================
60////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
61////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
62////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
63////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
64//_____________________________________________________________/\_______________________________________________________________
65//==============================================================================================================================
66//
67// FSR - [EASU] EDGE ADAPTIVE SPATIAL UPSAMPLING
68//
69//------------------------------------------------------------------------------------------------------------------------------
70// EASU provides a high quality spatial-only scaling at relatively low cost.
71// Meaning EASU is appropiate for laptops and other low-end GPUs.
72// Quality from 1x to 4x area scaling is good.
73//------------------------------------------------------------------------------------------------------------------------------
74// The scalar uses a modified fast approximation to the standard lanczos(size=2) kernel.
75// EASU runs in a single pass, so it applies a directionally and anisotropically adaptive radial lanczos.
76// This is also kept as simple as possible to have minimum runtime.
77//------------------------------------------------------------------------------------------------------------------------------
78// The lanzcos filter has negative lobes, so by itself it will introduce ringing.
79// To remove all ringing, the algorithm uses the nearest 2x2 input texels as a neighborhood,
80// and limits output to the minimum and maximum of that neighborhood.
81//------------------------------------------------------------------------------------------------------------------------------
82// Input image requirements:
83//
84// Color needs to be encoded as 3 channel[red, green, blue](e.g.XYZ not supported)
85// Each channel needs to be in the range[0, 1]
86// Any color primaries are supported
87// Display / tonemapping curve needs to be as if presenting to sRGB display or similar(e.g.Gamma 2.0)
88// There should be no banding in the input
89// There should be no high amplitude noise in the input
90// There should be no noise in the input that is not at input pixel granularity
91// For performance purposes, use 32bpp formats
92//------------------------------------------------------------------------------------------------------------------------------
93// Best to apply EASU at the end of the frame after tonemapping
94// but before film grain or composite of the UI.
95//------------------------------------------------------------------------------------------------------------------------------
96// Example of including this header for D3D HLSL :
97//
98// #define A_GPU 1
99// #define A_HLSL 1
100// #define A_HALF 1
101// #include "ffx_a.h"
102// #define FSR_EASU_H 1
103// #define FSR_RCAS_H 1
104// //declare input callbacks
105// #include "ffx_fsr1.h"
106//
107// Example of including this header for Vulkan GLSL :
108//
109// #define A_GPU 1
110// #define A_GLSL 1
111// #define A_HALF 1
112// #include "ffx_a.h"
113// #define FSR_EASU_H 1
114// #define FSR_RCAS_H 1
115// //declare input callbacks
116// #include "ffx_fsr1.h"
117//
118// Example of including this header for Vulkan HLSL :
119//
120// #define A_GPU 1
121// #define A_HLSL 1
122// #define A_HLSL_6_2 1
123// #define A_NO_16_BIT_CAST 1
124// #define A_HALF 1
125// #include "ffx_a.h"
126// #define FSR_EASU_H 1
127// #define FSR_RCAS_H 1
128// //declare input callbacks
129// #include "ffx_fsr1.h"
130//
131// Example of declaring the required input callbacks for GLSL :
132// The callbacks need to gather4 for each color channel using the specified texture coordinate 'p'.
133// EASU uses gather4 to reduce position computation logic and for free Arrays of Structures to Structures of Arrays conversion.
134//
135// AH4 FsrEasuRH(AF2 p){return AH4(textureGather(sampler2D(tex,sam),p,0));}
136// AH4 FsrEasuGH(AF2 p){return AH4(textureGather(sampler2D(tex,sam),p,1));}
137// AH4 FsrEasuBH(AF2 p){return AH4(textureGather(sampler2D(tex,sam),p,2));}
138// ...
139// The FsrEasuCon function needs to be called from the CPU or GPU to set up constants.
140// The difference in viewport and input image size is there to support Dynamic Resolution Scaling.
141// To use FsrEasuCon() on the CPU, define A_CPU before including ffx_a and ffx_fsr1.
142// Including a GPU example here, the 'con0' through 'con3' values would be stored out to a constant buffer.
143// AU4 con0,con1,con2,con3;
144// FsrEasuCon(con0,con1,con2,con3,
145// 1920.0,1080.0, // Viewport size (top left aligned) in the input image which is to be scaled.
146// 3840.0,2160.0, // The size of the input image.
147// 2560.0,1440.0); // The output resolution.
148//==============================================================================================================================
149////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
150////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
151//_____________________________________________________________/\_______________________________________________________________
152//==============================================================================================================================
153// CONSTANT SETUP
154//==============================================================================================================================
155// Call to setup required constant values (works on CPU or GPU).
156A_STATIC void FsrEasuCon(
157outAU4 con0,
158outAU4 con1,
159outAU4 con2,
160outAU4 con3,
161// This the rendered image resolution being upscaled
162AF1 inputViewportInPixelsX,
163AF1 inputViewportInPixelsY,
164// This is the resolution of the resource containing the input image (useful for dynamic resolution)
165AF1 inputSizeInPixelsX,
166AF1 inputSizeInPixelsY,
167// This is the display resolution which the input image gets upscaled to
168AF1 outputSizeInPixelsX,
169AF1 outputSizeInPixelsY){
170 // Output integer position to a pixel position in viewport.
171 con0[0]=AU1_AF1(inputViewportInPixelsX*ARcpF1(outputSizeInPixelsX));
172 con0[1]=AU1_AF1(inputViewportInPixelsY*ARcpF1(outputSizeInPixelsY));
173 con0[2]=AU1_AF1(AF1_(0.5)*inputViewportInPixelsX*ARcpF1(outputSizeInPixelsX)-AF1_(0.5));
174 con0[3]=AU1_AF1(AF1_(0.5)*inputViewportInPixelsY*ARcpF1(outputSizeInPixelsY)-AF1_(0.5));
175 // Viewport pixel position to normalized image space.
176 // This is used to get upper-left of 'F' tap.
177 con1[0]=AU1_AF1(ARcpF1(inputSizeInPixelsX));
178 con1[1]=AU1_AF1(ARcpF1(inputSizeInPixelsY));
179 // Centers of gather4, first offset from upper-left of 'F'.
180 // +---+---+
181 // | | |
182 // +--(0)--+
183 // | b | c |
184 // +---F---+---+---+
185 // | e | f | g | h |
186 // +--(1)--+--(2)--+
187 // | i | j | k | l |
188 // +---+---+---+---+
189 // | n | o |
190 // +--(3)--+
191 // | | |
192 // +---+---+
193 con1[2]=AU1_AF1(AF1_( 1.0)*ARcpF1(inputSizeInPixelsX));
194 con1[3]=AU1_AF1(AF1_(-1.0)*ARcpF1(inputSizeInPixelsY));
195 // These are from (0) instead of 'F'.
196 con2[0]=AU1_AF1(AF1_(-1.0)*ARcpF1(inputSizeInPixelsX));
197 con2[1]=AU1_AF1(AF1_( 2.0)*ARcpF1(inputSizeInPixelsY));
198 con2[2]=AU1_AF1(AF1_( 1.0)*ARcpF1(inputSizeInPixelsX));
199 con2[3]=AU1_AF1(AF1_( 2.0)*ARcpF1(inputSizeInPixelsY));
200 con3[0]=AU1_AF1(AF1_( 0.0)*ARcpF1(inputSizeInPixelsX));
201 con3[1]=AU1_AF1(AF1_( 4.0)*ARcpF1(inputSizeInPixelsY));
202 con3[2]=con3[3]=0;}
203
204//If the an offset into the input image resource
205A_STATIC void FsrEasuConOffset(
206 outAU4 con0,
207 outAU4 con1,
208 outAU4 con2,
209 outAU4 con3,
210 // This the rendered image resolution being upscaled
211 AF1 inputViewportInPixelsX,
212 AF1 inputViewportInPixelsY,
213 // This is the resolution of the resource containing the input image (useful for dynamic resolution)
214 AF1 inputSizeInPixelsX,
215 AF1 inputSizeInPixelsY,
216 // This is the display resolution which the input image gets upscaled to
217 AF1 outputSizeInPixelsX,
218 AF1 outputSizeInPixelsY,
219 // This is the input image offset into the resource containing it (useful for dynamic resolution)
220 AF1 inputOffsetInPixelsX,
221 AF1 inputOffsetInPixelsY) {
222 FsrEasuCon(con0, con1, con2, con3, inputViewportInPixelsX, inputViewportInPixelsY, inputSizeInPixelsX, inputSizeInPixelsY, outputSizeInPixelsX, outputSizeInPixelsY);
223 con0[2] = AU1_AF1(AF1_(0.5) * inputViewportInPixelsX * ARcpF1(outputSizeInPixelsX) - AF1_(0.5) + inputOffsetInPixelsX);
224 con0[3] = AU1_AF1(AF1_(0.5) * inputViewportInPixelsY * ARcpF1(outputSizeInPixelsY) - AF1_(0.5) + inputOffsetInPixelsY);
225}
226////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
227////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
228//_____________________________________________________________/\_______________________________________________________________
229//==============================================================================================================================
230// NON-PACKED 32-BIT VERSION
231//==============================================================================================================================
232#if defined(A_GPU)&&defined(FSR_EASU_F)
233 // Input callback prototypes, need to be implemented by calling shader
234 AF4 FsrEasuRF(AF2 p);
235 AF4 FsrEasuGF(AF2 p);
236 AF4 FsrEasuBF(AF2 p);
237//------------------------------------------------------------------------------------------------------------------------------
238 // Filtering for a given tap for the scalar.
239 void FsrEasuTapF(
240 inout AF3 aC, // Accumulated color, with negative lobe.
241 inout AF1 aW, // Accumulated weight.
242 AF2 off, // Pixel offset from resolve position to tap.
243 AF2 dir, // Gradient direction.
244 AF2 len, // Length.
245 AF1 lob, // Negative lobe strength.
246 AF1 clp, // Clipping point.
247 AF3 c){ // Tap color.
248 // Rotate offset by direction.
249 AF2 v;
250 v.x=(off.x*( dir.x))+(off.y*dir.y);
251 v.y=(off.x*(-dir.y))+(off.y*dir.x);
252 // Anisotropy.
253 v*=len;
254 // Compute distance^2.
255 AF1 d2=v.x*v.x+v.y*v.y;
256 // Limit to the window as at corner, 2 taps can easily be outside.
257 d2=min(d2,clp);
258 // Approximation of lancos2 without sin() or rcp(), or sqrt() to get x.
259 // (25/16 * (2/5 * x^2 - 1)^2 - (25/16 - 1)) * (1/4 * x^2 - 1)^2
260 // |_______________________________________| |_______________|
261 // base window
262 // The general form of the 'base' is,
263 // (a*(b*x^2-1)^2-(a-1))
264 // Where 'a=1/(2*b-b^2)' and 'b' moves around the negative lobe.
265 AF1 wB=AF1_(2.0/5.0)*d2+AF1_(-1.0);
266 AF1 wA=lob*d2+AF1_(-1.0);
267 wB*=wB;
268 wA*=wA;
269 wB=AF1_(25.0/16.0)*wB+AF1_(-(25.0/16.0-1.0));
270 AF1 w=wB*wA;
271 // Do weighted average.
272 aC+=c*w;aW+=w;}
273//------------------------------------------------------------------------------------------------------------------------------
274 // Accumulate direction and length.
275 void FsrEasuSetF(
276 inout AF2 dir,
277 inout AF1 len,
278 AF2 pp,
279 AP1 biS,AP1 biT,AP1 biU,AP1 biV,
280 AF1 lA,AF1 lB,AF1 lC,AF1 lD,AF1 lE){
281 // Compute bilinear weight, branches factor out as predicates are compiler time immediates.
282 // s t
283 // u v
284 AF1 w = AF1_(0.0);
285 if(biS)w=(AF1_(1.0)-pp.x)*(AF1_(1.0)-pp.y);
286 if(biT)w= pp.x *(AF1_(1.0)-pp.y);
287 if(biU)w=(AF1_(1.0)-pp.x)* pp.y ;
288 if(biV)w= pp.x * pp.y ;
289 // Direction is the '+' diff.
290 // a
291 // b c d
292 // e
293 // Then takes magnitude from abs average of both sides of 'c'.
294 // Length converts gradient reversal to 0, smoothly to non-reversal at 1, shaped, then adding horz and vert terms.
295 AF1 dc=lD-lC;
296 AF1 cb=lC-lB;
297 AF1 lenX=max(abs(dc),abs(cb));
298 lenX=APrxLoRcpF1(lenX);
299 AF1 dirX=lD-lB;
300 dir.x+=dirX*w;
301 lenX=ASatF1(abs(dirX)*lenX);
302 lenX*=lenX;
303 len+=lenX*w;
304 // Repeat for the y axis.
305 AF1 ec=lE-lC;
306 AF1 ca=lC-lA;
307 AF1 lenY=max(abs(ec),abs(ca));
308 lenY=APrxLoRcpF1(lenY);
309 AF1 dirY=lE-lA;
310 dir.y+=dirY*w;
311 lenY=ASatF1(abs(dirY)*lenY);
312 lenY*=lenY;
313 len+=lenY*w;}
314//------------------------------------------------------------------------------------------------------------------------------
315 void FsrEasuF(
316 out AF3 pix,
317 AU2 ip, // Integer pixel position in output.
318 AU4 con0, // Constants generated by FsrEasuCon().
319 AU4 con1,
320 AU4 con2,
321 AU4 con3){
322//------------------------------------------------------------------------------------------------------------------------------
323 // Get position of 'f'.
324 AF2 pp=AF2(ip)*AF2_AU2(con0.xy)+AF2_AU2(con0.zw);
325 AF2 fp=floor(pp);
326 pp-=fp;
327//------------------------------------------------------------------------------------------------------------------------------
328 // 12-tap kernel.
329 // b c
330 // e f g h
331 // i j k l
332 // n o
333 // Gather 4 ordering.
334 // a b
335 // r g
336 // For packed FP16, need either {rg} or {ab} so using the following setup for gather in all versions,
337 // a b <- unused (z)
338 // r g
339 // a b a b
340 // r g r g
341 // a b
342 // r g <- unused (z)
343 // Allowing dead-code removal to remove the 'z's.
344 AF2 p0=fp*AF2_AU2(con1.xy)+AF2_AU2(con1.zw);
345 // These are from p0 to avoid pulling two constants on pre-Navi hardware.
346 AF2 p1=p0+AF2_AU2(con2.xy);
347 AF2 p2=p0+AF2_AU2(con2.zw);
348 AF2 p3=p0+AF2_AU2(con3.xy);
349 AF4 bczzR=FsrEasuRF(p0);
350 AF4 bczzG=FsrEasuGF(p0);
351 AF4 bczzB=FsrEasuBF(p0);
352 AF4 ijfeR=FsrEasuRF(p1);
353 AF4 ijfeG=FsrEasuGF(p1);
354 AF4 ijfeB=FsrEasuBF(p1);
355 AF4 klhgR=FsrEasuRF(p2);
356 AF4 klhgG=FsrEasuGF(p2);
357 AF4 klhgB=FsrEasuBF(p2);
358 AF4 zzonR=FsrEasuRF(p3);
359 AF4 zzonG=FsrEasuGF(p3);
360 AF4 zzonB=FsrEasuBF(p3);
361//------------------------------------------------------------------------------------------------------------------------------
362 // Simplest multi-channel approximate luma possible (luma times 2, in 2 FMA/MAD).
363 AF4 bczzL=bczzB*AF4_(0.5)+(bczzR*AF4_(0.5)+bczzG);
364 AF4 ijfeL=ijfeB*AF4_(0.5)+(ijfeR*AF4_(0.5)+ijfeG);
365 AF4 klhgL=klhgB*AF4_(0.5)+(klhgR*AF4_(0.5)+klhgG);
366 AF4 zzonL=zzonB*AF4_(0.5)+(zzonR*AF4_(0.5)+zzonG);
367 // Rename.
368 AF1 bL=bczzL.x;
369 AF1 cL=bczzL.y;
370 AF1 iL=ijfeL.x;
371 AF1 jL=ijfeL.y;
372 AF1 fL=ijfeL.z;
373 AF1 eL=ijfeL.w;
374 AF1 kL=klhgL.x;
375 AF1 lL=klhgL.y;
376 AF1 hL=klhgL.z;
377 AF1 gL=klhgL.w;
378 AF1 oL=zzonL.z;
379 AF1 nL=zzonL.w;
380 // Accumulate for bilinear interpolation.
381 AF2 dir=AF2_(0.0);
382 AF1 len=AF1_(0.0);
383 FsrEasuSetF(dir,len,pp,true, false,false,false,bL,eL,fL,gL,jL);
384 FsrEasuSetF(dir,len,pp,false,true ,false,false,cL,fL,gL,hL,kL);
385 FsrEasuSetF(dir,len,pp,false,false,true ,false,fL,iL,jL,kL,nL);
386 FsrEasuSetF(dir,len,pp,false,false,false,true ,gL,jL,kL,lL,oL);
387//------------------------------------------------------------------------------------------------------------------------------
388 // Normalize with approximation, and cleanup close to zero.
389 AF2 dir2=dir*dir;
390 AF1 dirR=dir2.x+dir2.y;
391 AP1 zro=dirR<AF1_(1.0/32768.0);
392 dirR=APrxLoRsqF1(dirR);
393 dirR=zro?AF1_(1.0):dirR;
394 dir.x=zro?AF1_(1.0):dir.x;
395 dir*=AF2_(dirR);
396 // Transform from {0 to 2} to {0 to 1} range, and shape with square.
397 len=len*AF1_(0.5);
398 len*=len;
399 // Stretch kernel {1.0 vert|horz, to sqrt(2.0) on diagonal}.
400 AF1 stretch=(dir.x*dir.x+dir.y*dir.y)*APrxLoRcpF1(max(abs(dir.x),abs(dir.y)));
401 // Anisotropic length after rotation,
402 // x := 1.0 lerp to 'stretch' on edges
403 // y := 1.0 lerp to 2x on edges
404 AF2 len2=AF2(AF1_(1.0)+(stretch-AF1_(1.0))*len,AF1_(1.0)+AF1_(-0.5)*len);
405 // Based on the amount of 'edge',
406 // the window shifts from +/-{sqrt(2.0) to slightly beyond 2.0}.
407 AF1 lob=AF1_(0.5)+AF1_((1.0/4.0-0.04)-0.5)*len;
408 // Set distance^2 clipping point to the end of the adjustable window.
409 AF1 clp=APrxLoRcpF1(lob);
410//------------------------------------------------------------------------------------------------------------------------------
411 // Accumulation mixed with min/max of 4 nearest.
412 // b c
413 // e f g h
414 // i j k l
415 // n o
416 AF3 min4=min(AMin3F3(AF3(ijfeR.z,ijfeG.z,ijfeB.z),AF3(klhgR.w,klhgG.w,klhgB.w),AF3(ijfeR.y,ijfeG.y,ijfeB.y)),
417 AF3(klhgR.x,klhgG.x,klhgB.x));
418 AF3 max4=max(AMax3F3(AF3(ijfeR.z,ijfeG.z,ijfeB.z),AF3(klhgR.w,klhgG.w,klhgB.w),AF3(ijfeR.y,ijfeG.y,ijfeB.y)),
419 AF3(klhgR.x,klhgG.x,klhgB.x));
420 // Accumulation.
421 AF3 aC=AF3_(0.0);
422 AF1 aW=AF1_(0.0);
423 FsrEasuTapF(aC,aW,AF2( 0.0,-1.0)-pp,dir,len2,lob,clp,AF3(bczzR.x,bczzG.x,bczzB.x)); // b
424 FsrEasuTapF(aC,aW,AF2( 1.0,-1.0)-pp,dir,len2,lob,clp,AF3(bczzR.y,bczzG.y,bczzB.y)); // c
425 FsrEasuTapF(aC,aW,AF2(-1.0, 1.0)-pp,dir,len2,lob,clp,AF3(ijfeR.x,ijfeG.x,ijfeB.x)); // i
426 FsrEasuTapF(aC,aW,AF2( 0.0, 1.0)-pp,dir,len2,lob,clp,AF3(ijfeR.y,ijfeG.y,ijfeB.y)); // j
427 FsrEasuTapF(aC,aW,AF2( 0.0, 0.0)-pp,dir,len2,lob,clp,AF3(ijfeR.z,ijfeG.z,ijfeB.z)); // f
428 FsrEasuTapF(aC,aW,AF2(-1.0, 0.0)-pp,dir,len2,lob,clp,AF3(ijfeR.w,ijfeG.w,ijfeB.w)); // e
429 FsrEasuTapF(aC,aW,AF2( 1.0, 1.0)-pp,dir,len2,lob,clp,AF3(klhgR.x,klhgG.x,klhgB.x)); // k
430 FsrEasuTapF(aC,aW,AF2( 2.0, 1.0)-pp,dir,len2,lob,clp,AF3(klhgR.y,klhgG.y,klhgB.y)); // l
431 FsrEasuTapF(aC,aW,AF2( 2.0, 0.0)-pp,dir,len2,lob,clp,AF3(klhgR.z,klhgG.z,klhgB.z)); // h
432 FsrEasuTapF(aC,aW,AF2( 1.0, 0.0)-pp,dir,len2,lob,clp,AF3(klhgR.w,klhgG.w,klhgB.w)); // g
433 FsrEasuTapF(aC,aW,AF2( 1.0, 2.0)-pp,dir,len2,lob,clp,AF3(zzonR.z,zzonG.z,zzonB.z)); // o
434 FsrEasuTapF(aC,aW,AF2( 0.0, 2.0)-pp,dir,len2,lob,clp,AF3(zzonR.w,zzonG.w,zzonB.w)); // n
435//------------------------------------------------------------------------------------------------------------------------------
436 // Normalize and dering.
437 pix=min(max4,max(min4,aC*AF3_(ARcpF1(aW))));}
438#endif
439////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
440////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
441//_____________________________________________________________/\_______________________________________________________________
442//==============================================================================================================================
443// PACKED 16-BIT VERSION
444//==============================================================================================================================
445#if defined(A_GPU)&&defined(A_HALF)&&defined(FSR_EASU_H)
446// Input callback prototypes, need to be implemented by calling shader
447 AH4 FsrEasuRH(AF2 p);
448 AH4 FsrEasuGH(AF2 p);
449 AH4 FsrEasuBH(AF2 p);
450//------------------------------------------------------------------------------------------------------------------------------
451 // This runs 2 taps in parallel.
452 void FsrEasuTapH(
453 inout AH2 aCR,inout AH2 aCG,inout AH2 aCB,
454 inout AH2 aW,
455 AH2 offX,AH2 offY,
456 AH2 dir,
457 AH2 len,
458 AH1 lob,
459 AH1 clp,
460 AH2 cR,AH2 cG,AH2 cB){
461 AH2 vX,vY;
462 vX=offX* dir.xx +offY*dir.yy;
463 vY=offX*(-dir.yy)+offY*dir.xx;
464 vX*=len.x;vY*=len.y;
465 AH2 d2=vX*vX+vY*vY;
466 d2=min(d2,AH2_(clp));
467 AH2 wB=AH2_(2.0/5.0)*d2+AH2_(-1.0);
468 AH2 wA=AH2_(lob)*d2+AH2_(-1.0);
469 wB*=wB;
470 wA*=wA;
471 wB=AH2_(25.0/16.0)*wB+AH2_(-(25.0/16.0-1.0));
472 AH2 w=wB*wA;
473 aCR+=cR*w;aCG+=cG*w;aCB+=cB*w;aW+=w;}
474//------------------------------------------------------------------------------------------------------------------------------
475 // This runs 2 taps in parallel.
476 void FsrEasuSetH(
477 inout AH2 dirPX,inout AH2 dirPY,
478 inout AH2 lenP,
479 AH2 pp,
480 AP1 biST,AP1 biUV,
481 AH2 lA,AH2 lB,AH2 lC,AH2 lD,AH2 lE){
482 AH2 w = AH2_(0.0);
483 if(biST)w=(AH2(1.0,0.0)+AH2(-pp.x,pp.x))*AH2_(AH1_(1.0)-pp.y);
484 if(biUV)w=(AH2(1.0,0.0)+AH2(-pp.x,pp.x))*AH2_( pp.y);
485 // ABS is not free in the packed FP16 path.
486 AH2 dc=lD-lC;
487 AH2 cb=lC-lB;
488 AH2 lenX=max(abs(dc),abs(cb));
489 lenX=ARcpH2(lenX);
490 AH2 dirX=lD-lB;
491 dirPX+=dirX*w;
492 lenX=ASatH2(abs(dirX)*lenX);
493 lenX*=lenX;
494 lenP+=lenX*w;
495 AH2 ec=lE-lC;
496 AH2 ca=lC-lA;
497 AH2 lenY=max(abs(ec),abs(ca));
498 lenY=ARcpH2(lenY);
499 AH2 dirY=lE-lA;
500 dirPY+=dirY*w;
501 lenY=ASatH2(abs(dirY)*lenY);
502 lenY*=lenY;
503 lenP+=lenY*w;}
504//------------------------------------------------------------------------------------------------------------------------------
505 void FsrEasuH(
506 out AH3 pix,
507 AU2 ip,
508 AU4 con0,
509 AU4 con1,
510 AU4 con2,
511 AU4 con3){
512//------------------------------------------------------------------------------------------------------------------------------
513 AF2 pp=AF2(ip)*AF2_AU2(con0.xy)+AF2_AU2(con0.zw);
514 AF2 fp=floor(pp);
515 pp-=fp;
516 AH2 ppp=AH2(pp);
517//------------------------------------------------------------------------------------------------------------------------------
518 AF2 p0=fp*AF2_AU2(con1.xy)+AF2_AU2(con1.zw);
519 AF2 p1=p0+AF2_AU2(con2.xy);
520 AF2 p2=p0+AF2_AU2(con2.zw);
521 AF2 p3=p0+AF2_AU2(con3.xy);
522 AH4 bczzR=FsrEasuRH(p0);
523 AH4 bczzG=FsrEasuGH(p0);
524 AH4 bczzB=FsrEasuBH(p0);
525 AH4 ijfeR=FsrEasuRH(p1);
526 AH4 ijfeG=FsrEasuGH(p1);
527 AH4 ijfeB=FsrEasuBH(p1);
528 AH4 klhgR=FsrEasuRH(p2);
529 AH4 klhgG=FsrEasuGH(p2);
530 AH4 klhgB=FsrEasuBH(p2);
531 AH4 zzonR=FsrEasuRH(p3);
532 AH4 zzonG=FsrEasuGH(p3);
533 AH4 zzonB=FsrEasuBH(p3);
534//------------------------------------------------------------------------------------------------------------------------------
535 AH4 bczzL=bczzB*AH4_(0.5)+(bczzR*AH4_(0.5)+bczzG);
536 AH4 ijfeL=ijfeB*AH4_(0.5)+(ijfeR*AH4_(0.5)+ijfeG);
537 AH4 klhgL=klhgB*AH4_(0.5)+(klhgR*AH4_(0.5)+klhgG);
538 AH4 zzonL=zzonB*AH4_(0.5)+(zzonR*AH4_(0.5)+zzonG);
539 AH1 bL=bczzL.x;
540 AH1 cL=bczzL.y;
541 AH1 iL=ijfeL.x;
542 AH1 jL=ijfeL.y;
543 AH1 fL=ijfeL.z;
544 AH1 eL=ijfeL.w;
545 AH1 kL=klhgL.x;
546 AH1 lL=klhgL.y;
547 AH1 hL=klhgL.z;
548 AH1 gL=klhgL.w;
549 AH1 oL=zzonL.z;
550 AH1 nL=zzonL.w;
551 // This part is different, accumulating 2 taps in parallel.
552 AH2 dirPX=AH2_(0.0);
553 AH2 dirPY=AH2_(0.0);
554 AH2 lenP=AH2_(0.0);
555 FsrEasuSetH(dirPX,dirPY,lenP,ppp,true, false,AH2(bL,cL),AH2(eL,fL),AH2(fL,gL),AH2(gL,hL),AH2(jL,kL));
556 FsrEasuSetH(dirPX,dirPY,lenP,ppp,false,true ,AH2(fL,gL),AH2(iL,jL),AH2(jL,kL),AH2(kL,lL),AH2(nL,oL));
557 AH2 dir=AH2(dirPX.r+dirPX.g,dirPY.r+dirPY.g);
558 AH1 len=lenP.r+lenP.g;
559//------------------------------------------------------------------------------------------------------------------------------
560 AH2 dir2=dir*dir;
561 AH1 dirR=dir2.x+dir2.y;
562 AP1 zro=dirR<AH1_(1.0/32768.0);
563 dirR=APrxLoRsqH1(dirR);
564 dirR=zro?AH1_(1.0):dirR;
565 dir.x=zro?AH1_(1.0):dir.x;
566 dir*=AH2_(dirR);
567 len=len*AH1_(0.5);
568 len*=len;
569 AH1 stretch=(dir.x*dir.x+dir.y*dir.y)*APrxLoRcpH1(max(abs(dir.x),abs(dir.y)));
570 AH2 len2=AH2(AH1_(1.0)+(stretch-AH1_(1.0))*len,AH1_(1.0)+AH1_(-0.5)*len);
571 AH1 lob=AH1_(0.5)+AH1_((1.0/4.0-0.04)-0.5)*len;
572 AH1 clp=APrxLoRcpH1(lob);
573//------------------------------------------------------------------------------------------------------------------------------
574 // FP16 is different, using packed trick to do min and max in same operation.
575 AH2 bothR=max(max(AH2(-ijfeR.z,ijfeR.z),AH2(-klhgR.w,klhgR.w)),max(AH2(-ijfeR.y,ijfeR.y),AH2(-klhgR.x,klhgR.x)));
576 AH2 bothG=max(max(AH2(-ijfeG.z,ijfeG.z),AH2(-klhgG.w,klhgG.w)),max(AH2(-ijfeG.y,ijfeG.y),AH2(-klhgG.x,klhgG.x)));
577 AH2 bothB=max(max(AH2(-ijfeB.z,ijfeB.z),AH2(-klhgB.w,klhgB.w)),max(AH2(-ijfeB.y,ijfeB.y),AH2(-klhgB.x,klhgB.x)));
578 // This part is different for FP16, working pairs of taps at a time.
579 AH2 pR=AH2_(0.0);
580 AH2 pG=AH2_(0.0);
581 AH2 pB=AH2_(0.0);
582 AH2 pW=AH2_(0.0);
583 FsrEasuTapH(pR,pG,pB,pW,AH2( 0.0, 1.0)-ppp.xx,AH2(-1.0,-1.0)-ppp.yy,dir,len2,lob,clp,bczzR.xy,bczzG.xy,bczzB.xy);
584 FsrEasuTapH(pR,pG,pB,pW,AH2(-1.0, 0.0)-ppp.xx,AH2( 1.0, 1.0)-ppp.yy,dir,len2,lob,clp,ijfeR.xy,ijfeG.xy,ijfeB.xy);
585 FsrEasuTapH(pR,pG,pB,pW,AH2( 0.0,-1.0)-ppp.xx,AH2( 0.0, 0.0)-ppp.yy,dir,len2,lob,clp,ijfeR.zw,ijfeG.zw,ijfeB.zw);
586 FsrEasuTapH(pR,pG,pB,pW,AH2( 1.0, 2.0)-ppp.xx,AH2( 1.0, 1.0)-ppp.yy,dir,len2,lob,clp,klhgR.xy,klhgG.xy,klhgB.xy);
587 FsrEasuTapH(pR,pG,pB,pW,AH2( 2.0, 1.0)-ppp.xx,AH2( 0.0, 0.0)-ppp.yy,dir,len2,lob,clp,klhgR.zw,klhgG.zw,klhgB.zw);
588 FsrEasuTapH(pR,pG,pB,pW,AH2( 1.0, 0.0)-ppp.xx,AH2( 2.0, 2.0)-ppp.yy,dir,len2,lob,clp,zzonR.zw,zzonG.zw,zzonB.zw);
589 AH3 aC=AH3(pR.x+pR.y,pG.x+pG.y,pB.x+pB.y);
590 AH1 aW=pW.x+pW.y;
591//------------------------------------------------------------------------------------------------------------------------------
592 // Slightly different for FP16 version due to combined min and max.
593 pix=min(AH3(bothR.y,bothG.y,bothB.y),max(-AH3(bothR.x,bothG.x,bothB.x),aC*AH3_(ARcpH1(aW))));}
594#endif
595////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
596////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
597////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
598////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
599//_____________________________________________________________/\_______________________________________________________________
600//==============================================================================================================================
601//
602// FSR - [RCAS] ROBUST CONTRAST ADAPTIVE SHARPENING
603//
604//------------------------------------------------------------------------------------------------------------------------------
605// CAS uses a simplified mechanism to convert local contrast into a variable amount of sharpness.
606// RCAS uses a more exact mechanism, solving for the maximum local sharpness possible before clipping.
607// RCAS also has a built in process to limit sharpening of what it detects as possible noise.
608// RCAS sharper does not support scaling, as it should be applied after EASU scaling.
609// Pass EASU output straight into RCAS, no color conversions necessary.
610//------------------------------------------------------------------------------------------------------------------------------
611// RCAS is based on the following logic.
612// RCAS uses a 5 tap filter in a cross pattern (same as CAS),
613// w n
614// w 1 w for taps w m e
615// w s
616// Where 'w' is the negative lobe weight.
617// output = (w*(n+e+w+s)+m)/(4*w+1)
618// RCAS solves for 'w' by seeing where the signal might clip out of the {0 to 1} input range,
619// 0 == (w*(n+e+w+s)+m)/(4*w+1) -> w = -m/(n+e+w+s)
620// 1 == (w*(n+e+w+s)+m)/(4*w+1) -> w = (1-m)/(n+e+w+s-4*1)
621// Then chooses the 'w' which results in no clipping, limits 'w', and multiplies by the 'sharp' amount.
622// This solution above has issues with MSAA input as the steps along the gradient cause edge detection issues.
623// So RCAS uses 4x the maximum and 4x the minimum (depending on equation)in place of the individual taps.
624// As well as switching from 'm' to either the minimum or maximum (depending on side), to help in energy conservation.
625// This stabilizes RCAS.
626// RCAS does a simple highpass which is normalized against the local contrast then shaped,
627// 0.25
628// 0.25 -1 0.25
629// 0.25
630// This is used as a noise detection filter, to reduce the effect of RCAS on grain, and focus on real edges.
631//
632// GLSL example for the required callbacks :
633//
634// AH4 FsrRcasLoadH(ASW2 p){return AH4(imageLoad(imgSrc,ASU2(p)));}
635// void FsrRcasInputH(inout AH1 r,inout AH1 g,inout AH1 b)
636// {
637// //do any simple input color conversions here or leave empty if none needed
638// }
639//
640// FsrRcasCon need to be called from the CPU or GPU to set up constants.
641// Including a GPU example here, the 'con' value would be stored out to a constant buffer.
642//
643// AU4 con;
644// FsrRcasCon(con,
645// 0.0); // The scale is {0.0 := maximum sharpness, to N>0, where N is the number of stops (halving) of the reduction of sharpness}.
646// ---------------
647// RCAS sharpening supports a CAS-like pass-through alpha via,
648// #define FSR_RCAS_PASSTHROUGH_ALPHA 1
649// RCAS also supports a define to enable a more expensive path to avoid some sharpening of noise.
650// Would suggest it is better to apply film grain after RCAS sharpening (and after scaling) instead of using this define,
651// #define FSR_RCAS_DENOISE 1
652//==============================================================================================================================
653// This is set at the limit of providing unnatural results for sharpening.
654#define FSR_RCAS_LIMIT (0.25-(1.0/16.0))
655////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
656////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
657//_____________________________________________________________/\_______________________________________________________________
658//==============================================================================================================================
659// CONSTANT SETUP
660//==============================================================================================================================
661// Call to setup required constant values (works on CPU or GPU).
662A_STATIC void FsrRcasCon(
663outAU4 con,
664// The scale is {0.0 := maximum, to N>0, where N is the number of stops (halving) of the reduction of sharpness}.
665AF1 sharpness){
666 // Transform from stops to linear value.
667 sharpness=AExp2F1(-sharpness);
668 varAF2(hSharp)=initAF2(sharpness,sharpness);
669 con[0]=AU1_AF1(sharpness);
670 con[1]=AU1_AH2_AF2(hSharp);
671 con[2]=0;
672 con[3]=0;}
673////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
674////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
675//_____________________________________________________________/\_______________________________________________________________
676//==============================================================================================================================
677// NON-PACKED 32-BIT VERSION
678//==============================================================================================================================
679#if defined(A_GPU)&&defined(FSR_RCAS_F)
680 // Input callback prototypes that need to be implemented by calling shader
681 AF4 FsrRcasLoadF(ASU2 p);
682 void FsrRcasInputF(inout AF1 r,inout AF1 g,inout AF1 b);
683//------------------------------------------------------------------------------------------------------------------------------
684 void FsrRcasF(
685 out AF1 pixR, // Output values, non-vector so port between RcasFilter() and RcasFilterH() is easy.
686 out AF1 pixG,
687 out AF1 pixB,
688 #ifdef FSR_RCAS_PASSTHROUGH_ALPHA
689 out AF1 pixA,
690 #endif
691 AU2 ip, // Integer pixel position in output.
692 AU4 con){ // Constant generated by RcasSetup().
693 // Algorithm uses minimal 3x3 pixel neighborhood.
694 // b
695 // d e f
696 // h
697 ASU2 sp=ASU2(ip);
698 AF3 b=FsrRcasLoadF(sp+ASU2( 0,-1)).rgb;
699 AF3 d=FsrRcasLoadF(sp+ASU2(-1, 0)).rgb;
700 #ifdef FSR_RCAS_PASSTHROUGH_ALPHA
701 AF4 ee=FsrRcasLoadF(sp);
702 AF3 e=ee.rgb;pixA=ee.a;
703 #else
704 AF3 e=FsrRcasLoadF(sp).rgb;
705 #endif
706 AF3 f=FsrRcasLoadF(sp+ASU2( 1, 0)).rgb;
707 AF3 h=FsrRcasLoadF(sp+ASU2( 0, 1)).rgb;
708 // Rename (32-bit) or regroup (16-bit).
709 AF1 bR=b.r;
710 AF1 bG=b.g;
711 AF1 bB=b.b;
712 AF1 dR=d.r;
713 AF1 dG=d.g;
714 AF1 dB=d.b;
715 AF1 eR=e.r;
716 AF1 eG=e.g;
717 AF1 eB=e.b;
718 AF1 fR=f.r;
719 AF1 fG=f.g;
720 AF1 fB=f.b;
721 AF1 hR=h.r;
722 AF1 hG=h.g;
723 AF1 hB=h.b;
724 // Run optional input transform.
725 FsrRcasInputF(bR,bG,bB);
726 FsrRcasInputF(dR,dG,dB);
727 FsrRcasInputF(eR,eG,eB);
728 FsrRcasInputF(fR,fG,fB);
729 FsrRcasInputF(hR,hG,hB);
730 // Luma times 2.
731 AF1 bL=bB*AF1_(0.5)+(bR*AF1_(0.5)+bG);
732 AF1 dL=dB*AF1_(0.5)+(dR*AF1_(0.5)+dG);
733 AF1 eL=eB*AF1_(0.5)+(eR*AF1_(0.5)+eG);
734 AF1 fL=fB*AF1_(0.5)+(fR*AF1_(0.5)+fG);
735 AF1 hL=hB*AF1_(0.5)+(hR*AF1_(0.5)+hG);
736 // Noise detection.
737 AF1 nz=AF1_(0.25)*bL+AF1_(0.25)*dL+AF1_(0.25)*fL+AF1_(0.25)*hL-eL;
738 nz=ASatF1(abs(nz)*APrxMedRcpF1(AMax3F1(AMax3F1(bL,dL,eL),fL,hL)-AMin3F1(AMin3F1(bL,dL,eL),fL,hL)));
739 nz=AF1_(-0.5)*nz+AF1_(1.0);
740 // Min and max of ring.
741 AF1 mn4R=min(AMin3F1(bR,dR,fR),hR);
742 AF1 mn4G=min(AMin3F1(bG,dG,fG),hG);
743 AF1 mn4B=min(AMin3F1(bB,dB,fB),hB);
744 AF1 mx4R=max(AMax3F1(bR,dR,fR),hR);
745 AF1 mx4G=max(AMax3F1(bG,dG,fG),hG);
746 AF1 mx4B=max(AMax3F1(bB,dB,fB),hB);
747 // Immediate constants for peak range.
748 AF2 peakC=AF2(1.0,-1.0*4.0);
749 // Limiters, these need to be high precision RCPs.
750 AF1 hitMinR=mn4R*ARcpF1(AF1_(4.0)*mx4R);
751 AF1 hitMinG=mn4G*ARcpF1(AF1_(4.0)*mx4G);
752 AF1 hitMinB=mn4B*ARcpF1(AF1_(4.0)*mx4B);
753 AF1 hitMaxR=(peakC.x-mx4R)*ARcpF1(AF1_(4.0)*mn4R+peakC.y);
754 AF1 hitMaxG=(peakC.x-mx4G)*ARcpF1(AF1_(4.0)*mn4G+peakC.y);
755 AF1 hitMaxB=(peakC.x-mx4B)*ARcpF1(AF1_(4.0)*mn4B+peakC.y);
756 AF1 lobeR=max(-hitMinR,hitMaxR);
757 AF1 lobeG=max(-hitMinG,hitMaxG);
758 AF1 lobeB=max(-hitMinB,hitMaxB);
759 AF1 lobe=max(AF1_(-FSR_RCAS_LIMIT),min(AMax3F1(lobeR,lobeG,lobeB),AF1_(0.0)))*AF1_AU1(con.x);
760 // Apply noise removal.
761 #ifdef FSR_RCAS_DENOISE
762 lobe*=nz;
763 #endif
764 // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes.
765 AF1 rcpL=APrxMedRcpF1(AF1_(4.0)*lobe+AF1_(1.0));
766 pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL;
767 pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL;
768 pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL;
769 return;}
770#endif
771////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
772////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
773//_____________________________________________________________/\_______________________________________________________________
774//==============================================================================================================================
775// NON-PACKED 16-BIT VERSION
776//==============================================================================================================================
777#if defined(A_GPU)&&defined(A_HALF)&&defined(FSR_RCAS_H)
778 // Input callback prototypes that need to be implemented by calling shader
779 AH4 FsrRcasLoadH(ASW2 p);
780 void FsrRcasInputH(inout AH1 r,inout AH1 g,inout AH1 b);
781//------------------------------------------------------------------------------------------------------------------------------
782 void FsrRcasH(
783 out AH1 pixR, // Output values, non-vector so port between RcasFilter() and RcasFilterH() is easy.
784 out AH1 pixG,
785 out AH1 pixB,
786 #ifdef FSR_RCAS_PASSTHROUGH_ALPHA
787 out AH1 pixA,
788 #endif
789 AU2 ip, // Integer pixel position in output.
790 AU4 con){ // Constant generated by RcasSetup().
791 // Sharpening algorithm uses minimal 3x3 pixel neighborhood.
792 // b
793 // d e f
794 // h
795 ASW2 sp=ASW2(ip);
796 AH3 b=FsrRcasLoadH(sp+ASW2( 0,-1)).rgb;
797 AH3 d=FsrRcasLoadH(sp+ASW2(-1, 0)).rgb;
798 #ifdef FSR_RCAS_PASSTHROUGH_ALPHA
799 AH4 ee=FsrRcasLoadH(sp);
800 AH3 e=ee.rgb;pixA=ee.a;
801 #else
802 AH3 e=FsrRcasLoadH(sp).rgb;
803 #endif
804 AH3 f=FsrRcasLoadH(sp+ASW2( 1, 0)).rgb;
805 AH3 h=FsrRcasLoadH(sp+ASW2( 0, 1)).rgb;
806 // Rename (32-bit) or regroup (16-bit).
807 AH1 bR=b.r;
808 AH1 bG=b.g;
809 AH1 bB=b.b;
810 AH1 dR=d.r;
811 AH1 dG=d.g;
812 AH1 dB=d.b;
813 AH1 eR=e.r;
814 AH1 eG=e.g;
815 AH1 eB=e.b;
816 AH1 fR=f.r;
817 AH1 fG=f.g;
818 AH1 fB=f.b;
819 AH1 hR=h.r;
820 AH1 hG=h.g;
821 AH1 hB=h.b;
822 // Run optional input transform.
823 FsrRcasInputH(bR,bG,bB);
824 FsrRcasInputH(dR,dG,dB);
825 FsrRcasInputH(eR,eG,eB);
826 FsrRcasInputH(fR,fG,fB);
827 FsrRcasInputH(hR,hG,hB);
828 // Luma times 2.
829 AH1 bL=bB*AH1_(0.5)+(bR*AH1_(0.5)+bG);
830 AH1 dL=dB*AH1_(0.5)+(dR*AH1_(0.5)+dG);
831 AH1 eL=eB*AH1_(0.5)+(eR*AH1_(0.5)+eG);
832 AH1 fL=fB*AH1_(0.5)+(fR*AH1_(0.5)+fG);
833 AH1 hL=hB*AH1_(0.5)+(hR*AH1_(0.5)+hG);
834 // Noise detection.
835 AH1 nz=AH1_(0.25)*bL+AH1_(0.25)*dL+AH1_(0.25)*fL+AH1_(0.25)*hL-eL;
836 nz=ASatH1(abs(nz)*APrxMedRcpH1(AMax3H1(AMax3H1(bL,dL,eL),fL,hL)-AMin3H1(AMin3H1(bL,dL,eL),fL,hL)));
837 nz=AH1_(-0.5)*nz+AH1_(1.0);
838 // Min and max of ring.
839 AH1 mn4R=min(AMin3H1(bR,dR,fR),hR);
840 AH1 mn4G=min(AMin3H1(bG,dG,fG),hG);
841 AH1 mn4B=min(AMin3H1(bB,dB,fB),hB);
842 AH1 mx4R=max(AMax3H1(bR,dR,fR),hR);
843 AH1 mx4G=max(AMax3H1(bG,dG,fG),hG);
844 AH1 mx4B=max(AMax3H1(bB,dB,fB),hB);
845 // Immediate constants for peak range.
846 AH2 peakC=AH2(1.0,-1.0*4.0);
847 // Limiters, these need to be high precision RCPs.
848 AH1 hitMinR=mn4R*ARcpH1(AH1_(4.0)*mx4R);
849 AH1 hitMinG=mn4G*ARcpH1(AH1_(4.0)*mx4G);
850 AH1 hitMinB=mn4B*ARcpH1(AH1_(4.0)*mx4B);
851 AH1 hitMaxR=(peakC.x-mx4R)*ARcpH1(AH1_(4.0)*mn4R+peakC.y);
852 AH1 hitMaxG=(peakC.x-mx4G)*ARcpH1(AH1_(4.0)*mn4G+peakC.y);
853 AH1 hitMaxB=(peakC.x-mx4B)*ARcpH1(AH1_(4.0)*mn4B+peakC.y);
854 AH1 lobeR=max(-hitMinR,hitMaxR);
855 AH1 lobeG=max(-hitMinG,hitMaxG);
856 AH1 lobeB=max(-hitMinB,hitMaxB);
857 AH1 lobe=max(AH1_(-FSR_RCAS_LIMIT),min(AMax3H1(lobeR,lobeG,lobeB),AH1_(0.0)))*AH2_AU1(con.y).x;
858 // Apply noise removal.
859 #ifdef FSR_RCAS_DENOISE
860 lobe*=nz;
861 #endif
862 // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes.
863 AH1 rcpL=APrxMedRcpH1(AH1_(4.0)*lobe+AH1_(1.0));
864 pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL;
865 pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL;
866 pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL;}
867#endif
868////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
869////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
870//_____________________________________________________________/\_______________________________________________________________
871//==============================================================================================================================
872// PACKED 16-BIT VERSION
873//==============================================================================================================================
874#if defined(A_GPU)&&defined(A_HALF)&&defined(FSR_RCAS_HX2)
875 // Input callback prototypes that need to be implemented by the calling shader
876 AH4 FsrRcasLoadHx2(ASW2 p);
877 void FsrRcasInputHx2(inout AH2 r,inout AH2 g,inout AH2 b);
878//------------------------------------------------------------------------------------------------------------------------------
879 // Can be used to convert from packed Structures of Arrays to Arrays of Structures for store.
880 void FsrRcasDepackHx2(out AH4 pix0,out AH4 pix1,AH2 pixR,AH2 pixG,AH2 pixB){
881 #ifdef A_HLSL
882 // Invoke a slower path for DX only, since it won't allow uninitialized values.
883 pix0.a=pix1.a=0.0;
884 #endif
885 pix0.rgb=AH3(pixR.x,pixG.x,pixB.x);
886 pix1.rgb=AH3(pixR.y,pixG.y,pixB.y);}
887//------------------------------------------------------------------------------------------------------------------------------
888 void FsrRcasHx2(
889 // Output values are for 2 8x8 tiles in a 16x8 region.
890 // pix<R,G,B>.x = left 8x8 tile
891 // pix<R,G,B>.y = right 8x8 tile
892 // This enables later processing to easily be packed as well.
893 out AH2 pixR,
894 out AH2 pixG,
895 out AH2 pixB,
896 #ifdef FSR_RCAS_PASSTHROUGH_ALPHA
897 out AH2 pixA,
898 #endif
899 AU2 ip, // Integer pixel position in output.
900 AU4 con){ // Constant generated by RcasSetup().
901 // No scaling algorithm uses minimal 3x3 pixel neighborhood.
902 ASW2 sp0=ASW2(ip);
903 AH3 b0=FsrRcasLoadHx2(sp0+ASW2( 0,-1)).rgb;
904 AH3 d0=FsrRcasLoadHx2(sp0+ASW2(-1, 0)).rgb;
905 #ifdef FSR_RCAS_PASSTHROUGH_ALPHA
906 AH4 ee0=FsrRcasLoadHx2(sp0);
907 AH3 e0=ee0.rgb;pixA.r=ee0.a;
908 #else
909 AH3 e0=FsrRcasLoadHx2(sp0).rgb;
910 #endif
911 AH3 f0=FsrRcasLoadHx2(sp0+ASW2( 1, 0)).rgb;
912 AH3 h0=FsrRcasLoadHx2(sp0+ASW2( 0, 1)).rgb;
913 ASW2 sp1=sp0+ASW2(8,0);
914 AH3 b1=FsrRcasLoadHx2(sp1+ASW2( 0,-1)).rgb;
915 AH3 d1=FsrRcasLoadHx2(sp1+ASW2(-1, 0)).rgb;
916 #ifdef FSR_RCAS_PASSTHROUGH_ALPHA
917 AH4 ee1=FsrRcasLoadHx2(sp1);
918 AH3 e1=ee1.rgb;pixA.g=ee1.a;
919 #else
920 AH3 e1=FsrRcasLoadHx2(sp1).rgb;
921 #endif
922 AH3 f1=FsrRcasLoadHx2(sp1+ASW2( 1, 0)).rgb;
923 AH3 h1=FsrRcasLoadHx2(sp1+ASW2( 0, 1)).rgb;
924 // Arrays of Structures to Structures of Arrays conversion.
925 AH2 bR=AH2(b0.r,b1.r);
926 AH2 bG=AH2(b0.g,b1.g);
927 AH2 bB=AH2(b0.b,b1.b);
928 AH2 dR=AH2(d0.r,d1.r);
929 AH2 dG=AH2(d0.g,d1.g);
930 AH2 dB=AH2(d0.b,d1.b);
931 AH2 eR=AH2(e0.r,e1.r);
932 AH2 eG=AH2(e0.g,e1.g);
933 AH2 eB=AH2(e0.b,e1.b);
934 AH2 fR=AH2(f0.r,f1.r);
935 AH2 fG=AH2(f0.g,f1.g);
936 AH2 fB=AH2(f0.b,f1.b);
937 AH2 hR=AH2(h0.r,h1.r);
938 AH2 hG=AH2(h0.g,h1.g);
939 AH2 hB=AH2(h0.b,h1.b);
940 // Run optional input transform.
941 FsrRcasInputHx2(bR,bG,bB);
942 FsrRcasInputHx2(dR,dG,dB);
943 FsrRcasInputHx2(eR,eG,eB);
944 FsrRcasInputHx2(fR,fG,fB);
945 FsrRcasInputHx2(hR,hG,hB);
946 // Luma times 2.
947 AH2 bL=bB*AH2_(0.5)+(bR*AH2_(0.5)+bG);
948 AH2 dL=dB*AH2_(0.5)+(dR*AH2_(0.5)+dG);
949 AH2 eL=eB*AH2_(0.5)+(eR*AH2_(0.5)+eG);
950 AH2 fL=fB*AH2_(0.5)+(fR*AH2_(0.5)+fG);
951 AH2 hL=hB*AH2_(0.5)+(hR*AH2_(0.5)+hG);
952 // Noise detection.
953 AH2 nz=AH2_(0.25)*bL+AH2_(0.25)*dL+AH2_(0.25)*fL+AH2_(0.25)*hL-eL;
954 nz=ASatH2(abs(nz)*APrxMedRcpH2(AMax3H2(AMax3H2(bL,dL,eL),fL,hL)-AMin3H2(AMin3H2(bL,dL,eL),fL,hL)));
955 nz=AH2_(-0.5)*nz+AH2_(1.0);
956 // Min and max of ring.
957 AH2 mn4R=min(AMin3H2(bR,dR,fR),hR);
958 AH2 mn4G=min(AMin3H2(bG,dG,fG),hG);
959 AH2 mn4B=min(AMin3H2(bB,dB,fB),hB);
960 AH2 mx4R=max(AMax3H2(bR,dR,fR),hR);
961 AH2 mx4G=max(AMax3H2(bG,dG,fG),hG);
962 AH2 mx4B=max(AMax3H2(bB,dB,fB),hB);
963 // Immediate constants for peak range.
964 AH2 peakC=AH2(1.0,-1.0*4.0);
965 // Limiters, these need to be high precision RCPs.
966 AH2 hitMinR=mn4R*ARcpH2(AH2_(4.0)*mx4R);
967 AH2 hitMinG=mn4G*ARcpH2(AH2_(4.0)*mx4G);
968 AH2 hitMinB=mn4B*ARcpH2(AH2_(4.0)*mx4B);
969 AH2 hitMaxR=(peakC.x-mx4R)*ARcpH2(AH2_(4.0)*mn4R+peakC.y);
970 AH2 hitMaxG=(peakC.x-mx4G)*ARcpH2(AH2_(4.0)*mn4G+peakC.y);
971 AH2 hitMaxB=(peakC.x-mx4B)*ARcpH2(AH2_(4.0)*mn4B+peakC.y);
972 AH2 lobeR=max(-hitMinR,hitMaxR);
973 AH2 lobeG=max(-hitMinG,hitMaxG);
974 AH2 lobeB=max(-hitMinB,hitMaxB);
975 AH2 lobe=max(AH2_(-FSR_RCAS_LIMIT),min(AMax3H2(lobeR,lobeG,lobeB),AH2_(0.0)))*AH2_(AH2_AU1(con.y).x);
976 // Apply noise removal.
977 #ifdef FSR_RCAS_DENOISE
978 lobe*=nz;
979 #endif
980 // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes.
981 AH2 rcpL=APrxMedRcpH2(AH2_(4.0)*lobe+AH2_(1.0));
982 pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL;
983 pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL;
984 pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL;}
985#endif
986////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
987////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
988////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
989////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
990//_____________________________________________________________/\_______________________________________________________________
991//==============================================================================================================================
992//
993// FSR - [LFGA] LINEAR FILM GRAIN APPLICATOR
994//
995//------------------------------------------------------------------------------------------------------------------------------
996// Adding output-resolution film grain after scaling is a good way to mask both rendering and scaling artifacts.
997// Suggest using tiled blue noise as film grain input, with peak noise frequency set for a specific look and feel.
998// The 'Lfga*()' functions provide a convenient way to introduce grain.
999// These functions limit grain based on distance to signal limits.
1000// This is done so that the grain is temporally energy preserving, and thus won't modify image tonality.
1001// Grain application should be done in a linear colorspace.
1002// The grain should be temporally changing, but have a temporal sum per pixel that adds to zero (non-biased).
1003//------------------------------------------------------------------------------------------------------------------------------
1004// Usage,
1005// FsrLfga*(
1006// color, // In/out linear colorspace color {0 to 1} ranged.
1007// grain, // Per pixel grain texture value {-0.5 to 0.5} ranged, input is 3-channel to support colored grain.
1008// amount); // Amount of grain (0 to 1} ranged.
1009//------------------------------------------------------------------------------------------------------------------------------
1010// Example if grain texture is monochrome: 'FsrLfgaF(color,AF3_(grain),amount)'
1011//==============================================================================================================================
1012#if defined(A_GPU)
1013 // Maximum grain is the minimum distance to the signal limit.
1014 void FsrLfgaF(inout AF3 c,AF3 t,AF1 a){c+=(t*AF3_(a))*min(AF3_(1.0)-c,c);}
1015#endif
1016//==============================================================================================================================
1017#if defined(A_GPU)&&defined(A_HALF)
1018 // Half precision version (slower).
1019 void FsrLfgaH(inout AH3 c,AH3 t,AH1 a){c+=(t*AH3_(a))*min(AH3_(1.0)-c,c);}
1020//------------------------------------------------------------------------------------------------------------------------------
1021 // Packed half precision version (faster).
1022 void FsrLfgaHx2(inout AH2 cR,inout AH2 cG,inout AH2 cB,AH2 tR,AH2 tG,AH2 tB,AH1 a){
1023 cR+=(tR*AH2_(a))*min(AH2_(1.0)-cR,cR);cG+=(tG*AH2_(a))*min(AH2_(1.0)-cG,cG);cB+=(tB*AH2_(a))*min(AH2_(1.0)-cB,cB);}
1024#endif
1025////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1026////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1027////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1028////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1029//_____________________________________________________________/\_______________________________________________________________
1030//==============================================================================================================================
1031//
1032// FSR - [SRTM] SIMPLE REVERSIBLE TONE-MAPPER
1033//
1034//------------------------------------------------------------------------------------------------------------------------------
1035// This provides a way to take linear HDR color {0 to FP16_MAX} and convert it into a temporary {0 to 1} ranged post-tonemapped linear.
1036// The tonemapper preserves RGB ratio, which helps maintain HDR color bleed during filtering.
1037//------------------------------------------------------------------------------------------------------------------------------
1038// Reversible tonemapper usage,
1039// FsrSrtm*(color); // {0 to FP16_MAX} converted to {0 to 1}.
1040// FsrSrtmInv*(color); // {0 to 1} converted into {0 to 32768, output peak safe for FP16}.
1041//==============================================================================================================================
1042#if defined(A_GPU)
1043 void FsrSrtmF(inout AF3 c){c*=AF3_(ARcpF1(AMax3F1(c.r,c.g,c.b)+AF1_(1.0)));}
1044 // The extra max solves the c=1.0 case (which is a /0).
1045 void FsrSrtmInvF(inout AF3 c){c*=AF3_(ARcpF1(max(AF1_(1.0/32768.0),AF1_(1.0)-AMax3F1(c.r,c.g,c.b))));}
1046#endif
1047//==============================================================================================================================
1048#if defined(A_GPU)&&defined(A_HALF)
1049 void FsrSrtmH(inout AH3 c){c*=AH3_(ARcpH1(AMax3H1(c.r,c.g,c.b)+AH1_(1.0)));}
1050 void FsrSrtmInvH(inout AH3 c){c*=AH3_(ARcpH1(max(AH1_(1.0/32768.0),AH1_(1.0)-AMax3H1(c.r,c.g,c.b))));}
1051//------------------------------------------------------------------------------------------------------------------------------
1052 void FsrSrtmHx2(inout AH2 cR,inout AH2 cG,inout AH2 cB){
1053 AH2 rcp=ARcpH2(AMax3H2(cR,cG,cB)+AH2_(1.0));cR*=rcp;cG*=rcp;cB*=rcp;}
1054 void FsrSrtmInvHx2(inout AH2 cR,inout AH2 cG,inout AH2 cB){
1055 AH2 rcp=ARcpH2(max(AH2_(1.0/32768.0),AH2_(1.0)-AMax3H2(cR,cG,cB)));cR*=rcp;cG*=rcp;cB*=rcp;}
1056#endif
1057////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1058////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1059////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1060////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1061//_____________________________________________________________/\_______________________________________________________________
1062//==============================================================================================================================
1063//
1064// FSR - [TEPD] TEMPORAL ENERGY PRESERVING DITHER
1065//
1066//------------------------------------------------------------------------------------------------------------------------------
1067// Temporally energy preserving dithered {0 to 1} linear to gamma 2.0 conversion.
1068// Gamma 2.0 is used so that the conversion back to linear is just to square the color.
1069// The conversion comes in 8-bit and 10-bit modes, designed for output to 8-bit UNORM or 10:10:10:2 respectively.
1070// Given good non-biased temporal blue noise as dither input,
1071// the output dither will temporally conserve energy.
1072// This is done by choosing the linear nearest step point instead of perceptual nearest.
1073// See code below for details.
1074//------------------------------------------------------------------------------------------------------------------------------
1075// DX SPEC RULES FOR FLOAT->UNORM 8-BIT CONVERSION
1076// ===============================================
1077// - Output is 'uint(floor(saturate(n)*255.0+0.5))'.
1078// - Thus rounding is to nearest.
1079// - NaN gets converted to zero.
1080// - INF is clamped to {0.0 to 1.0}.
1081//==============================================================================================================================
1082#if defined(A_GPU)
1083 // Hand tuned integer position to dither value, with more values than simple checkerboard.
1084 // Only 32-bit has enough precision for this compddation.
1085 // Output is {0 to <1}.
1086 AF1 FsrTepdDitF(AU2 p,AU1 f){
1087 AF1 x=AF1_(p.x+f);
1088 AF1 y=AF1_(p.y);
1089 // The 1.61803 golden ratio.
1090 AF1 a=AF1_((1.0+sqrt(5.0))/2.0);
1091 // Number designed to provide a good visual pattern.
1092 AF1 b=AF1_(1.0/3.69);
1093 x=x*a+(y*b);
1094 return AFractF1(x);}
1095//------------------------------------------------------------------------------------------------------------------------------
1096 // This version is 8-bit gamma 2.0.
1097 // The 'c' input is {0 to 1}.
1098 // Output is {0 to 1} ready for image store.
1099 void FsrTepdC8F(inout AF3 c,AF1 dit){
1100 AF3 n=sqrt(c);
1101 n=floor(n*AF3_(255.0))*AF3_(1.0/255.0);
1102 AF3 a=n*n;
1103 AF3 b=n+AF3_(1.0/255.0);b=b*b;
1104 // Ratio of 'a' to 'b' required to produce 'c'.
1105 // APrxLoRcpF1() won't work here (at least for very high dynamic ranges).
1106 // APrxMedRcpF1() is an IADD,FMA,MUL.
1107 AF3 r=(c-b)*APrxMedRcpF3(a-b);
1108 // Use the ratio as a cutoff to choose 'a' or 'b'.
1109 // AGtZeroF1() is a MUL.
1110 c=ASatF3(n+AGtZeroF3(AF3_(dit)-r)*AF3_(1.0/255.0));}
1111//------------------------------------------------------------------------------------------------------------------------------
1112 // This version is 10-bit gamma 2.0.
1113 // The 'c' input is {0 to 1}.
1114 // Output is {0 to 1} ready for image store.
1115 void FsrTepdC10F(inout AF3 c,AF1 dit){
1116 AF3 n=sqrt(c);
1117 n=floor(n*AF3_(1023.0))*AF3_(1.0/1023.0);
1118 AF3 a=n*n;
1119 AF3 b=n+AF3_(1.0/1023.0);b=b*b;
1120 AF3 r=(c-b)*APrxMedRcpF3(a-b);
1121 c=ASatF3(n+AGtZeroF3(AF3_(dit)-r)*AF3_(1.0/1023.0));}
1122#endif
1123//==============================================================================================================================
1124#if defined(A_GPU)&&defined(A_HALF)
1125 AH1 FsrTepdDitH(AU2 p,AU1 f){
1126 AF1 x=AF1_(p.x+f);
1127 AF1 y=AF1_(p.y);
1128 AF1 a=AF1_((1.0+sqrt(5.0))/2.0);
1129 AF1 b=AF1_(1.0/3.69);
1130 x=x*a+(y*b);
1131 return AH1(AFractF1(x));}
1132//------------------------------------------------------------------------------------------------------------------------------
1133 void FsrTepdC8H(inout AH3 c,AH1 dit){
1134 AH3 n=sqrt(c);
1135 n=floor(n*AH3_(255.0))*AH3_(1.0/255.0);
1136 AH3 a=n*n;
1137 AH3 b=n+AH3_(1.0/255.0);b=b*b;
1138 AH3 r=(c-b)*APrxMedRcpH3(a-b);
1139 c=ASatH3(n+AGtZeroH3(AH3_(dit)-r)*AH3_(1.0/255.0));}
1140//------------------------------------------------------------------------------------------------------------------------------
1141 void FsrTepdC10H(inout AH3 c,AH1 dit){
1142 AH3 n=sqrt(c);
1143 n=floor(n*AH3_(1023.0))*AH3_(1.0/1023.0);
1144 AH3 a=n*n;
1145 AH3 b=n+AH3_(1.0/1023.0);b=b*b;
1146 AH3 r=(c-b)*APrxMedRcpH3(a-b);
1147 c=ASatH3(n+AGtZeroH3(AH3_(dit)-r)*AH3_(1.0/1023.0));}
1148//==============================================================================================================================
1149 // This computes dither for positions 'p' and 'p+{8,0}'.
1150 AH2 FsrTepdDitHx2(AU2 p,AU1 f){
1151 AF2 x;
1152 x.x=AF1_(p.x+f);
1153 x.y=x.x+AF1_(8.0);
1154 AF1 y=AF1_(p.y);
1155 AF1 a=AF1_((1.0+sqrt(5.0))/2.0);
1156 AF1 b=AF1_(1.0/3.69);
1157 x=x*AF2_(a)+AF2_(y*b);
1158 return AH2(AFractF2(x));}
1159//------------------------------------------------------------------------------------------------------------------------------
1160 void FsrTepdC8Hx2(inout AH2 cR,inout AH2 cG,inout AH2 cB,AH2 dit){
1161 AH2 nR=sqrt(cR);
1162 AH2 nG=sqrt(cG);
1163 AH2 nB=sqrt(cB);
1164 nR=floor(nR*AH2_(255.0))*AH2_(1.0/255.0);
1165 nG=floor(nG*AH2_(255.0))*AH2_(1.0/255.0);
1166 nB=floor(nB*AH2_(255.0))*AH2_(1.0/255.0);
1167 AH2 aR=nR*nR;
1168 AH2 aG=nG*nG;
1169 AH2 aB=nB*nB;
1170 AH2 bR=nR+AH2_(1.0/255.0);bR=bR*bR;
1171 AH2 bG=nG+AH2_(1.0/255.0);bG=bG*bG;
1172 AH2 bB=nB+AH2_(1.0/255.0);bB=bB*bB;
1173 AH2 rR=(cR-bR)*APrxMedRcpH2(aR-bR);
1174 AH2 rG=(cG-bG)*APrxMedRcpH2(aG-bG);
1175 AH2 rB=(cB-bB)*APrxMedRcpH2(aB-bB);
1176 cR=ASatH2(nR+AGtZeroH2(dit-rR)*AH2_(1.0/255.0));
1177 cG=ASatH2(nG+AGtZeroH2(dit-rG)*AH2_(1.0/255.0));
1178 cB=ASatH2(nB+AGtZeroH2(dit-rB)*AH2_(1.0/255.0));}
1179//------------------------------------------------------------------------------------------------------------------------------
1180 void FsrTepdC10Hx2(inout AH2 cR,inout AH2 cG,inout AH2 cB,AH2 dit){
1181 AH2 nR=sqrt(cR);
1182 AH2 nG=sqrt(cG);
1183 AH2 nB=sqrt(cB);
1184 nR=floor(nR*AH2_(1023.0))*AH2_(1.0/1023.0);
1185 nG=floor(nG*AH2_(1023.0))*AH2_(1.0/1023.0);
1186 nB=floor(nB*AH2_(1023.0))*AH2_(1.0/1023.0);
1187 AH2 aR=nR*nR;
1188 AH2 aG=nG*nG;
1189 AH2 aB=nB*nB;
1190 AH2 bR=nR+AH2_(1.0/1023.0);bR=bR*bR;
1191 AH2 bG=nG+AH2_(1.0/1023.0);bG=bG*bG;
1192 AH2 bB=nB+AH2_(1.0/1023.0);bB=bB*bB;
1193 AH2 rR=(cR-bR)*APrxMedRcpH2(aR-bR);
1194 AH2 rG=(cG-bG)*APrxMedRcpH2(aG-bG);
1195 AH2 rB=(cB-bB)*APrxMedRcpH2(aB-bB);
1196 cR=ASatH2(nR+AGtZeroH2(dit-rR)*AH2_(1.0/1023.0));
1197 cG=ASatH2(nG+AGtZeroH2(dit-rG)*AH2_(1.0/1023.0));
1198 cB=ASatH2(nB+AGtZeroH2(dit-rB)*AH2_(1.0/1023.0));}
1199#endif
diff --git a/externals/FidelityFX-FSR/license.txt b/externals/FidelityFX-FSR/license.txt
new file mode 100644
index 000000000..324cba594
--- /dev/null
+++ b/externals/FidelityFX-FSR/license.txt
@@ -0,0 +1,19 @@
1Copyright (c) 2021 Advanced Micro Devices, Inc. All rights reserved.
2
3Permission is hereby granted, free of charge, to any person obtaining a copy
4of this software and associated documentation files (the "Software"), to deal
5in the Software without restriction, including without limitation the rights
6to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7copies of the Software, and to permit persons to whom the Software is
8furnished to do so, subject to the following conditions:
9
10The above copyright notice and this permission notice shall be included in
11all copies or substantial portions of the Software.
12
13THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19THE SOFTWARE.